Законы постоянного тока шпоры
Условия, необходимые для существования электрического тока:
- Наличие свободных заряженных частиц;
- Наличие электрического поля, действующего на заряженные частицы с силой в определённом направлении;
- Наличие замкнутой электрической цепи.
Действия тока:
- Тепловое: проводник по которому течет ток нагревается.
- Химическое: электрический ток может изменять химический состав проводника (электролита).
- Магнитное: ток оказывает силовое воздействие на соседние токи и намагниченные тела. Вокруг проводника с током существует магнитное поле.
Если два заряженных тела соединить проводником, то через него пойдет кратковременный ток. Избыточные электроны с отрицательно заряженного тела перейдут на положительно заряженное. Потенциалы тел окажутся одинаковыми, значит, напряжение на концах проводника станет равно нулю, и ток прекратится. Для существования длительного тока в проводнике нужно поддерживать разность потенциалов на его концах неизменной. Этого можно достичь, перенося свободные электроны с положительного тела на отрицательное так, чтобы заряды тел не менялись со временем.
Силы электрического взаимодействия сами по себе не способны осуществлять подобное разделение зарядов. Они вызывают притяжение электронов к положительному телу и отталкивание от отрицательного. Поэтому внутри источника тока должны действовать сторонние силы, имеющие неэлектрическую природу и обеспечивающие разделение электрических зарядов.
Сторонние силы — любые силы, действующие на электрические заряженные частицы, за исключение сил, электростатического происхождения (т.е. кулоновских).
Важным примером применения последовательного и параллельного соединения проводов являются различные схемы включения электроизмерительных приборов. Допустим, что имеется некоторый амперметр, рассчитанный на максимальный ток Imax, а требуется измерить большую силу тока. В этом случае параллельно к амперметру присоединяют малое сопротивление r, по которому направится большая часть тока. Его называют обычно шунтом. Сопротивление амперметра – R, и пусть R/r=n. Сила тока в цепи, амперметре и в шунте равны соответственно I, Iа и Iш
Параллельное присоединение шунта к измерительному прибору с целью изменения его чувствительности называют шунтированием. Схема шунтирования амперметра добавочным малым сопротивлением r.
Работа электрического поля по перемещению заряда ∆ q из одной точки в другую равна произведению напряжения U между этими точками на величину заряда Dq: A=DqU
Учитывая, что Dq = IDt получаем: A= IUDt = I 2 RDt = Dt
При прохождении тока через проводник происходит его нагревание, значит электрическая энергия переходит в тепловую.
Закон Джоуля – Ленца гласит: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивлению проводника и времени.
Закон открыт экспериментально независимо друг от друга Дж.Джоулем и Э.Х.Ленцем. Q = А – по закону сохранения энергии.
Мощность электрического тока равна работе, которая совершается током за единицу времени.
Дополнительные материалы по теме
Закон Ома является одним из фундаментальных законов электродинамики, который определяет взаимосвязь между напряжением, сопротивлением и силой тока. Его важно знать и понимать. Понятное объяснение вы найдёте в статье.
Закон Ома официально и абсолютно оправдано можно отнести к ряду основополагающих в физике по нескольким признакам. Данный закон объясняют в школе на базовом уровне, а после, более углубленно, в учреждениях, специализирующихся на изучении технических аспектов технологий.
Закон Ома – определение
Для лучшего понимания разделим определение на две части и разберём отдельно более понятным языком смысл каждой.
- Первая часть определения указывает на то, что если на определенной отрезке цепи происходит количественный скачок напряжения, то величина тока также увеличивается на данном участке. Важно упомянуть, что становится больше и величина тока на заданном участке цепи.
- Концовка определения расшифровывается также просто. Выше напряжение – меньше сила тока.
Закон Ома – формула
1. При данных условиях: на конкретном отрезке увеличивается напряжение, но при том сопротивление остаётся прежним, ток резко возрастает;
2. Иная ситуация: наоборот, изменяется сопротивление, а точнее возрастает, при том что уровень напряжения не меняется вовсе, тока становится меньше.
В итоге в законе Ома участвуют всего три величины.
Готовая формула выглядит так:
Фигурируют и другие две переменные, их также можно вычислить, при условии, что другие два значения известны. Видоизменив формулу, получим:
Формула сопротивления | R = U/I |
Формула напряжения | U = I × R |
Формула силы тока | I = U/R |
Важно!
На начальном этапе, когда составлять формулы ещё сложно, можно воспользоваться небольшой шпаргалкой.
На треугольнике просто нужно закрыть то значение, которое необходимо найти.
Закон Ома для участка цепи
Итоговая формула не видоизменяется вовсе. Обычно сопротивление в данном законе является явной характеристикой проводника, потому что это значение не постоянная величина: в зависимости от материала и других параметров число может увеличиваться или уменьшаться. Закон применим как при расчёте с использованием металлов, так и растворов электролитов, однако существует важный нюанс: в цепи не должно быть реального источника тока, или же источник должен быть идеальным, то есть он не должен создавать дополнительное сопротивление.
Обобщённый закон Ома формулируется так:
Также формулу можно выразить через проводимость:
I = (Uab + E) × G, как понятно, G – проводимость участка электрической цепи. Эти формулы можно использовать, если сохраняются условия, зафиксированные на рисунке.
Для начала определим, что положительное направление – это то, что слева направо. Только в этом случае напряжение на участке будет равняться разности потенциалов.
Если сохраняется условие и потенциал конечный меньше потенциала начального, то напряжение будет больше нуля. Значит, как и полагается, направление линий напряженности в проводнике будет от начала к концу, следовательно, направление тока будет идентичным. Именно такое направление тока принято считать положительным, I > O. Данный вариант самый простой для расчётов. Формула действительна с любыми числами.
Закон Ома для полной (замкнутой) цепи
При данной вариации закона выявляется значение тока при реальных условиях, то есть в настоящей полной цепи. Важно учитывать то, что получившееся в результате расчетов число зависит от нескольких параметров, а не только от сопротивления нагрузки.
Сопротивление нагрузки – внешнее сопротивление, а сопротивление самого источника тока – внутреннее сопротивление (обозначается маленькой r).
Если к цепи подключено напряжение и в цепи замечено напряжение (ток), то, чтобы поддержать его во внешней цепи, необходимо создать условия, при которых между её концами возникнет разность потенциалов. Это число будет равняться I × R. Однако важно помнить о том, что вышеупомянутый ток будет и во внутренней цепи и его также необходимо поддерживать, поэтому нужно создать разность потенциалов между концами сопротивления r. Эта разность равняется I × r.
Чтобы поддержать ток в цепи, электродвижущая сила (ЭДС) аккумулятора должна иметь величину:
Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:
Две последние формулы выражают закона Ома для полной цепи.
Закон Ома в дифференциальной форме
Закон можно представить таким образом, чтобы он не был привязан к размерам проводника. Для этого выделим участок проводника Δl, на концах которой расположены ф1 и ф2. Среднюю площадь проводника обозначают ΔS , а плотность тока j, при таких условиях сила тока будет равняться:
I = jΔS = (ф1- ф2) / R = -(((ф1 — ф2)ΔS) / pΔl , отсюда следует, что j = -y × (Δф/Δl)
При условии, что Δl будет равен 0, то, взяв предел отношения:
окончательное выражение будет выглядеть так:
Данное выражение закона находит силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.
Закон Ома в интегральной форме
В данной интерпретации закона не содержится в условиях ЭДС, то есть формула выглядит так:
Чтобы найти значение для однородного линейного проводника, выразим R через p и получим:
R = p (l/S), где за р принимаем удельное объёмное сопротивление.
Линией тока принято называть кривую, в каждой точке которой вектор плотности тока направлен по касательной к этой кривой. При таких условиях вектор плотности находится из отношения J = jt, где t – это единичный вектор касательной к линии тока.
Для лучшего понимания предположим, что удельное сопротивление, а также напряженность поля движущих сил на поперечном сечении проводника однородны. При таком условии Е однородна, а значит, и j также однородная величина. Примем произвольное значение поперечного сечения цепи S, тогда pl/s = E. Получившееся равенство умножим на dl. Тогда Edl = (Е эл.ст.+Е стор.) dl = Е эл.ст. dl + Е стор. dl = -dф + dE. Отсюда получим (pI/S) dl = -dф + dE. Возьмём в учёт, что p/s dl = dR и запишем закон Ома в интегральной форме:
Закон Ома в комплексной форме
Чтобы провести анализ электрических цепей синусоидального тока, комфортнее использовать закон Ома в комплексной форме. Для лучшего понимания введем основное понятие, фигурирующее в данной интерпретации закона: синусоидальный ток – это линейные цепи с установившимся режимом работы, после того, как переходные процессы в них завершены, уровень напряжения резко уменьшается на конкретной дистанции, токи в ветвях и ЭДС источников являются синусоидальными функциями времени. В противном случае, когда данные параметры не соблюдаются, закон не может быть применим. Чем отличается эта форма от обычной? Ответ прост: токи, сопротивление и ЭДС фиксируются как комплексные числа. Это обусловлено тем, что существуют как активные так и реактивные значения напряжений, токов и сопротивлений, а в результате этого требуется внесение определенных коррективов.
Вместо активного сопротивления используется полное, то есть комплексное сопротивление цепи Z. Падение напряжения, ток и ЭДС тоже превращаются в комплексные величины. При реальных расчетах лучше и удобнее применять действующие значения. Итак, закон в комплексной форме выглядит так:
В данной формуле Z – комплексное сопротивление, Y – комплексная проводимость.
Чтобы выявить эти величины, выведены формулы. Пропустим шаги их создания и приведем готовые формулы:
Z = ze = z cosф + jz sinф = r + jx
Y = 1/ ze = ye = y cos ф — jy sin ф = g + jb
Закон Ома для переменного тока
После того как Фарадей открыл электромагнитную индукцию, стали активно использовать генераторы сперва постоянного, а после и переменного тока.
Используется уже известная формула:
Полное сопротивление тока – это совокупность активного, а также индуктивного и емкостного сопротивлений. Проще говоря, ток в цепи переменного тока зависит от многих параметров, в том числе от величины ёмкости и индуктивности. Полное сопротивление вычисляется по формуле.
Полное сопротивление можно изобразить как гипотенузу прямоугольного треугольника, катетами которого является активное и индуктивное сопротивление.
Итак, формула амплитудного значения силы тока будет выглядеть так:
В такой цепи колебания тока и напряжения разные по фазе, а разность фаз зависит от индуктивности катушки и ёмкости конденсатора:
I = Im sin (ωt + ф)
Закон Ома для постоянного тока
В данном случае частота будет равняться нулевому значению, поэтому остальные показатели также будут нулевыми соответственно, в то время как значение ёмкости достигнет бесконечности. Цепь разорвётся. Поэтому отсюда вытекает логичный вывод: реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.
Закон Ома для однородного участка цепи
Формула выглядит уже известным образом:
В данном случае главной характеристикой проводника остаётся сопротивление. От того, как выглядит проводник, зависит количество узлов кристаллической решётки и атомов примесей. Поэтому электроны могут замедляться или ускоряться.
Сопротивление будет зависеть от вида проводника, а именно от его сечения, материала и длины:
Закон Ома для неоднородного участка цепи
При решении задачи становится понятным, что для того, чтобы поддерживался стабильный ток в замкнутой цепи, нужны силы совершенной другой природы, а не кулоновские. В этом случае можно заметить такую закономерность: заряды, которые никак не соприкасаются друг с другом, выступают в двух ролях одновременно, то есть они являются силами электрического поля и силами иного вида – сторонними в это же время. Участок, на котором замечена данная закономерность, называется неоднородным.
Формула принимает вид:
Закон Ома в данном подразделе был сформулирован таким образом: сила тока прямо пропорциональна напряжению на данном участке и обратно пропорциональна его полному сопротивлению.
Итак, готовая формула:
I = U12/R, где U12
Закон Ома для магнитной цепи
В каждом электромагните совмещены несколько важных элементов: стальной сердечник и катушка. По последней протекает ток. При совмещении нескольких участков образуется магнитная цепь.
При кольцевом магнитопроводе все поле находится внутри кольца. Тогда поток в магнитопроводе равен:
Ф = Вср S = μHср S
Формула закона для магнитной цепи:
Задачи с решениями на закон Ома
Задача №1
Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 127 В. Определить силу тока в проволоке.
Дано:
- l = 120 м,
- S = 0,5 мм,
- U = 127 В,
- p = 1,1 Ом*мм 2 /м.
Найти: I — ?
Решение:
- R = p * l / S,
- R = 1,1 Ом*мм 2 /м * 120 м : 0,5 мм = 264 Ом,
- I = 127 В : 264 Ом = 0,48 А.
Ответ: I = 0,48 Ом
Задача №2
Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 220 В. Определить силу тока в проволоке.
Дано:
- l = 120 м,
- S = 0,5 мм,
- U = 220 В,
- p = 1,1 Ом*мм 2 /м.
Найти: I — ?
Решение:
- R = p * l / S,
- R = 1,1 Ом*мм 2 /м * 120 м : 0,5 мм = 264 Ом,
- I = 220 В : 264 Ом = 0,83 А.
Ответ: I = 0,83 Ом
Задача №3
Дано:
- U = 15 В,
- R1 = 3 Ом,
- R2 = R3 = 4 Ом.
Найти: I — ?
Решение:
- R2 и R3 соединены параллельно R2 = R3, R2.3 = R2 / 2 = 2 Ом, составим эквивалентную схему:
Выберите книгу со скидкой:
ОГЭ. География. Новый полный справочник для подготовки к ОГЭ
350 руб. 242.00 руб.
Математика. Новый полный справочник школьника для подготовки к ЕГЭ
350 руб. 222.00 руб.
Дошкольная педагогика с основами методик воспитания и обучения. Учебник для вузов. Стандарт третьего поколения. 2-е изд.
350 руб. 963.00 руб.
Считаю и решаю: для детей 5-6 лет. Ч. 1, 2-е изд., испр. и перераб.
350 руб. 169.00 руб.
Начинаю считать: для детей 4-5 лет. Ч. 1, 2-е изд., испр. и перераб.
350 руб. 169.00 руб.
Считаю и решаю: для детей 5-6 лет. Ч. 2, 2-е изд., испр. и перераб.
350 руб. 169.00 руб.
Пишу буквы: для детей 5-6 лет. Ч. 2. 2-е изд, испр. и перераб.
350 руб. 169.00 руб.
Русско-английский словарик в картинках для начальной школы
350 руб. 163.00 руб.
ОГЭ. Литература. Новый полный справочник для подготовки к ОГЭ
350 руб. 205.00 руб.
ЕГЭ. Английский язык. Новый полный справочник для подготовки к ЕГЭ
350 руб. 171.00 руб.
Рисуем по клеточкам и точкам
350 руб. 248.00 руб.
ЕГЭ. Информатика. Новый полный справочник для подготовки к ЕГЭ
350 руб. 163.00 руб.
БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА
- Все материалы
- Статьи
- Научные работы
- Видеоуроки
- Презентации
- Конспекты
- Тесты
- Рабочие программы
- Другие методич. материалы
- Каханова Татьяна МихайловнаНаписать 3052 11.02.2018
Номер материала: ДБ-1156849
- Физика
- 10 класс
- Конспекты
Добавляйте авторские материалы и получите призы от Инфоурок
Еженедельный призовой фонд 100 000 Р
-
11.02.2018 602
-
11.02.2018 754
-
11.02.2018 902
-
11.02.2018 425
-
11.02.2018 501
-
11.02.2018 147
-
11.02.2018 390
-
11.02.2018 354
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Электрический ток - это направленное движение электрических зарядов по проводнику под действием сил электрического поля.
Электрический ток может быть постоянным и переменным.
Постоянным называют такой электрический ток, который с течением времени не изменяет своего направления и величины при прохождении по замкнутой электрической цепи.
Электрическая цепь. Простейшая электрическая цепь состоит из источника напряжения, потребителей и проводов, соединяющих источник напряжения с потребителями. Источниками напряжения могут быть гальванические элементы, аккумуляторы, генераторы и т. п., а потребителями - лампы накаливания, электронагревательные и электроизмерительные приборы, электродвигатели и т.п.
Источник электроэнергии, образует внутреннюю цепь, а все остальное - внешнюю цепь. При разрыве электрической цепи действие электрического тока прекращается.
Сила и плотность тока. Сила тока определяется количеством электричества, протекающего через поперечное сечение проводника в одну секунду, т. е.
где I - сила тока в цепи, а;
Q - количество электричества, к;
Отношение величины тока I к площади поперечного сечения проводника s называется плотностью тока и обозначается буквой δ:
Площадь сечения проводников измеряется в мм 2 , поэтому плотность тока имеет размерность а/мм 2 .
Сопротивление и проводимость. По способности проводить электрический ток твердые вещества делятся на проводники, хорошо проводящие электрический ток, и непроводники, или диэлектрики. К проводникам относятся металлы и графит, к диэлектрикам - резина, эбонит, слюда и т, д.
Все проводники имеют сопротивление и проводимость.
Сопротивлением проводника R называется препятствие, оказываемое проводником электрическому току. Электрическое сопротивление проводника зависит от длины, поперечного сечения, температуры и материала. Чем больше сопротивление проводника, тем хуже он проводит электрический ток. Наибольшим сопротивлением обладает нихром (сплав никеля, хрома, железа и марганца). Из нихрома изготовляют различные нагревательные элементы.
Наименьшее сопротивление имеют серебро, медь и алюминий, из них изготовляют проводники.
Проводимостью называется величина, обратная сопротивлению проводника, т. е.
За единицу сопротивления (Ω-омега) принят ом. Сопротивление в омах проводника длиной 1 м, сечением 1 мм 2 называется удельным и обозначается ρ(ро).
Электродвижущая сила. Электродвижущей силой называют энергию или работу, совершаемую источником тока, которая устанавливает и поддерживает разность потенциалов, вызывает электрический ток в цепи, преодолевая ее внешнее и внутреннее сопротивление. В генераторах электродвижущая сила возникает благодаря электромагнитной индукции, а в аккумуляторах - в результате химических реакций. При холостом ходе генератора электрический ток отсутствует, а электродвижущая сила равна разности потенциалов на его зажимах. Электродвижущая сила, как и напряжение, измеряется в вольтах, а энергия - в джоулях.
Закон Ома. Закон Ома - это один из основных законов электротехники. Он выражает соотношение между электродвижущей силой, сопротивлением цепи и током в ней. Согласно этому закону ток в цепи прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению всей цепи:
где I - сила тока в цепи, а;
E - электродвижущая сила источника энергии, в;
R - сопротивление внешней цепи, ом;
Для участка цепи закон Ома определяется по следующей формуле:
Соединения приемников электроэнергии. Приемники электрической энергии могут включаться в электрическую цепь последовательно, параллельно и смешанно. При последовательном соединении приемники электрической энергии включаются в цепь один за другим. Общее сопротивление такого соединения равно сумме отдельных сопротивлений приемников:
Ток во всех последовательно соединенных приемниках одинаков, т. е.
При параллельном включении приемники электроэнергии создают для тока три пути, по которым он может проходить. В этом случае ток, приходящий к точке, равен сумме токов, уходящих от этой точки:
Общая проводимость этой цепи равна сумме проводимостей отдельных ветвей:
Смешанное соединение приемников электроэнергии представляет собой совокупность последовательных и параллельных соединений.
Работа и мощность тока. Способность электрического тока совершать работу называют энергией электрического тока. Работа источника энергии зависит от напряжения, силы тока и времени, т. е.
где А - работа источника энергии, Вт сек или дж;
Кроме того, работу измеряют в ватт-часах, гектоватт-часах и киловатт-часах специальными приборами - счетчиками.
Мощностью называют работу, произведенную в единицу времени.
Ее подсчитывают по формуле:
За единицу мощности принимают работу тока в один ампер под напряжением один вольт за одну секунду. Такую единицу называют ваттом. Большие мощности измеряют в гектоваттах (1 гвт=100 вт) и киловаттах (1 квт=1000 вт). Соотношения между электрическими и механическими единицами мощности следующие: 1 л. с. = 736 вт; 1,36 л. с. = 1 кет.
Законы Постоянного Тока
В 1800 г. произошло событие огромного значения. Алессандро Вольта (1745-1827) изобрел электрическую батарею и впервые получил с ее помощью устойчивый поток зарядов. Это открытие знаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию, - вся современная электротехника основана на использовании электрического тока.
Электрическим током называют упорядоченное движение электрических зарядов. В различных средах электрический ток обусловлен движением различных зарядов, но за направление электрического тока условно выбрано направление движения положительных зарядов.
Постоянный ток в проводниках создается благодаря особым устройствам - источникам тока. Проводники - это такие тела, в которых имеются свободные частицы, обладающие электрическим зарядом, способные ускоряться и перемещаться под действием приложенных к ним электрических сил. Возьмем два тела, заряженных противоположными зарядами (рис. 44). Если их соединить проводником, то по нему пойдет ток. В результате выравнивания потенциалов ток прекращается.
Для того чтобы движение зарядов не прекратилось, необходимо каким-то образом положительные заряды с тела В перенести снова на тело А. Такой перенос силы электростатической природы сделать не могут. Следовательно, для поддержания тока должны существовать силы не кулоновской природы. Силы неэлектростатического происхождения, способные разделить электрические заряды, называются сторонними силами .
Источник тока - это устройство, в котором происходит разделение электрических зарядов под действием сторонних сил.
Сторонние силы могут быть различной природы (магнитной, химической и др.).
Количественно электрический ток характеризуется силой тока. Сила тока (I) равна отношению заряда дельта q, переносимого через поперечное сечение проводника за интервал времени At, к этому интервалу времени. Сила тока - величина скалярная. При решении задач она может быть положительной или отрицательной. Знак силы тока зависит от того, какое из направлений обхода вдоль проводника принять за положительное. Сила тока I > О, если направление тока совпадает с условно выбранным положительным направлением обхода.
В Международной системе единиц силу тока измеряют в амперах (А). Эту единицу устанавливают на основе магнитного взаимодействия токов.
ГОСТ 8.417-81 дает такое определение единицы силы тока:
"Ампер равен силе неизменяющего тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длины 1 м силу взаимодействия, равную 2 • 10 -7 Н".
Немецкий физик Г. Ом в 1826 г. обнаружил, что отношение разности потенциалов между концами проводника, являющегося участком электрической цепи, к силе тока в цепи есть величина постоянная:
Эту величину R назвали электрическим сопротивлением. Единицей электрического сопротивления в СИ является ом (1 Ом). За единицу электрического сопротивления 1 Ом принято сопротивление такого проводника, в котором при разности потенциалов между его концами в 1 В течет ток силой в 1 А.
Удельное сопротивление р - величина, численно равная сопротивлению проводника длиной 1 м и поперечным сечением 1 м 2 . Единица удельного электрического сопротивления ом • метр (Ом • м).
Для металлов и сплавов зависимость удельного сопротивления от температуры в небольшом интервале температур вблизи комнатной выражается формулой:
где р 0 - удельное сопротивление при температуре t = 0 °С, а - температурный коэффициент сопротивления.
Температурный коэффициент сопротивления а - величина, равная отношению относительного изменения сопротивления участка цепи к изменению его температуры, вызвавшему это изменение сопротивления.
Выражение (3.10) есть закон Ома для участка цепи.
Сила тока прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению R:
Для создания постоянного тока в цепи необходим источник тока. Условно источник тока изображен на рис. 45. Сторонние силы, разделяя электрические заряды внутри источника, создают накопление их на полюсах. Если замкнуть полюсы источника проводами с нагрузкой, то по ней потечет ток. Участок цепи abed называют внешней частью цепи, участок ad - внутренней (рис. 46).
Отношение работы, совершаемой сторонними силами при перемещении положительного заряда по всей замкнутой цепи, к значению этого заряда называется электродвижущей силой источника (сокращенно ЭДС):
Участок электрической цепи, не содержащей источников ЭДС, называется однородным. Участок электрической цепи, который содержит источники ЭДС, называется неоднородным.
В однородном участке цепи движение электрических зарядов обусловлено действием на них электрической силы. Электрическое поле, обусловливающее движение электрических зарядов в цепи, называется стационарным. Стационарное электрическое поле создается во внешней цепи зарядами полюсов источника тока и обусловливает движение зарядов в электрической цепи. Отличается от электростатического поля неподвижных зарядов тем, что оно существует внутри проводников.
Примером неоднородного участка цепи является схема зарядки аккумулятора, представленная на рис. 47.
В этой цепи "+" и "-" - полюса источника тока, реостат, регулирующий ток и аккумулятор (be). Участок цепи abc - неоднородный, так как содержит источник сторонних сил - аккумулятор. Уточним понятие "напряжение".
За напряжение принимается физическая величина, равная отношению работы всех сил, действующих на данном участке, к значению переносимого заряда:
где А - работа всех сил, действующих на данном участке цепи (электростатических и сторонних).
Если на участке действуют только электростатические силы, то е = 0, при этом понятие напряжения и разность потенциалов совпадают.
Закон Ома (3.11) можно для неоднородного участка цепи записать в виде:
Составим электрическую цепь по схеме (рис. 48). Для внешней части цепи АВ:
Внутренний участок цепи ВСА является неоднородным, следовательно, согласно (3.12):
где r - внутреннее сопротивление источника тока. Сложив оба равенства (3.13) и (3.14), получим
Формула (3.15) выражает закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений внешнего и внутреннего участков цепи.
Из формулы (3.15) следует, что если R = 0, то напряжение между полюсами уменьшается до нуля, а сила тока достигает максимального значения (короткое замыкание).
r, то измеряя напряжение на полюсах источника, получим приближенное значение ЭДС источника.
При последовательном соединении проводников общее сопротивление равно сумме сопротивлений всех отдельных проводников: R = R 1 + R 2 + R 3 (рис. 49).
При параллельном соединении проводников величина, обратная сопротивлению всего разветвленного участка цепи, равна сумме величин, обратных сопротивлению каждого из параллельно соединенных проводников (рис. 50):
Измерение силы тока производится амперметрами. Для расширения пределов измерения силы тока параллельно амперметру присоединяют шунт. Если амперметр рассчитан на измерения тока I 0 , а необходимо измерить ток, равный пI 0 , то параллельно амперметру присоединяют сопротивление в (п - 1) меньше сопротивления амперметра:
Для увеличения пределов измерения напряжения вольтметром последовательно с вольтметром включают дополнительное сопротивление. Если вольтметр рассчитан для измерения напряжения U 0 , а необходимо измерить nU 0 , то дополнительное сопротивление в (п - 1) больше сопротивления вольтметра:
Для расчета электрических величин (I, U, R, r) в разветвленных электрических цепях, содержащих источники ЭДС, справедливы правила Кирхгофа.
Первое правило Кирхгофа относится к узлам: алгебраическая сумма всех токов, приходящих в точку разветвления (узел) и выходящих их нее, равна нулю.
Принято считать токи, подходящие к узлу, положительными, выходящие - отрицательными. I 1 и I 2 - величины положительные, I 3 и I 4 - величины отрицательные (рис. 51).
Второе правило относится к отдельным замкнутым контурам цепи: при обходе любого замкнутого контура в сложной электрической цепи алгебраическая сумма падений напряжения на элементах цепи (включая и внутреннее сопротивление источника тока) равна алгебраической сумме ЭДС источников тока, имеющихся в этом контуре.
Направление обхода каждого контура (по часовой стрелке или против нее) произвольное. Падение напряжения считается положительным, если выбранное заранее направление тока на этом участке между двумя узлами совпадает с направлением обхода контура, и отрицательным, если направление тока противоположно направлению обхода.
ЭДС считается положительной, если при обходе по контуру источник тока проходится от отрицательного полюса к положительному, и отрицательной - в противоположном направлении.
Если в результате решения задачи получают отрицательное значение для силы тока на каком-то участке, то это означает, что ток на этом участке идет в направлении, противоположном выбранному обходу контура.
Мостик Уитстона - одна из распространенных схем, предназначенная для точного измерения сопротивлений. Электрическая схема представлена на рис. 52.
Четыре резистора с сопротивлениями R 1 , R 2 , R 3 , R 4 составляют "плечи" схемы. Участок цепи, содержащий гальванометр, сопротивление которого r г , представляет собой некий мостик, соединяющий точки D и С цепи.
Из первого закона Кирхгофа для узлов A, D, С следует:
Уравнение для узла В не даст ничего нового; в него войдут те же величины.
Из второго правила для контуров ADBMNA, ADCA, DBCD, приняв направление их обхода по часовой стрелке за положительное, получим
Правые части двух последних уравнений равны нулю, так как последние два контура не содержат источников тока. Если известны ЭДС источника и все шесть сопротивлений участков цепи, то составленная система из шести уравнений позволяет вычислить все шесть значений сил токов в цепи.
Система этих уравнений существенно упростится, если, изменяя сопротивление резисторов, добиться, чтобы ток в мостике отсутствовал (I Г = 0). Это можно сделать, изменяя, например, сопротивление R 3 так, чтобы разность потенциалов на участках цепи BD и ВС была одинаковой. Тогда разность потенциалов между точками D и С будет равна нулю, а значит, будет равна нулю сила тока в мостике I Г . а В этом случае
Разделив последние два уравнения друг на друга и учитывая написанные выше равенства для сил токов, получим
Такую мостиковую схему применяют для измерения одного из неизвестных сопротивлений, входящих в "плечи" мостика, например R 4 . Тогда
Видим, что для измерения неизвестного сопротивления R 4 достаточно знать лишь сопротивление R 3 и отношение R 1 /R 2 .
Обычно отношение R 1 /R 2 остается постоянным, а изменяем эталонное сопротивление R 3 . Точность измерения неизвестного сопротивления с помощью мостика определяется точностью эталонного сопротивления R 3 и точностью отношения R 1 /R 2 . Этот способ определения сопротивления дает меньшую погрешность, чем определение сопротивления резистора путем измерения силы тока и напряжения.
Работа сил электрического поля (или работа электрического тока) при протекании через проводник с электрическим сопротивлением R в течение времени t постоянного электрического тока I будет равна:
Мощность Р электрического тока равна:
Единицей работы электрического тока в СИ является джоуль (1 Дж), единицей мощности - ватт (Вт):
Для расчета работы и мощности тока пригодны любые выражения из соотношений (3.16) и (3.17).
Если электрический ток протекает в цепи, где энергия электрического поля превращается только во внутреннюю энергию проводника (и его температура возрастает), то на основании закона сохранения энергии:
Этот закон независимо друг от друга установили опытным путем Дж. Джоуль и X. X. Ленц. Он называется законом Джоуля-Ленца.
Читайте также: