Угол опережения подачи топлива по мениску что это
Своевременность сгорания топлива обуславливается углом опережения подачи топлива. От его величины зависят продолжительность периода задержки самовоспламенения, скорость нарастания давления и расположение линии сгорания относительно В.М.Т. При смещении сгорания топлива на начало процесса расширения уменьшается давление в конце горения, повышается температура отходящих газов и возрастают потери теплоты, что приводит к увеличению удельного расхода топлива. Кроме того, будут происходить перегрев поршня и повышение температурных напряжений цилиндра. Давление в конце горения Pz по отдельным цилиндрам не должно отклоняться от значений, указанных в формуляре дизеля, более чем на ± 5 %. Для повышения Pz угол опережения подачи топлива увеличивают, для снижения - уменьшают. Величина угла опережения подачи топлива указана в формуляре двигателя.
При определении угла опережения подачи топлива односекционным топливным насосом выполняют следующие действия:
- 1. Отсоединяют топливную трубку от насоса.
- 2. Устанавливают на штуцер топливного насоса моментоскоп.
- 3. Ставят рейку топливного насоса на полную подачу топлива.
- 4. Прокачивают топливный насос вручную до полного удаления воздуха из трубопровода насоса и моментоскопа.
- 5. Сжимая резиновую трубку, выдавливают из стеклянной трубки топливо до половины её длины.
- 6. Медленно проворачивают коленчатый вал дизеля до начала движения мениска топлива в стеклянной трубке; этот момент будет соответствовать началу подачи топлива.
- 7. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до В.М.Т. Если маховик не разбит на градусы, измеряют длину дуги маховика от метки В.М.Т. данного цилиндра до неподвижной стрелки-указателя на блоке, а затем подсчитывают угол по формуле
где l - длина дуги от метки в.м.т. до стрелки-указателя, мм;
L - длина окружности маховика, мм.
При отсутствии моментоскопа угол опережения подачи топлива можно проверить следующим образом:
- 1. Отсоединяют топливную трубку от насоса.
- 2. Вынимают из насоса нагнетательный клапан с пружиной, устанавливают на место штуцер или крышку насоса.
- 3. Подают топливо из расходной цистерны к насосу.
- 4. Спускают воздух из топливного трубопровода и насоса, после чего прикрывают отверстие в штуцере пальцем.
- 5. Медленно проворачивают коленчатый вал дизеля до прекращения вытекания топлива через штуцер.
- 6. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до В.М.Т.
Для большей точности рекомендуется определять угол подачи топлива два раза. Если измеряемый угол опережения подачи топлива отличается больше чем на 1-1,5 % от указанного в формуляре дизеля, его регулируют поворотом шайбы топливного насоса на распределительном валу.
При этом выполняют следующие действия:
- 1. Отмечают рисками положение кулачковой шайбы относительно фланца втулки
- 2. Отвёртывают стяжные болты или гайку крепления и выводят кулачковую шайбу из зацепления с зубцами втулки.
- 3. Поворачивают шайбу на нужную величину и вводят в зацепление с зубцами втулки. Для увеличения угла опережения кулачковая шайба смещается по направлению вращения распределительного вала, а для уменьшения - против направления его вращения. Изменение положения кулачковой шайбы на 2 мм (один зубец) вызывает изменение угла опережения подачи топлива на 3 - 5 ° и максимального давления цикла на 0,4-0,6 МПа (4-6 кгс/см 2 ).
При определении угла опережения подачи топлива многоплунжерным насосом выполняют следующие действия:
- 1. Отсоединяют топливную трубку от первой секции насоса.
- 2. Устанавливают на штуцер первой секции топливного насоса моментоскоп.
- 3. Ставят рейку топливного насоса на полную подачу топлива.
- 4. Прокачивают топливный насос вручную до полного удаления воздуха из трубопровода насоса и моментоскопа.
- 5. Сжимая резиновую трубку, выдавливают из стеклянной трубки топливо до половины её длины.
- 6. Медленно проворачивают коленчатый вал дизеля до начала движения мениска топлива в стеклянной трубке; этот момент будет соответствовать началу подачи топлива.
- 7. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до В.М.Т. Если маховик не разбит на градусы, измеряют длину дуги маховика от метки в.м.т. данного цилиндра до неподвижной стрелки-указателя на блоке, а затем подсчитывают угол по той же формуле, что и для односекционного насоса.
При отсутствии моментоскопа угол опережения подачи топлива можно проверить тем же образом, который был представлен ранее.
Для большей точности рекомендуется определять угол подачи топлива два раза. Если измеряемый угол опережения подачи топлива отличается больше чем на 1-1,5 % от указанного в формуляре дизеля, его регулируют поворотом на определённый угол топливораспределительного вала.
При этом выполняют следующие действия:
- 1. Отвёртывают стяжные болты, проходящие через овальные отверстия ведущего фланца.
- 2. Поворачивают ведомый фланец относительно привода на несколько делений по направлению вращения распределительного вала или наоборот. Совпадение риски на ведущем фланце с центральной риской на ведомом фланце соответствует заданному углу опережения подачи, установленному заводом-изготовителем. При повороте фланца на одно деление угол опережения изменяется на указанное в формуляре значение (напр. для двигателя 3 Д 6 - на 6° ).
- 3. Зажимают стяжные болты.
В отдельных случаях, для насосов с большим износом плунжерных пар, угол опережения подачи топлива проверяют по началу впрыска топлива форсункой, работающей в паре с проверяемым насосом. При такой проверке углы опережения подачи топлива получаются на 20-25 % меньше указанных в формуляре дизеля.
Своевременность сгорания топлива обуславливается углом опережения подачи топлива. От его величины зависят продолжительность периода задержки самовоспламенения, скорость нарастания давления и расположение линии сгорания относительно в.м.т. При смещении сгорания топлива на начало процесса расширения уменьшается давление в конце горения, повышается температура отходящих газов и возрастают потери теплоты, что приводит к увеличению удельного расхода топлива. Кроме того, будут происходить перегрев поршня и повышение температурных напряжений цилиндра. Давление в конце горения Pz по отдельным цилиндрам не должно отклоняться от значений, указанных в формуляре дизеля, более чем на ± 5 %. Для повышения Pz угол опережения подачи топлива увеличивают, для снижения — уменьшают. Величина угла опережения подачи топлива указана в формуляре двигателя.
При определении угла опережения подачи топлива односекционным топливным насосом выполняют следующие действия:
1. Отсоединяют топливную трубку от насоса.
2. Устанавливают на штуцер топливного насоса моментоскоп.
3. Ставят рейку топливного насоса на полную подачу топлива.
4. Прокачивают топливный насос вручную до полного удаления воздуха из трубопровода насоса и моментоскопа.
5. Сжимая резиновую трубку, выдавливают из стеклянной трубки топливо до половины её длины.
6. Медленно проворачивают коленчатый вал дизеля до начала движения мениска топлива в стеклянной трубке; этот момент будет соответствовать началу подачи топлива.
7. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до в.м.т. Если маховик не разбит на градусы, измеряют длину дуги маховика от метки в.м.т. данного цилиндра до неподвижной стрелки-указателя на блоке, а затем подсчитывают угол по формуле
, где 1 — длина дуги от метки в.м.т. до стрелки-указателя, мм; L — длина окружности маховика, мм.
При отсутствии моментоскопа угол опережения подачи топлива можно проверить следующим образом:
1. Отсоединяют топливную трубку от насоса
2. Вынимают из насоса нагнетательный клапан с пружиной, устанавливают на место штуцер или крышку насоса.
3. Подают топливо из расходной цистерны к насосу.
4. Спускают воздух из топливного трубопровода и насоса, после чего прикрывают отверстие в штуцере пальцем.
5. Медленно проворачивают коленчатый вал дизеля до прекращения вытекания топлива через штуцер.
6. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до в.м.т.
Для большей точности рекомендуется определять угол подачи топлива два раза. Если измеряемый угол опережения подачи топлива отличается больше чем на 1-1,5 % от указанного в формуляре дизеля, его регулируют поворотом шайбы топливного насоса на распределительном валу. При этом выполняют следующие действия:
1. Отмечают рисками положение кулачковой шайбы относительно фланца втулки
2. Отвёртывают стяжные болты или гайку крепления и выводят кулачковую шайбу из зацепления с зубцами втулки.
3. Поворачивают шайбу на нужную величину и вводят в зацепление с зубцами втулки. Для увеличения угла опережения кулачковая шайба смещается по направлению вращения распределительного вала, а для уменьшения — против направления его вращения. Изменение положения кулачковой шайбы на 2 мм (один зубец) вызывает изменение угла опережения подачи топлива на 3 - 5 ° и максимального давления цикла на 0,4 - 0,6 Мпа (4 - 6 кгс/см2).
В виду сложности и многообразия задач и реальных ситуаций, которые могут возникнуть в практике работ по освидетельствованию дизелей, реальная сфера применения компьютерной программы будет определяться самим пользователем.
Возможности компьютерной программы не ограничиваются расчетом эмиссии окислов азота, они значительно шире, так как программа дает возможность рассчитать все основные параметры индикаторного процесса дизеля.
Точный расчет эмиссии окислов азота с отработавшими газами дизелей в инженерной практике трудно реализуем из-за чрезвычайной сложности физико-химических процессов в камере сгорания. В связи с этим, при разработке компьютерной программы в соответствии с техническим заданием по НИР, в основу была положена эмпирическая формула, полученная путем обработки экспериментальных данных фирмой "Вяртсиля".
Решение этого дифференциального уравнения возможно только численным приближенным методом. Так как в формулу входят текущие значения давления и температуры, то решить (проинтегрировать численным методом) дифференциальное уравнение для получения величины удельного выброса можно при наличии функциональных зависимостей р и Т от угла поворота коленчатого вала. Численное интегрирование требует достаточно мелкого шага по углу (на участке сгорания - не более 2 град, п.к.в.), поэтому расчет удельного выброса с помощью табличных значений параметров в цилиндре на участке сгорания, снятых с экспериментальных кривых, потребовал бы ввода больших массивов цифр, не считая необходимости иметь в наличии сами осциллограммы давления газов в цилиндре дизеля.
Альтернативным вариантом решения задачи является включение дифференциального уравнения в общую программу расчета индикаторного процесса дизеля. Инженерная методика
расчета индикаторной диаграммы дизеля, адаптированная к решению задач эксплуатационного характера применительно к судовым малооборотным и среднеоборотным дизелям, была разработана в ГМА на кафедре судовых ДВС в 90-х годах и прошла апробирование в учебном процессе и научных работах. Методика изложена в работе [2]; учитывая достаточно сложный алгоритм и большой объем работы, ограничимся лишь изложением основных ее положений.
Рабочий процесс в одном цилиндре дизеля рассчитывается на участке от начала сжатия до начала выпуска отработавших газов из цилиндра. Моменты начала сжатия и выпуска определяются по реальным фазам открытия /закрытия клапанов (окон). В основу расчетов положена система дифференциальных уравнений, описывающая индикаторный процесс, которая включает в себя:
- уравнение первого закона термодинамики (закон сохранения энергии), решенное относительно первой производной температуры рабочего тела в цилиндре по углу поворота коленчатого вала;
- уравнение состояния рабочего тела, решенное относительно давления в цилиндре в зависимости от температуры, объема цилиндра, массы и газовой постоянной смеси газов в цилиндре;
- уравнений массового баланса для трех компонентов смеси газов в цилиндре: 1-чистый воздух; 2-чистые продукты сгорания топлива (при отсутствии избытка воздуха-стехиометрическом соотношении топливо/воздух); 3- водяной пар.
- уравнений, описывающих смесеобразование и сгорание топлива в цилиндре; - уравнения, описывающего теплообмен со стенками цилиндра.
Указанные выше дополнения в математическую модель индикаторного процесса дизеля позволяют учитывать влияние влажности атмосферного воздуха и сорта топлива на показатели работы дизеля и величину удельного выброса окислов азота. Предусмотрена также возможность оценить влияние впрыска воды в цилиндр или подачи водотопливной эмульсии форсункой на эмиссию окислов азота.
Расчет процесса сгорания топлива осуществляется с учетом реального закона подачи в цилиндр по методике, которая подробно описана в работе [2]. Предусмотрена возможность задания любого закона подачи - однофазного, двухфазного и др. Продолжительность периода задержки самовоспламенения рассчитывается по эмпирической формуле в зависимости от давления и температуры газов в цилиндре в момент начала подачи топлива в цилиндр, частоты вращения коленчатого вала и цетанового числа топлива. При расчете рабочего процесса на тяжелом топливе продолжительность периода задержки самовоспламенения и скорость сгорания топлива корректируются по величине расчетного углеродно-ароматического индекса (CCAI). Этот показатель определяется по эмпирической формуле, предложенной фирмой "Шелл", с учетом перечисленных выше характеристик тяжелого топлива.
Теплообмен между газами и стенками цилиндра рассчитывается по формуле конвективного теплообмена с учетом текущих параметров и поверхности теплообмена,коэффициент теплоотдачи от газов к стенке рассчитывается по эмпирической формуле Эйхельберга.
Точность расчета показателей индикаторного процесса и eNOx в значительной мере определяется правильностью выбора эмпирических коэффициентов в уравнениях сгорания, теплообмена и эмиссии окислов азота (всего этих коэффициентов 6).
Решение системы дифференциальных уравнений осуществляется с постоянным шагом 1 градус поворота коленчатого вала от начала сжатия (точка а) до момента открытия выпускных органов (точка Ь). Итогом расчета являются значения среднемассовой температуры газов в цилиндре и давления на участках сжатия, сгорания и расширения. Дополнительная полезная работа на нерассчитывемом участке газообмена оценивается приближенно с учетом тактности дизеля. Расчет скорости образования окислов азота и ее интегрирование осуществляется от момента самовоспламенения топлива до окончания его сгорания.
Математическая модель индикаторного процесса построена на строгих уравнениях сохранения энергии и массы, поэтому, в принципе, применима для расчета любого ДВС. Однако отсутствие достаточно простых теоретических методов расчета смесеобразования и сгорания топлива, теплообмена в цилиндре и образования окислов азота, пригодных для инженерных расчетов, обусловило применение для этих целей эмпирических и полуэмпирических зависимостей, которые применимы для ограниченного класса двигателей.
Настоящая математическая модель и составленная на ее основе программа расчета рабочего процесса в цилиндре дизеля может применяться для дизелей:- с обычным кривошипно-шатунным механизмом- с неразделенной камерой сгорания, непосредственным впрыском жидкого нефтяного топлива и объемным способом смесеобразования- с частотой вращения коленчатого вала не более 1000 об/мин- при расчете процессов на различных нагрузочно-скоростных режимах достоверные результаты могут быть получены в диапазонах: по частоте -(50-100% от номинальной); по нагрузке- (25-120% от номинальной)
Применение методики для двигателей иного класса требует корректировки математической модели, поэтому в этом случае следует обратиться за консультацией к разработчику.
Параметры | Исследуемые режимы | |||||
Обознач. | -5 | -10 | -15 | -20 | -25 | |
Давление конца сжатия, бар | Рсотр | 84,51 | 83,66 | 77,81 | 72,42 | 64,12 |
Температура конца сжатия, К | Тсотр | 860,8 | 845,6 | 830,9 | 806,1 | |
Максимальное давление сгорания, бар | Ртах | 109,4 | 125,7 | 142,1 | 157,6 | 171,6 |
Максимальная температура цикла, К | Ттах | |||||
Давление в конце расширения, бар | РЬ | 9,557 | 9,372 | 9,221 | 9,103 | 9,027 |
Температура в конце расширения, К | ТЬ | |||||
Степень повышения давления | lam | 1,295 | 1,503 | 1,826 | 2,176 | 2,676 |
Средняя скорость нарастания давления, бар/град | dP/dFi | 1,66 | 2,628 | 3,573 | 4,733 | 5,375 |
Угол достижения Ртах, град. | Tpmax | |||||
Угол начала видимого сгорания, град. | Tigni | |||||
Период задержки самовоспламенения, град | Lind | |||||
Коэффициент избытка воздуха | AL | 2,106 | 2,106 | 2,106 | 2,106 | 2,106 |
Среднее индикаторное давление, бар | MIP | 18,91 | 19,37 | 19,65 | 19,75 | 19,65 |
Индикаторная цилиндровая мощность, кВт | PWI | 523,9 | 536,5 | 544,3 | 547,2 | 544,4 |
Удельный индикаторный расход топлива, г/кВт. ч | Gi | 182,3 | 175,5 | 174,5 | 175,4 | |
Индикаторный КПД, % | Eff. | 45,66 | 46,76 | 47,44 | 47,69 | 47,45 |
Доля тепла, потерянная в охл. среду, % | XW | 11,31 | 11,73 | 12,32 | 13,04 | 14,01 |
Доля тепла, потерянная с уходящими газами, % | Qe | 43,03 | 41,51 | 40,25 | 39,27 | 38,54 |
Удельный выброс окислов азота, г/кВт. ч | eNOx | 11,28 | 13,93 | 17,6 | 22,55 | 29,3 |
Расчетный углеродно-ароматический индекс | CCAI | |||||
Масса воздуха, необх.для сгорания 1 кг топлива, кг | LO | 14,45 | 14,45 | 14,45 | 14,45 | 14,45 |
Низшая теплота сгорания топлива, кДж/кг | QH | |||||
Влагосодержанеие атмосферного воздуха | WCA | 0,00367 | 0,00367 | 0,00367 | 0,00367 | 0,00367 |
По полученным данным строим графики зависимостей Pz(φ), Tmax(φ), Ni(φ), Pi(φ).
График зависимости максимального давления сгорания от угла опережения топлива
График зависимости максимальной температуры цикла от угла опережения топлива
Зависимость среднего индикаторного давления от угла опережения топлива
Зависимость индикаторной цилиндровой мощности от угла опережения топлива
В данной работе мною была частично исследована работа двигателя марки 16V32/35 при изменяемом угле опережения подачи топлива. Угол менял от -5 до -25 с шагом 5 градусов, включая номинальное значение -10 градусов. При увеличении угла опережения подачи топлива, меняются и другие показатели, а именно: увеличивается средняя скорость нарастания давления, которая является следствием ударных нагрузок, также повышается температура отходящих газов, и происходит перегрев поршня и повышение температурных напряжений цилиндра. Ещё одним существенным показателем неправильно выбранного угла является возрастающие потери теплоты, что приводит к увеличению удельного расхода топлива.
Список использованной литературы.
1. Березний В.В. Методические указания к выполнению курсового проекта. : “Проектирование энергетических установок промысловых судов”, Мурманск, 1999г.
2. Артемов Г.А.,”Системы судовых энергетических установок”-Л.:Судостроение,1980г.
3. Голубев Н.В. Проектирование энергетических установок морских судов- Л.:Судостроение,1990г.
4. Коршунов Л.П. Энергетические установки морских судов: Учебник- Л.: Судостроение, 1991г.
5. Ваншейдт В.А. Судовые установки с двигателями внутреннего сгорания- Л. Судостроение, 1980г.
6. Олейников Б.И. Техническая эксплуатация дизелей судов ФРП.- М.: Агропромиздат, 1998г.
Оптимальный угол опережения подачи топлива в камеру сгорания дизеля устанавливают обычно на номинальном режиме его работы. При изменении частоты вращения коленчатого вала и нагрузки дизеля необходимо менять и угол опережения впрыска. Так, при снижении нагрузки наилучшее протекание рабочего процесса дизеля происходит при уменьшении угла опережения впрыска. Уменьшать угол опережения впрыска следует при снижении частоты вращения вала. Только при этих условиях сгорание будет происходить вблизи верхней мертвой точки и показатели рабочего процесса будут наилучшими.
Не все дизели одинаково реагируют на изменение угла опережения впрыска. Дизели с разделенными камерами, как известно, характеризуются более стабильным рабочим процессом. Они менее чувствительны к изменению скоростного и нагрузочного режимов работы. Поэтому изменение угла опережения подачи топлива в процессе их работы может не дать ощутимого эффекта В дизелях же с неразделенными камерами сгорания несоответствие угла опережения подачи скоростному и нагрузочному режимам приводит к резкому ухудшению экономических и мощностных показателей.
Характер изменения угла опережения подачи зависит и от типа насоса высокого давления и способа дозирования топлива. В золотниковых насосах высокого давления, в которых подачу топлива регулируют изменением конца подачи, угол опережения впрыска в процессе работы практически остается постоянным. При установке таких насосов на дизели с неразделенными камерами сгорания, работающих в широком диапазоне скоростных н нагрузочных режимов, изменение угла опережения подачи обязательно. Если в этих насосах цикловую подачу изменяют началом или началом и концом подачи, то каждой нагрузке соответствует и свой угол опережения подачи. При условии, что определенной скорости дизеля соответствует и определенная цикловая подача, регулировать дополнительно этот угол нет необходимости. В транспортных дизелях связи между нагрузкой и частотой вращения коленчатого вала не существует. Поэтому возникает потребность предусматривать специальные устройства для корректировки этого угла.
В насосах с дозированием количества подаваемого топлива дросселированием на всасывании с уменьшением подачи угол опережения впрыска уменьшается больше, чем требуется для оптимального протекания рабочего процесса. Это также ухудшает рабочий процесс, причем больше, чем при сохранении угла опережения подачи постоянным.
Таким образом, для абсолютного большинства дизелей, работающих в широком диапазоне изменения скоростных и нагрузочных режимов, с целью повышения их эффективности целесообразно устанавливать специальные устройства изменения угла опережения подачи в соответствии с режимам работы двигателя.
В настоящее время существует большое разнообразие конструкций таких устройств. Их разделяют на муфты опережения впрыска, приставляемые к насосам, и устройства, являющиеся неотъемлемой частью насоса высокого давления.
Муфты опережения впрыска
В этом случае устройство для изменения угла опережения впрыска конструктивно выполняют вместе с приводной муфтой топливного насоса высокого давления. Изменение угла опережения подачи топлива осуществляется при развороте кулачкового вала насоса относительно вала привода от руки, центробежными силами грузов, давлением жидкости или воздуха, электромагнитом и другими способами.
Приводные муфты насосов обеспечивают передачу крутящего момента, упругость передачи в моменты ее большей нагрузки. При наличии этих муфт допускается некоторая несоосность валов привода и насоса.
Рис. Схема муфты привода насоса:
1, 4 — втулки; 2 — фланец. 3 — шайба
Наиболее простая ручная муфта приведена на рисунке. Втулку 4 с двумя выступами А закрепляют на кулачковом валу насоса при помощи шпонки и фиксатора (обычно гайки). Промежуточный фланец 2 с двумя такими же выступами В соединен с втулкой 1 приводного вала при помощи двух болтов, проходящих через специальные прорези С. Выступы втулки и промежуточного фланца входят в прорези текстолитовой шайбы 3 и образуют муфту. В результате наличия прорезей С кулачковый вал насоса вместе с шайбой и промежуточным фланцем можно поворачивать на некоторый угол относительно приводного вала при ослаблении соединительных болтов. Для удобства регулирования на наружных цилиндрических поверхностях втулки 1 и фланца 2 нанесены деления. Поворот на одно деление соответствует 3°. При регулировке насоса на дизеле втулку 4 устанавливают по меткам на наружной цилиндрической поверхности втулки и корпуса насоса по первому цилиндру дизеля.
Для упрощения обслуживания дизеля устанавливают автоматические муфты опережения впрыска. Все автоматические приводы муфт делятся на механические, гидравлические и электромагнитные. Широко распространены центробежные механические и гидравлические приводы. Электромагнитные муфты реагируют на изменение частоты вращения коленчатого вала и нагрузки. Однако в результате сложности конструкции их пока не применяют.
Центробежные механические муфты
Рис. Центробежные муфты с шаровидными грузами:
а, б — варианты, 1 — ведущий диск, 2 — груз, 3 — ведомый диск, 4 — выступы диска, 5 — распорная пружина, 6 — регулировочная пружина
В центробежной автоматической муфте опережения впрыска (рис. а) ведущий диск 1, связанный с валом привода, передает крутящий момент ведомому диску 3, установленному на кулачковом валике насоса высокого давления, через грузы 2. В процессе работы диск 1 выступами 4 входит в соответствующие вырезы в диске 3, предотвращая осевое смещение. Диски прижимаются к грузам при помощи пружин 5.
При увеличении частоты вращения коленчатого вала дизеля грузы 2 под действием центробежной силы расходятся и воздействуют на профильные поверхности выступов ведомого диска 3, поворачивая его совместно с валиком насоса на определенный угол относительно ведущего диска 1. В результате этого угол опережения впрыска увеличивается. При уменьшении частоты вращения вала дизеля пружины преодолевают центробежную силу грузов и поворачивают ведомый диск совместно с валом насоса относительно ведущего диска в противоположную сторону, уменьшая угол опережения впрыска.
По такому же принципу работает и центробежная муфта, приведенная па рис. б. Между ведущим 1 и ведомым 3 дисками установлен груз 2, распорные 5 и регулировочная 6 пружины. При перемещении груза 2 по профильным поверхностям дисков в направлении от центра пружины 5 сжимаются, а регулировочная пружина, наоборот, разжимается. Суммарное же усилие всех пружин при этом растет. В результате ведомый диск и связанный с ним кулачковый вал топливного насоса высокого давления поворачиваются относительно ведущего диска в сторону увеличения угла опережения впрыска Перемещение груза к центру осуществляется распорными пружинами при снижении частоты вращения вала дизеля.
При помощи регулировочной пружины устанавливают диапазон работы муфты по частоте вращения вала, а подбирая соответствующую жесткость всех пружин, получают необходимую характеристику ее работы.
Рис. Центробежная муфта с рычажными грузами: 1 — кулачковая втулка; 2 — пружина; 3, 5 — винтовые шлицы, 4 — муфта, 6 — ступица, 7 — грузы
Несколько по-другому работает муфта, схема которой приведена на рисунке. Центробежная сила грузов 7 действует на муфту 4, соединяющую ступицу 6 кулачкового валика насоса с кулачковой втулкой 1. Втулка 1 свободно посажена на ступице 6 и при помощи торцовых кулачков соединяется с приводным валом. На цилиндрической поверхности втулки 1 выполнены винтовые шлицы 3, входящие в винтовые пазы муфты 4, а на поверхности ступицы винтовые шлицы 5, перемещающиеся по винтовым пазам той же втулки. На одной стороне муфты пазы выполнены с левым шагом, а на другом — с правым. Центробежная сила уравновешивается силой пружины 2. При увеличении частоты вращения коленчатого вала дизеля центробежная сила грузов, преодолевая усилие пружины 2, передвигает муфту 4 влево. При этом ступица 6, закрепленная на валике шпонкой, повернется вместе с валиком в сторону увеличения угла опережения впрыска. При снижении частоты вращения вала дизеля пружина передвинет муфту 4 вправо, а кулачковый валик повернется в противоположную сторону.
Рис. Схема центробежной муфты с плоскими грузами:
1 — диск, 2 — груз, 3 — ведомый вал, 4 — ведомые пальцы, 5 — лыска; 6 — пружина; 7 — ведущие пальцы, 8 — профильная поверхность
Использование центробежной силы грузов для взаимного смещения ведущего и ведомого валиков привода насоса высокого давления с целью изменения угла опережения впрыска лежит и в основе конструкции муфты, принципиальная схема которой приведена на рисунке. На ведомом валу 3 установлен диск 1 с двумя ведомыми пальцами 4, имеющими на конце лыски 5 упора цилиндрических пружин 6. На эти пальцы насажены грузы 2, которые под действием центробежной силы перемещаются в радиальном направлении, осуществляя повороты относительно осей пальцев. Пальцы 7 диска, закрепленного на ведущем валике, упираются в криволинейные поверхности 8 центробежных грузов. Крутящий момент от ведущего фланца к ведомому передается через ведущие пальцы 7, грузы 2, на которые давят пальцы, ведомые пальцы 4, диск 1 и далее на кулачковый вал насоса. Форма криволинейной поверхности 8 выполнена таким образом, что обеспечивает требуемую характеристику изменения угла опережения подачи топлива в камеру сгорания дизеля.
На ведущие пальцы воздействуют составляющая центробежной силы грузов и усилия пружины. С увеличением частоты вращения приводного вала центробежные силы грузов преодолевают усилие пружины и силы трения между пальцами и криволинейными опорными поверхностями, заставляя пружины сжиматься. В результате палец 4 сместится в сторону пальца 7, расстояние х между ними уменьшится, а угол опережения подачи топлива увеличится. Наоборот, три снижении частоты вращения приводного вала пружины 6 раздвинут пальцы и изменят угол опережения подачи в сторону его уменьшения. Конфигурация опорных поверхностей 8 грузов выбирается так, что при небольшой частоте вращения вала грузы проходят большие расстояния за один градус регулируемого угла опережения, а при повышении скоростного режима это расстояние уменьшается. Поэтому повышается перестановочное усилие муфты при небольшой частоте вращения коленчатого вала дизеля, когда центробежная сила грузиков небольшая. При повышенных скоростных режимах центробежная сила грузов интенсивно нарастает, поэтому необходим меньший их относительный путь. Отличительной особенностью конструкции этой муфты является то, что пружины непосредственно не участвуют в передаче крутящего момента, поэтому колебания их не передаются на ведомый вал и угол опережения подачи в процессе работы поддерживания более устойчиво.
Гидравлические муфты
Рис. Муфта с гидравлическим приводом:
1 — хвостовик вала, 2 — ступица, 3 — прямые шлицы; 4 — косые шлицы, 5 — корпус чувствительного элемента, 6 — поршень; 7 — грузы; 8 — золотник; 9 — пружина золотника; 10 — пружина поршня, 11 — отверстия поршня, 12 — отверстия вала; А — подвод масла из системы
В автоматической муфте изменения угла опережения впрыска с гидравлическим приводом и центробежным чувствительным элементом, цилиндрическая часть поршня 6 имеет на наружной стороне прямые шлицы 3, входящие в прямые пазы ступицы 2 шестерни привода топливного наcoca высокого давления, а на внутренней стороне косые шлицы 4, которые входят в косые прорези хвостовика 1 вала насоса. К диску шестерни крепят корпус 5 центробежного чувствительного элемента с двумя грузами 7 в виде угловых рычагов. Грузы соприкасаются концами рычагов с золотником 8 масляного сервомотора.
Работает устройство следующим образом. При увеличении частоты вращения коленчатого вала дизеля центробежная сила грузов перемещает золотник 8 вправо, в результате чего открываются отверстия 11 поршня, через которые масло из полости хвостовика валика поступает под поршень 6 Давление масла действует на поршень и, преодолевая усилия пружин 9 золотника, перемещает его также вправо. Цилиндрическая часть этого поршня, двигаясь в осевом направлении, поворачивает хвостовик валика насоса относительно приводной шестерни в сторону увеличения угла опережения впрыска. Движение поршня 6 вправо прекращается после перекрытия отверстий И золотником 8. При уменьшении частоты вращения вала дизеля снижается центробежная сила грузов, поэтому пружина 9 передвинет золотник 8 влево и откроет отверстия 12, через которые масло из полости цилиндра будет перетекать в картер привода.
При уменьшении давления под поршнем 6 пружины 10 передвинут его влево, в результате чего хвостовик вала насоса повернется в сторону уменьшения угла опережения впрыска. Осевое перемещение поршня 6 прекратится после перекрытия отверстий 11 золотником 8.
Рис. Двухимпульсное устройство изменения угла опережения впрыска:
1 — регулировочный пинт, 2 — пружина, 3 — поршень; 4 — рычаг, 5 — камера, 6 — дроссельный винт, 7 — винтовые шлицы, 8 — муфта; 9 — прямые шлицы; 10 — ведомая втулка; 11 — вал, 12 — ведущая втулка; 13 — винт; 14 — шпонка
Рассмотренная муфта автоматического изменения угла опережения с гидравлическим приводом реагирует только на изменение скоростного режима работы дизеля. В процессе работы желательно изменять угол опережения впрыска и в зависимости от нагрузки дизеля. На рисунке показана схема одного из устройств, реагирующего как на изменение частоты вращения коленчатого вала, так и на изменение нагрузки. Муфта 8 этого устройства имеет на внутренней поверхности винтовые 7 и прямые 9 шлицы, входящие соответственно в винтовые пазы ведущей втулки 12 и прямые пазы ведомой втулки 10. Втулка 12 соединяется с ведущим валом, а втулка 10 с кулачковым валиком насоса шпонкой 14. Муфта 8 приводится в движение при помощи рычага 4, соединенного другим своим концом с поршнем 3. Поршень 3 нагружен с одной стороны пружиной 2, натяжение которой регулируется винтом 1, а с другой — давлением масла или топлива камеры 5. Дроссельный винт 6 связан с тягой регулирования нагрузки дизеля. При увеличении нагрузки дроссельный винт 6 поворачивается так, что в камеру 5 пропускается больше жидкости, в результате чего растет давление и поршень 3 передвигается влево, увлекая конец рычага 4. Аналогичное передвижение плунжера будет происходить при увеличении частоты вращения вала дизеля и неизменном положении дроссельного винта 6. Муфта 8 при этом передвигается вправо, осуществляя поворот втулки 10 и связанного с ней валика топливного насоса относительно ведущего вала в сторону увеличения угла опережения впрыска. Винтом 13 фиксируют втулку от осевого перемещения.
Насосные устройства опережения впрыска
Кроме муфт опережения впрыска, разворачивающих кулачковый вал насоса относительно приводного вала дизеля, существуют устройства, расположенные в самом насосе. В этом случае опережение впрыска осуществляется деталью или группой деталей насоса. Наиболее распространенный способ регулирования угла опережения деталью насоса — выполнение дозирующей наполнительной кромки на плунжере в дизелях со смешанным регулированием подачи.
Рис. Насосные устройства изменения угла опережения впрыска:
1 — промежуточная втулка, 2 — эксцентриковая втулка, 3 — толкатель, 4 — пружина
Угол опережения подачи можно изменять и при боковом смещении толкателя относительно оси кулачкового вала. В корпусе насоса установлена эксцентриковая втулка 2 с зубчатым сектором, входящим в зацепление с рейкой. Внутри этой втулки находится толкатель 3, пружина 4 которого вторым концом упирается в промежуточную втулку 1, зафиксированную от продольных перемещений. При повороте эксцентриковой втулки расстояние между осями плунжера насоса и стержня толкателя изменяется от нуля до величины е. При этом центральный кулачковый механизм обращается в механизм со смещенным толкателем, у которого ось толкателя не проходит через центр вращения кулачка. В результате изменяется место на рабочем участке профиля кулачка, соответствующее началу впрыска, а следовательно начало подачи по углу поворота вала насоса. Изменение начала подачи можно осуществлять и изменением длины толкателя (аналогично действию регулировочного болта толкателя). В этом случае также меняется начало подачи по профилю кулачка.
Однако эти способы уступают способу регулирования при помощи кромки плунжера, так как усложняется конструкция насоса и изменяется скорость движения плунжера. Последнее обстоятельство иногда ухудшает показатели рабочего процесса дизеля. Регулирование опережения подачи деталями самого насоса широко используют для насосов распределительного типа.
Читайте также: