Структура теоретического знания шпора
Теоретический уровень научного познания характеризуется преобладанием рационального момента – теорий, понятий, законов и других форм мышления и мыслительных операций. Теоретическое познание отражает явления и процессы со стороны их универсальных внутренних связей и закономерностей, постигаемых с помощью рациональной обработки данных эмпирического знания.
Важнейшая задача теоретического знания – достижение объективной истины во всей ее конктетности и полноте содержания.
На теоретической стадии преобладающим является рациональное познание, которое наиболее полно и адекватно выражено в мышлении. Мышление – осуществляющийся в ходе практики активный процесс обобщенного и опосредованного отражения действительности, обеспечивающий раскрытие на основе чувственных данных ее закономерных связей и их выражение в системе абстракций (понятий, категорий). Формы мышления – способы отражения действительности посредством взаимосвязанных абстракций, среди которых исходными являются понятия, суждения и умозаключения. На их основе строятся более сложные формы рационального познания, такие как гипотеза, теория, и другие.
Понятие – форма мышления, отражающая наиболее общие закономерные связи, существенные стороны, признаки явлений, которые закрепляются в их определениях. Понятия должны быть гибки и подвижны, взаимосвязаны, едины в противоположностях, чтобы верно отразить развитие объективного мира.
Суждение – форма мышления, отражающая отдельные вещи, явления, процессы действительности, их свойства, связи и отношения. Это мысленное отражение, обычно выражаемое повествовательным предложением, может быть либо истинным, либо ложным. В форме суждения выражаются любые свойства и признаки предмета. Аналог суждения – высказывание – грамматически правильное повествовательное предложение, взятое вместе с выражаемым им смыслом. Основными типами высказываний являются описательные и оценочные.
Умозаключение – форма мышления (мыслительный процесс), посредством которой из ранее установленного знания (обычно из одного или нескольких суждений) выводится новое знание. Важными условиями достижения истинного выводного знания являются не только истинность посылок (аргументов, оснований), но и соблюдение правил вывода, недопущение нарушений законов и принципов логики и диалектики.
Структурные компоненты теоретического познания :
- Проблема – форма теоретического знания, содержанием которого является то, что еще не познано человеком, но нужно познать. Проблема – это процесс, включающий два основных момента – ее постановку и решение.
- Гипотеза – форма теоретического знания, содержащая предположение, сформулированное на основе ряда фактов, истинное значение которого неопределенно и нуждается в доказательстве.
- Теория – это целостная развивающаяся система истинного знания (включающая и элементы заблуждения), которая имеет сложную структуру и выполняет ряд функций. С математической точки зрения, теория – это совокупность предложений, замкнутых относительно выводимости. Теория – логически взаимосвязанная система понятий и утверждений о свойствах, отношениях и законах некоторых идеализированных объектов (философский словарь). Основные функции теории: синтетическая (объединение отдельных достоверных знаний в целостную единую систему), объяснительная (выявление причинных и иных зависимостей, многообразия связей данного явления, его существенных характеристик, законов его происхождения и развития), методологическая (формулировка методов, способов и приемов исследовательской деятельности), предсказательная, практическая.
- Закон – ключевой элемент теории. Научный закон – это всеобщая необходимая, повторяющаяся, объективная связь явлений. Многие законы описывают не связь явлений, а сих структуру (структурные законы). В общем виде закон можно определить как связь (отношение) между явлениями, процессами, которая является: объективной (присуща прежде всего реальному миру, чувственно-предметной деятельности людей, выражает реальные отношения вещей.), существенной (конкретно-всеобщей – закон присущ всем процессам данного класса, определенного типа и действует всегда и везде, где развертываются соответствующие процессы и условия), необходимой, внутренней (отражает самые глубинные связи и зависимости данной предметной области) и повторяющейся, устойчивой.
Ключевая задача научного исследования – найти законы данной предметной области, определенной сферы реальной действительности, выразить их в соответствующих понятиях, абстракциях, теориях, идеях, принципах.
Законы открываются сначала в форме предположений, гипотез. Дальнейший опытный материал, новые факты приводят к очищению этих гипотез, устраняют одни из них и исправляют другие, пока не будет установлен в чистом виде закон. Одно из важнейших требований к научной гипотезе – ее принципиальная проверяемость на практике (в опыте, эксперименте)., что отличает гипотезу от умозрительного построения.
Открытие и формулирование закона – важнейшая, но не последняя задача науки, которая должна еще показать, как открытый ею закон работает.
Выделим методы теоретического познания:
1) Формализация – отображение содержательного знания в знаково-символическом виде (формализованном языке). Последний создается для точного выражения мыслей с целью исключения возможности для неоднозначного понимания. При формализации рассуждения об объектах переносятся в плоскость оперирования знаками (формулы), что связано с построением искусственных языков.
2) Аксиоматический метод – способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения – аксиомы (постулаты), из которых все остальные утверждения этой теории выводятся чисто логическим путем, посредством доказательств. Для вывода теорем из аксиом (и вообще одних формул из других) формулируются специальные правила вывода.
Аксиоматический метод – лишь один из методов построения уже добытого научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизированной содержательной теории.
3) Гипотетико-дедуктивный метод – метод научного познания, сущность которого заключается в создании системы дедуктивно связанных между собой гипотез, из которых в конечном счете выводятся утверждения об эмпирических фактах.
Этот метод основан на выведении (дедукции) заключений из гипотез и других посылок, истинное значение которых неизвестно. А это значит, что заключение, полученное на основе данного метода, неизбежно будет иметь вероятностный характер.
Общая структура гипотетико-дедуктивного метода:
- ознакомление с фактическим материалом, требующим теоретического объяснения и попытка такового с помощью уже существующих теорий и законов. Если нет, то:
- выдвижение догадки (гипотезы) о причинах и закономерностях данных явлений с помощью разнообразных логических приемов;
- оценка основательности и серьезности предположений и отбор из их множества наиболее вероятной;
- выведение из гипотезы следствий с уточнением ее содержания;
- экспериментальная проверка выведенных из гипотезы следствий. Тут гипотеза или получает экспериментальное подтверждение, или опровергается. Лучшая по результатам проверки гипотеза переходит в теорию.
Перейдем теперь к анализу теоретического уровня познания. Здесь тоже можно выделить (с определенной долей условности) два подуровня. Первый из них образует частные теоретические модели и законы, которые выступают в качестве теорий, относящихся к достаточно ограниченной области явлений. Второй - составляют развитые научные теории, включающие частные теоретические законы в качестве следствий, выводимых из фундаментальных законов теории.
Примерами знаний первого подуровня могут служить теоретические модели и законы, характеризующие отдельные виды механического движения: модель и закон колебания маятника (законы Гюйгенса), движения планет вокруг Солнца (законы Кеплера), свободного падения тел (законы Галилея) и др. Они были получены до того, как была построена ньютоновская механика. Сама же эта теория, обобщившая все предшествующие ей теоретические знания об отдельных аспектах механического движения, выступает типичным примером развитых теорий, которые относятся ко второму подуровню теоретических знаний.
Своеобразной клеточкой организации теоретических знаний на каждом из его подуровней является двухслойная конструкция - теоретическая модель и формулируемый относительно нее теоретический закон.
Рассмотрим вначале, как устроены теоретические модели.
В качестве их элементов выступают абстрактные объекты (теоретические конструкты), которые находятся в строго определенных связях и отношениях друг с другом.
Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели. Они могут быть применены для описания реальных ситуаций опыта лишь в том случае, если модель обоснована в качестве выражения существенных связей действительности, проявляющихся в таких ситуациях.
Например, если изучаются механические колебания тел (маятник, тело на пружине и т.д.), то чтобы выявить закон их движения, вводят представление о материальной точке, которая периодически отклоняется от положения равновесия и вновь возвращается в это положение. Само это представление имеет смысл только тогда, когда зафиксирована система отсчета. А это - второй теоретический конструкт, фигурирующий в теории колебаний. Он соответствует идеализированному представлению физической лаборатории, снабженной часами и линейками. Наконец, для выявления закона колебаний необходим еще один абстрактный объект - квазиупругая сила, которая вводится по признаку: приводить в движение материальную точку, возвращая ее к положению равновесия.
Система перечисленных абстрактных объектов (материальная точка, система отсчета, квазиупругая сила) образуют модель малых колебаний (называемую в физике осциллятором). Исследуя свойства этой модели и выражая отношения образующих ее объектов на языке математики, получают формулу, которая является законом малых колебаний.
Этот закон непосредственно относится к теоретической модели, описывая связи и отношения образующих ее абстрактных объектов. Но поскольку модель может быть обоснована как выражение сущности реальных процессов колебания тел, постольку полученный закон можно применить ко всем подобным ситуациям.
В развитых в теоретическом отношении дисциплинах, применяющих количественные методы исследования (таких, как физика), законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками - в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями. Богатство связей и отношений, заложенное в теоретической модели, может быть выявлено посредством движения в математическом аппарате теории. Решая уравнения и анализируя полученные результаты, исследователь как бы развертывает содержание теоретической модели и таким способом получает все новые и новые знания об исследуемой реальности.
Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в ее состав. Их следует отличать от аналоговых моделей, которые служат средством построения теории, ее своеобразными строительными лесами, но целиком не включаются в созданную теорию. Чтобы подчеркнуть особый статус теоретических моделей, относительно которых формулируются законы и которые обязательно входят в состав теории, назовем их теоретическими схемами. Они действительно являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи.
Соответственно двум выделенным подуровням теоретического знания можно говорить о теоретических схемах в составе фундаментальной теории и в составе частных теорий.
В основании развитой теории можно выделить фундаментальную теоретическую схему, которая построена из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга, и относительно которой формулируются фундаментальные теоретические законы.
Например, в ньютоновской механике ее основные законы формулируются относительно системы абстрактных объектов: "материальная точка", "сила", "инерциальная пространственно-временная система отсчета". Связи и отношения перечисленных объектов образуют теоретическую модель механического движения, изображающую механические процессы как перемещение материальной точки по континууму точек пространства инерциальной системы отсчета с течением времени и как изменение состояния движения материальной точки под действием силы.
Кроме фундаментальной теоретической схемы и фундаментальных законов в состав развитой теории входят частные теоретические схемы и законы.
В механике это - теоретические схемы и законы колебания, вращения тел, соударения упругих тел, движение тела в поле центральных сил и т.п.
Когда эти частные теоретические схемы включены в состав теории, они подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Образующие их абстрактные объекты специфичны. Они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы и выступать как их своеобразная модификация. Различию между фундаментальной и частными теоретическими схемами в составе развитой теории соответствует различие между ее фундаментальными законами и их следствиями.
Как уже отмечалось, частные теоретические схемы и связанные с ними уравнения могут предшествовать развитой теории. Более того, когда возникают фундаментальные теории, рядом с ними могут существовать частные теоретические схемы, описывающие эту же область взаимодействия, но с позиций альтернативных представлений. Так, например, обстояло дело с фарадеевскими моделями электромагнитной и электростатической индукции. Они возникли в период, когда создавался первый вариант развитой теории электричества и магнетизма - электродинамика Ампера. Это была достаточно развитая математизированная теория, которая описывала и объясняла явления электричества и магнетизма с позиций принципа дальнодействия. Что же касается теоретических схем, предложенных Фарадеем, то они базировались на альтернативной идее - близкодействия.
Нелишне подчеркнуть, что законы электростатической и электромагнитной индукции были сформулированы Фарадеем в качественном виде, без применения математики. Их математическая формулировка была найдена позднее, когда была создана теория электромагнитного поля. При построении этой теории фарадеевские модели были видоизменены и включены в ее состав.
Это обстоятельство характерно для судеб любых частных теоретических схем, ассимилируемых развитой теорией. Они редко сохраняются в своем первоначальном виде, а чаще всего трансформируются и только благодаря этому становятся компонентом развитой теории.
Итак, строение развитой естественно-научной теории можно изобразить как сложную, иерархически организованную систему теоретических схем и законов, где теоретические схемы образуют своеобразный внутренний скелет теории.
Функционирование теорий предполагает их применение к объяснению и предсказанию опытных фактов. Чтобы применить к опыту фундаментальные законы развитой теории, из них нужно получить следствия, сопоставимые с результатами опыта. Вывод таких следствий характеризуется как развертывание теории.
Структура научной теории будет близка к простой систематизации опытных данных (индукций в виде понятий и эмпирических законов), где преобладает взаимодополнение, а не субординация или выводимость. Примерами структур научной теории, предопределенных рационализмом и эмпиризмом, в термодинамике служат соответственно молекулярно-кинетическая теория теплоты и термодинамика трех начал. Здесь можно выделить два подуровня: частные теоретические модели и законы, которые выступают в качестве теорий, относящихся к ограниченной области явлений и развитые научные теории, включающие частные теоретические законы в качестве следствий, выводимых из фундаментальных законов теории. Примерами знаний первого подуровня могут служить законы, характеризующие отдельные виды движения: движения планет вокруг Солнца (законы Кеплера), свободного падения тел (законы Галилея). Они были получены до того, как была построена ньютоновская механика. Сама же эта теория, обобщившая все предшествующие ей теоретические знания об отдельных аспектах механического движения, выступает типичным примером развитых теорий. В основании развитой теории можно выделить фундаментальную теоретическую схему, которая построена из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга, и относительно которой формулируются фундаментальные теоретические законы.
Эти частные схемы подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Образующие их абстрактные объекты специфичны. Они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы и выступать как их своеобразная модификация. Различию между фундаментальной и частными теоретическими схемами в составе развитой теории соответствует различие между ее фундаментальными законами и их следствиями. Долгое время доминировало представление о теории как гипотетико-дедуктивной системе. Структура теории рассматривалась по аналогии со структурой формализованной математической теории и изображалась как иерархическая система высказываний, где из базисных утверждений верхних ярусов строго логически выводятся высказывания нижних ярусов вплоть до высказываний, непосредственно сравнимых с опытными фактами.
Иерархической структуре высказываний соответствует иерархия взаимосвязанных абстрактных объектов. Связи же этих объектов образуют теоретические схемы различного уровня. И тогда развертывание теории предстает не только как оперирование высказываниями, но и как мысленные эксперименты с абстрактными объектами теоретических схем. Теоретические схемы играют важную роль в развертывании теории. Вывод следствий из фундаментальных уравнений теории осуществляется не только за счет формальных операций над высказываниями, но и за счет мысленных экспериментов с абстрактными объектами, позволяющих редуцировать фундаментальную теоретическую схему к частным. При выводе следствий из базисных уравнений теории исследователь осуществляет мысленные эксперименты с теоретическими схемами, используя конкретизирующие допущения и редуцируя фундаментальную схему соответствующей теории к той или иной частной теоретической схеме. Специфика сложных форм теоретического знания состоит в том, что операции построения частных теоретических схем на базе конструктов фундаментальной теоретической схемы не описываются в явном виде в постулатах и определениях теории. Эти операции демонстрируются на конкретных образцах, которые включаются в состав теории в качестве эталонных ситуаций, показывающих, как осуществляется вывод следствий из основных уравнений теории. Неформальный характер всех этих процедур, необходимость каждый раз обращаться к исследуемому объекту и учитывать его особенности при конструировании частных теоретических схем превращают вывод каждого очередного следствия из основных уравнений теории в особую задачу.
Развертывание теории осуществляется в форме решения таких задач.
ПРОБЛЕМА — форма знания, содержанием которой является то, что еще не познано человеком, но что нужно познать. Проблема - процесс, включающий два основных момента — постановку и решение. Правильное выведение проблемного знания из предшествующих фактов и обобщений, умение верно поставить проблему — необходимая предпосылка ее успешного решения.
ГИПОТЕЗА — предположение, сформулированное на основе ряда фактов, истинное значение которого неопределенно и нуждается в доказательстве. Гипотетическое знание носит вероятный, а не достоверный характер.
ТЕОРИЯ — форма научного знания, дающая целостное отображение связей определенной области действительности. Примерами этой формы знания являются классическая механика Ньютона, эволюционная теория Дарвина.
В теоретическом познании подуровни: 1) частные теоретические модели и законы, выступающие в качестве теорий, относящихся к достаточно ограниченной области явлений. 2) развитые научные теории, включающие частные теоретические законы в качестве следствий, выводимых из фундаментальных теорий.
На каждом уровне теоретические знания организуются вокруг конструкции - теоретической модели и формулируемого относительно нее теоретического закона. В качестве их элементов выступают абстрактные объекты, которые находятся в строго определенных связях и отношениях друг с другом. Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели.
Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в ее состав. Их следует отличать от аналоговых моделей, которые служат средством построения теории, ее своеобразными строительными лесами, но целиком не включаются в созданную теорию. Теоретические модели являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи.
В основании развитой теории выделяют фундаментальную теоретическую схему, построенную из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга, и относительно которой формулируются фундаментальные теоретические законы (в ньютоновской механике ее основные законы формулируются относительно системы абстрактных объектов: "материальная точка", "сила"; связи и отношения перечисленных объектов образуют теоретическую модель механического движения). Кроме фундаментальной теоретической схемы и фундаментальных законов в состав развитой теории входят частные теоретические схемы и законы. В механике - теоретические схемы и законы колебания, вращения тел, соударения упругих тел. Когда частные теоретические схемы включены в состав теории, они подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Образующие их абстрактные объекты специфичны. Они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы и выступать как их своеобразная модификация. Различию между фундаментальной и частными теоретическими схемами в составе развитой теории соответствует различие между ее фундаментальными законами и их следствиями. Т.о., строение развитой научной теории - сложная, иерархически организованная система теоретических схем и законов, образующих внутренний скелет теории.
Функционирование теорий предполагает их применение к объяснению и предсказанию опытных фактов. Чтобы применить к опыту фундаментальные законы развитой теории, из них нужно получить следствия, сопоставимые с результатами опыта. Вывод таких следствий характеризуется как развертывание теории. Иерархической структуре высказываний соответствует иерархия взаимосвязанных абстрактных объектов. Связи же этих объектов образуют теоретические схемы различного уровня. И тогда развертывание теории предстает не только как оперирование высказываниями, но и как мысленные эксперименты с абстрактными объектами теоретических схем.
В развитых дисциплинах законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками - в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями. Решая уравнения и анализируя результаты, исследователь развертывает содержание теоретической модели и таким способом получает все новые и новые знания об исследуемой реальности. Интерпретация уравнений обеспечивается их связью с теоретической моделью, в объектах которой выполняются уравнения, и связью уравнений с опытом. Последний аспект называется эмпирической интерпретацией.
Специфика сложных форм теоретического знания таких, как физическая теория, состоит в том, что операции построения частных теоретических схем на базе конструктов фундаментальной теоретической схемы не описываются в явном виде в постулатах и определениях теории. Эти операции демонстрируются на конкретных образцах, которые включаются в состав теории в качестве эталонных ситуаций, показывающих, как осуществляется вывод следствий из основных уравнений теории. Неформальный характер всех этих процедур, необходимость каждый раз обращаться к исследуемому объекту и учитывать его особенности при конструировании частных теоретических схем превращают вывод каждого очередного следствия из основных уравнений теории в особую теоретическую задачу. Развертывание теории осуществляется в форме решения таких задач. Решение некоторых из них с самого начала предлагается в качестве образцов, в соответствии с которыми должны решаться остальные задачи.
Основные понятия:научная теория, теоретический закон, гипотеза, проблема.
Перейдем теперь к анализу теоретического уровня знания. Здесь тоже можно выделить (с определенной долей условности) два подуровня.
Первый из них образует частные теоретические модели и законы, которые выступают в качестве теорий, относящихся к достаточно ограниченной области явлений. Пример: теоретические модели и законы, характеризующие отдельные виды механического движения: модель и закон колебания маятника (законы Гюйгенса), движения планет вокруг Солнца (законы Кеплера), свободного падения тел (законы Галилея) и др. Они были получены до того, как была построена ньютоновская механика.
Второй - составляют развитые научные теории, включающие частные теоретические законы в качестве следствий, выводимых из фундаментальных законов теории. Пример: ньютоновская механика, обобщившая все предшествующие ей теоретические знания об отдельных аспектах механического движения, выступает типичным примером развитых теорий, которые относятся ко второму подуровню теоретических знаний.
Каждый из указанных подуровней состоит из двух элементов: теоретической модели и формулируемого относительно нее теоретического закона.
Структура теоретической модели:
1) элементами являются абстрактные объекты (теоретические конструкты), которые находятся в строго определенных связях и отношениях друг с другом.
2) теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели. Они могут быть применены для описания реальных ситуаций опыта лишь в том случае, если модель обоснована в качестве выражения существенных связей действительности, проявляющихся в таких ситуациях.
Пример: если изучаются механические колебания тел (маятник, тело на пружине и т.д.), то чтобы выявить закон их движения, вводят представление о материальной точке, которая периодически отклоняется от положения равновесия и вновь возвращается в это положение. Само это представление имеет смысл только тогда, когда зафиксирована система отсчета. А это - второй теоретический конструкт, фигурирующий в теории колебаний. Он соответствует идеализированному представлению физической лаборатории, снабженной часами и линейками. Наконец, для выявления закона колебаний необходим еще один абстрактный объект - квазиупругая сила, которая вводится по признаку: приводить в движение материальную точку, возвращая ее к положению равновесия.
Система перечисленных абстрактных объектов (материальная точка, система отсчета, квазиупругая сила) образуют модель малых колебаний (называемую в физике осциллятором). Исследуя свойства этой модели и выражая отношения образующих ее объектов на языке математики, получают формулу, которая является законом малых колебаний.
Этот закон непосредственно относится к теоретической модели, описывая связи и отношения образующих ее абстрактных объектов. Но поскольку модель может быть обоснована как выражение сущности реальных процессов колебания тел, постольку полученный закон можно применить ко всем подобным ситуациям.
В развитых в теоретическом отношении дисциплинах, применяющих количественные методы исследования (таких, как физика), законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками - в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями.
Структурные компоненты теоретического познания:
1. Проблема– форма теоретического знания, содержанием которого является то, что еще не познано человеком, но что нужно познать (знание о незнании, вопрос, возникший в ходе познания и требующий ответа). Проблема не есть застывшая форма знания, предполагает постановку и решение какого-то вопроса. Научная проблема выражается в наличии противоречивой ситуации (выступающей в виде противоположных позиций), которая требует соответствующего разрешения. Научные проблемы следует отличать от ненаучных (псевдопроблем) - например, проблема создания вечного двигателя.
2. Гипотеза - форма теоретического знания, содержащая предположение, сформулированное на основе фактов, истинное значение которого неопределенно и нуждается в доказательстве. Гипотеза может существовать лишь до тех пор, пока не противоречит достоверным фактам опыта, в противном случае она становится просто фикцией. Она проверяется (верифицируется) соответствующими опытными фактами (в особенности экспериментом), получая характер истины. Гипотеза является плодотворной, если может привести к новым знаниям и новым методам познания, к объяснению широкого круга явлений.
Типология гипотез:
а) гипотезы, возникающие непосредственно для объяснения опыта;
б) гипотезы, в формировании которых опыт играет определенную, но не исключительную роль;
в) гипотезы, которые возникают на основе обобщения только предшествующих концептуальных построений.
Гипотеза понимается как:
1) Форма теоретического знания, характеризующаяся проблематичностью и недостоверностью. Развитие научной гипотезы может происходить в трех основных направлениях:
· уточнение, конкретизация гипотезы в ее собственных рамках.
· самоотрицание гипотезы, выдвижение и обоснование новой гипотезы. В этом случае происходит не усовершенствование старой системы знаний, а ее качественное изменение.
· превращение гипотезы как системы вероятного знания — подтвержденной опытом — в достоверную систему знания, т. е. в научную теорию.
2) Как метод развития научного знания: выдвижение предполагаемого знания, которое проходит эмпирическую проверку.
3. Теория– наиболее развитая форма научного знания, дающая целостное отображение закономерных и существенных связей определенной области действительности.
Критерии теории (по Эйнштейну):
1) Должна не противоречить данным опыта, фактам.
2) Должна быть проверяемой на имеющемся опытном материале.
4) Должна содержать наиболее определенные утверждения.
5) Не должна быть произвольно выбранной среди равносильных теорий.
6) Должна отличаться изяществом и красотой, гармоничностью.
7) Должна характеризоваться многообразием предметов, которые она связывает в ценностную систему абстракции.
8) Должна иметь широкую область своего применения.
9) Должна указывать путь создания новой, более общей теории, в рамках которой она остается частным случаем.
Требования к теории (по Попперу):
1) Требование непротиворечивости (не нарушать законы формальной логики и фальсифицируемости).
2) Требование опытной экспериментальной проверяемости.
Структура научной теории:
1) Исходные основания – фундаментальные понятия, принципы, законы, уравнения, аксиомы и т.д.
2) Идеализированные объекты – абстрактные модели существенных свойств и связей изучаемых предметов (идеальный газ и пр.)
3) Логика теории – совокупность определенных правил и способов доказательства, нацеленных на прояснение структуры знания.
4) Философские установки и ценностные факторы.
5) Совокупность законов и утверждений, выведенных в качестве следствий из основоположений данной теории.
По мнению В. С. Степина, основанием научной теории является особая организация абстрактных объектов - фундаментальная теоретическая схема, связанная с соответствующим ей математическим формализмом.
Функции научной теории:
1) Открытие законов изучаемой действительности.
2) Синтетическая функция – объединение отдельных достоверных знаний в единую, целостную систему.
3) Объяснительная функция – выявление причинных и иных зависимостей, многообразия связей данного явления, существенных характеристик его происхождения и развития.
4) Методологическая функция – на базе теории формулируются многообразные методы, способы и приемы исследовательской деятельности.
6) Практическая функция: конечная цель теории – воплощение в практику.
Дата добавления: 2018-04-04 ; просмотров: 1434 ;
Читайте также: