Метаболизм в организме. Значение кислорода

Добавил пользователь Alex
Обновлено: 21.12.2024

Метаболизм — слово, которое на слуху у каждого, кто худеет. Считается, что его нужно «разогнать» на полную мощность, и тогда вы сможете обмануть организм и сжигать больше калорий за то же время. Почти как секретная кнопка, на которую нужно нажать. Поэтому так привлекательны разгоняющие метаболизм продукты питания, диеты и тренировки. Читайте в этой статье про то, что такое метаболизм вообще и почему он бывает быстрым и медленным.

Что такое метаболизм?

Эволюционно организм человека стремится поддерживать идеальный с точки зрения выживания вес и процент жира, которые задает генетика. Это защищает человека от любых крайностей: как от истощения, так и от ожирения. И то, и другое снижает шансы передать свои гены потомству в дикой природе.

«Идеальным» для выживания весом управляет отдел мозга — гипоталамус. Именно он замедляет или ускоряет обмен веществ, если видит какие-то отклонения от нормы для конкретного человека. С помощью самых разных веществ — гормонов, уровня глюкозы и аминокислот в крови и многого другого — он собирает информацию о том, что происходит в организме: достаточно ли жира запасено, регулярно ли поступает еда, насколько она калорийная.

Сравнивая данные с «идеальной» генетической установкой, гипоталамус подкручивает метаболизм то вверх, то вниз, в зависимости от ситуации. Посмотрим на примерах, как выглядит идеальный метаболизм.

Если человек ел непривычно много для себя в течение одного или нескольких дней, его аппетит сам по себе снижается в последующие дни. Человек будет есть меньше, сам того не замечая. Заодно он будет более подвижным и активным. И даже если он все же наберет лишний вес за отпуск или праздники, он быстро от него избавится, как только вернется к обычной жизни, ничего специального для похудения не делая. Гипоталамус отрегулирует аппетит и уровень активности так, чтобы вернуть систему в равновесие.

И обратная ситуация. Тот же человек вдруг стал есть непривычно мало для себя: сел на диету, перестал есть из-за стресса, занятости. В ответ на это гипоталамус в следующие дни увеличивает аппетит, чтобы наверстать среднюю калорийность. Заодно он снижает активность — человек становится более вялым, сонным, двигается меньше и при первой возможности хочет посидеть или полежать.

Выходит, что человек со здоровым обменом веществ может иметь примерно один и тот же вес долгие годы, ничего специального не делая.

Как гипоталамус делает это?

Аппетитом мозг управляет с помощью самых разных механизмов.

  • Снижают аппетит лептин, глюкагон, обестатин, нейропептиды S и FF, холецистокинин, нейротензин, энтеростатин, тиреолиберин и другие гормоны.
  • Аминокислоты и глюкоза в крови — это признак того, что человек поел.
  • Заполненный желудок: в нем есть датчики на механическое растяжение. Они сообщают гипоталамусу о еде внутри.
  • Сокращение желчного пузыря и выработка им желчи после еды.
  • Наполнение кишечника.

Усиливают голод и толкают человека на поиски еды и тягу к определенным продуктам, особенно калорийным, следующие химические вещества: грелин, нейропептид Y, орексин, галанин, ноницептин, мотилин, В-эндорфины и др. А так же низкий уровень глюкозы и аминокислот, пустой желудок.

Человек начинает получать большее наслаждение от еды — от ее вкуса, запаха. Еда становится источником удовольствия. За это отвечают дофамин и эндорфины, которые выбрасываются каждый раз, когда человек поел.

Это отличный механизм защиты от голодания и истощения: если бы мы были равнодушны к еде и не замотивированы ее искать, не могли бы получать от нее почти наркотическое удовольствие, дела с выживанием были бы плохи. Хотя, сегодня это играет против нас: еду больше не нужно искать. Самая вкусная, жирная и сладкая еда — в избытке на расстоянии вытянутой руки. Из-за этого дофаминовые и эндорфиновые рецепторы бомбардируются чаще, сильнее и больше, чем заложено природой. Это сбивает все внутренние настройки организма в плане пищевого поведения.

Быстрый и медленный метаболизм

1

Описанная выше ситуация с обменом веществ — идеальная. В жизни же иногда все как-будто наоборот: чем больше человек ест и меньше двигается, тем меньше хочется двигаться и больше есть. А кто-то — худой, очень мало ест и больше есть не может.

Чтобы понять про быстрый и медленный обмен веществ, нужно знать вот что. Нервная система человека состоит из двух отделов. Первый — центральная нервная система. Она состоит из головного и спинного мозга. Второй — вегетативная нервная система. Это главный регулятор метаболизма. Она контролирует работу желез, органов, пищеварение, управляет питательными веществами, поступившими с едой, и делает другие важные для жизни вещи.

Вегетативная нервная система имеет две ветви: симпатическую и парасимпатическую.

  • Симпатическая нервная система в жизни включается во время психического или физического стресса, а в дикой природе — во время бегства, защиты или нападения. Она «ускоряет» метаболизм, отвечает за мобилизацию энергии из запасников и ее использование. Она контролирует работу мышц, сердца, щитовидной железы, половой системы, стимулирует высвобождение адреналина.
  • Парасимпатическая нервная система восстанавливает организм после стресса. Она «замедляет» метаболизм, стимулирует пищеварение, ускоряет усвоение питательных веществ и их запасание. Она управляет так же иммунной системой.

В зависимости от ситуации — стресс или восстановление — у любого человека включается либо та, либо другая ветвь. Но у некоторых людей каждая из них может доминировать большую часть времени. Это и определяет скорость метаболизма.

Важно понимать: говоря про быстрый и медленный метаболизм, мы не говорим о заболеваниях обмена веществ, которые нужно лечить у врача. Все остальное — пределы нормы здорового человека, но с отклонениями в одну или другую сторону.

Быстрый обмен веществ

быстрый метаболизм

Люди с доминирующей симпатической нервной системой, — счастливчики для тех, кто всю жизнь пытается худеть. Они стройные и не имеют проблем с лишним весом.

Это обычно живые, активные, эмоциональные люди, с быстрыми, резкими движениями. Пульс их более частый, а давление — повышенное. У них более активно работает щитовидная желез. Они всегда немного нервные, возбужденные по жизни и тратят много энергии в течение дня. Они не толстеют, но и с трудом набирают мышцы.

Медленный обмен веществ

медленный обмен веществ

Люди с доминирующей парасимпатической нервной системой набирают вес легко, а худеют — с трудом. Это малоподвижные, спокойные, расслабленные, а в крайних проявлениях — апатичные, вялые люди. Они быстро усваивают питательные вещества, что на фоне очень хорошего аппетита создает проблемы с лишним весом.

В ответ на лишнюю еду гипоталамус может не снижать аппетит в следующие дни, как могло быть в идеальной ситуации. Одна из проблем обмена веществ — плохая чувствительность мозга к лептину.

Лептин — гормон, который вырабатывает жировая ткань. С его помощью гипоталамус видит количество запасенной энергии (жира) в организме. Много жира = много лептина. Гипоталамус снижает аппетит и повышает активность, ведь бояться голодной смерти не нужно. Мало жира = мало лептина, значит энергии мало, аппетит нужно увеличить, а желание двигаться — снизить.

Но иногда гипоталамус не видит лептин, даже если и его, и жира много. А это означает постоянный голод и снижение активности. Человек начинает есть со временем все больше и больше.

Иногда плохая чувствительность к лептину — приобретенная, из-за плохого образа жизни и лишнего веса. А иногда — генетическая, когда мутация в самой структуре гормона или в рецепторах гипоталамуса мешает правильно принимать сигнал.

Если человек с медленным обменом веществ решит вдруг сесть на голодную диету, его ждут большие мучения: аппетит становится просто зверским. Начинает тянуть на все самое жирное, сладкое или соленое. Активность падает очень сильно и переводит его в режим амебы с постоянными мыслями о еде, плохим настроением, отсутствием сил и либидо. Работа щитовидной железы еще больше ухудшается.

К этому добавляется низкая чувствительность мышечных клеток к инсулину, что делает отложение жира более легким.

С эволюционной точки зрения выживали именно те, кто мог запасать больше жира, чтобы пережить голод, долгие зимы и передать свои гены потомству. Теперь это уже больше не эволюционное преимущество, но многие из нас носят эти гены и всю жизнь борются с лишним весом.

Изменение скорости метаболизма

изменение скорости метаболизма

До этого речь шла о вещах отчасти генетических. Но человек — система не замкнутая. На нас очень влияет окружающая среда. Еще сто лет назад метаболизм был менее зависим от нее. Но сегодня у нас изобилие еды — жирной, сладкой, калорийной, всегда доступной. Мы двигаемся меньше — у нас есть машины, метро, самолеты, а всякая техника упрощает жизнь.

Малоподвижный образ жизни, плохое питание, стрессы, недостаток сна – все это сбивает систему саморегуляции веса, нарушает пищевое поведение. Гипоталамус перестает правильно воспринимать сигналы организма, мышцы теряют чувствительность к инсулину. В худшем сценарии развивается метаболический синдром — диабет 2 типа, гипертония и атеросклероз, которые часто идут вместе и усиливают друг друга.

И если с генетикой бороться трудно, с образом жизни можно сделать многое. Даже самый безнадежный с точки зрения генетики человек способен на большие перемены.

«Разгон» метаболизма

1

Говорить о «разгоне» метаболизма не правильно. Вместо этого нужно думать о том, как вернуть его в норму. Сильно ускоренный метаболизм — это серьезное заболевание (например, Базедова болезнь).

Что снижает метаболизм? Малоподвижный образ жизни, отсутствие силовых тренировок, мышц, увлечение сахаром и насыщенными жирами, нарушение пищевого поведения. И «лечится» это изменением образа жизни.

Вы похудеете, восстановите чувствительность клеток к инсулину с помощью диеты и силовых тренировок, и обмен веществ придет в норму, насколько это возможно. Вы научитесь есть, когда голодны и не есть, когда сыты, перестанете бомбардировать мозг эндорфинами от калорийной еды, улучшите чувствительность к лептину.

А совсем не наоборот: сначала «разогнать» обмен веществ, а потом похудеть на этих скоростях. Совершенно бессмысленно ускорять метаболизм, чтобы худеть. Он возвращается к своему нормальному состоянию в процессе похудения.

Метаболизм в организме. Значение кислорода

Для обеспечения жизнедеятельности любого живого организма необходимо постоянно поддерживать определенный уровень обмена веществ как между органами и тканями внутри организма, так и с внешней средой. Из внешней среды организм получает питательные вещества, которые он частично превращает в собственные ткани, во внешнюю среду отдает продукты своей жизнедеятельности ненужные или даже вредные для организма. Таким образом, наличие обмена веществ определяет сам факт жизни организма.
Для обеспечения обмена веществ необходима энергия. В организме высших животных энергия образуется в результате сложных биохимических реакций, основу которых составляют процессы окисления.

Основным субстратом, подвергающимся окислению, являются углеводы. Доля углеводов как субстрата для выработки энергии среди других веществ, составляет более 80%. В процессе окисления принимают участие также жирные кислоты и амиокислоты.

Единственным окислителем является кислород (аэробный гликолиз). При недостатке кислорода начинает функционировать более древний механизм выработки энергии — анаэробный гликолиз, эффективность которого в 18 раз меньше.
В процессе сложных биохимических преобразований вещества, участвующие в обменных процессах, расщепляются в основном до воды, двуокиси углерода (углекислый газ) и мочевины, которые и удаляются из организма соответствующими органами. В здоровом организме этот окислительный процесс сопровождается выделением энергии, составляющей приблизительно 3000-3500 Ккал.

метаболизм в организме

Поскольку выработка энергии является одним из наиболее важных критериев жизнедеятельности организма, то постоянный контроль (мониторинг) этого параметра может быть существенным фактором получения информации. Особенно актуальной регистрация энергетики является у больных в критических состояниях при проведении реанимации и интенсивной терапии.
Основной проблемой для поддержания обмена веществ является проблема кислорода, т.к. его запасы столь незначительны, что позволяют осуществлять жизнедеятельность организма всего лишь несколько минут.

Содержание кислорода в крови при дыхании атмосферным воздухом составляет 850 мл., при дыхании 100% кислородом — 950 мл. Запасы кислорода в легких содержатся в их функциональной остаточной емкости (ФОЕ) и при дыхании воздухом составляют 450 мл, а при дыхании 100% кислородом — 3000 мл. В незначительных количествах (250-300 мл) кислород содержится в тканях в растворенном или связанном состоянии. Таким образом, общие запасы кислорода в организме составляют около 1,5 литров при дыхании воздухом и несколько больше четырех литров при дыхании 100% кислородом.

Если учесть, что в покое человек потребляет около 250 мл кислорода в 1 минуту, а при физической нагрузке и различных патологических состояниях потребление 02 увеличивается в несколько раз, то становится очевидным, что запасов кислорода может хватить не более, чем на 5-6 минут.
Именно поэтому в процессе эволюции высших организмов появились системы органов, призванных обеспечить в организме непрерывное поступление кислорода.

Это прежде всего система крови, в которой кислород аккумулируется в виде раствора в плазме и химической связи с гемоглобином.
Это система органов дыхания (ротовая полость, глотка, гортань, трахея, бронхи и легкие), в которой осуществляется переход кислорода из внешней среды в кровь и углекислого газа из крови во внешнюю среду (газообмен).
Это система органов кровообращения, которая обеспечивает транспорт кислорода к органам и тканям и выведение углекислого газа.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Обмен кислорода в организме. Транспорт кислорода из легких в ткани

После диффузии кислорода из альвеол в капиллярную кровь его дальнейший транспорт в капилляры периферических тканей совершается почти полностью в связанной с гемоглобином форме. Наличие в эритроцитах гемоглобина позволяет крови транспортировать в 30-100 раз больше кислорода, чем могло бы транспортироваться в виде газа, растворенного в водной составляющей крови.

В клетках тканей тела кислород реагирует с разными веществами, формируя большое количество двуокиси углерода, который потом входит в капилляры ткани и транспортируется обратно в легкие. Двуокись углерода также связывается с разными химическими веществами, находящимися в крови, что увеличивает транспорт двуокиси углерода в 15-20 раз.

В статьях на сайте представлены физические и химические принципы транспорта кислорода и двуокиси углерода в крови и тканевой жидкости как с количественной, так и качественной стороны.

а) Транспорт кислорода из легких в ткани тела. Газы могут переместиться из одной точки в другую путем диффузии и причиной такого передвижения всегда является наличие градиента парциального давления между этими точками. Так, кислород диффундирует в легких из альвеол в капиллярную кровь, потому что парциальное давление кислорода (Рог) в альвеолах больше, чем в крови легочных капилляров. В других тканях тела PO2 в капиллярной крови выше, чем в тканях, и это заставляет кислород диффундировать в ткани.

В метаболических процессах клеток кислород используется для образования двуокиси углерода, в результате внутриклеточное давление двуокиси углерода (PCO2) поднимается до высоких значений, что приводит к диффузии двуокиси углерода в тканевые капилляры. Когда кровь доходит до легких, двуокись углерода диффундирует из крови в альвеолы, т.к. Рсог в крови легочных капилляров выше, чем в альвеолах. Таким образом, транспорт кислорода и двуокиси углерода кровью зависит как от диффузии, так и от кровотока. Далее рассмотрим количественную сторону факторов, определяющих эти явления.

Обмен кислорода в организме. Транспорт кислорода из легких в ткани

Поглощение кислорода капиллярной кровью в легких

б) Диффузия кислорода из альвеол в капиллярную кровь легких. В верхней части рисунка выше изображена альвеола, расположенная рядом с легочным капилляром, и показана диффузия молекул кислорода из альвеолярного воздуха в кровь. PO2 в альвеолярной газовой смеси составляет 104 мм рт. ст., а PO2 в венозной крови, входящей в легочный капилляр через его артериальный конец, составляет только 40 мм рт. ст., т.к. большое количество кислорода было поглощено из крови во время прохождения ее через периферические ткани. Таким образом, начальная разница в парциальном давлении, являющаяся причиной диффузии кислорода в легочные капилляры, составляет 104 - 40, или 64 мм рт. ст. На графике в нижней части рисунка виден резкий подъем PO2 крови во время прохождения ее через капилляр; к моменту прохождения 1/3 длины капилляра Р02 в крови составляет около 104 мм рт. ст., т.е. почти достигает Р02 в альвеолярном воздухе.

Поглощение кислорода кровью в легких во время физической нагрузки. При тяжелой физической нагрузке потребление кислорода может оказаться в 20 раз выше нормы. При этом из-за повышения сердечного выброса при такой нагрузке время прохождения легочного капилляра кровью может сократиться более чем в 2 раза. Однако в силу существования большого фактора надежности для диффузии кислорода через легочную мембрану кровь ко времени выхода из капилляра все же насыщается кислородом почти до максимального уровня. Это объясняется следующим.

Во-первых, во время физической нагрузки диффузионный объем кислорода возрастает почти в 3 раза. Это происходит главным образом из-за увеличения площади поверхности капилляров, участвующих в процессе диффузии, а также из-за приближения вентиляционно-перфузионного коэффициента в верхних частях легких к идеальной величине.

Во-вторых, на рисунке выше показано, что при отсутствии физической нагрузки кровь достигает почти полного насыщения кислородом уже после прохождения первой трети легочного капилляра и во время прохождения следующих двух третей обычно в нее добавляется очень мало кислорода. Можно сказать, что в покое кровь остается в легочных капиллярах в 3 раза дольше, чем это необходимо для полного насыщения ее кислородом, поэтому во время физической нагрузки кровь может полностью или почти полностью насыщаться кислородом и после сокращения времени пребывания в капиллярах.

Видео физиология газообмена в легких и транспорта газов кровью - профессор, д.м.н. П.Е. Умрюхин

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Кислород в процессе обмена веществ

Проявлением жизнедеятельности человеческого организма является выделение энергии ввиде механических движений и психической деятельности, в основе которых лежат биохимические процессы, подчиняющиеся основным законам физикн и химии: закону сохранения вещества и закону сохранения энергии. Энергия, выделяемая телом в виде тепла или работы, в основном черпается из окислительных процессов. Углерод, водород, азот и сера пищевых веществ соединяются в теле с кислородом н выделяются в виде углекислого газа, воды, мочевины и сульфатов.

В человеческом организме при окислении получаются продукты распада (метаболизма) веществ, образующих живые клетки организма. Выделение этих продуктов распада происходит через легкие, кожу и почки (через кишечник выделяются остатки пищевых веществ, не усвоенные организмом).

Кислород , необходимый для поддержания окислительных процессов, человеческий организм получает из окружающего воздуха, который нормально содержит 20,922% по объему кислорода (O 2 ), 79,02% азота (N 2 ) и 0,034% углекислого газа (СО 2 ). Кислород попадает в человеческий организм через легкие, которые выполняют двойную функцию: доставляют необходимый для окислительных процессов кислород и выделяют продукты метаболизма при обмене веществ — углекислый газ и воду.

Прекращение окислительных процессов в человеческом организме означает прекращение жизни клеток тела, а следовательно, и немедленную смерть.

Механизм доставки кислорода тканям тела

Воздух, содержащий необходимый для поддержания жизни кислород, вдыхается человеком через нос или рот, проходит через гортань, затем трахею или дыхательное горло и через ответвления трахеи, называемые бронхами, попадает в правое и левое легкие ( рис. 48 ).

Трахея и бронхи представляют собой широкие трубки, жесткость которых обеспечивается хрящевыми кольцами, заложенными в их стенках. Бронхи в свою очередь разветвляются, образуя сеть более мелких трубок, концы которых — бронхиолы — открываются в так называемые воронки, состоящие из множества маленьких мешочков — альвеол.

Рис. 48. Схема легких: 1 — гортань; 2 — трахея; 3 — бронхи; 4 — бронхиолы; 5 — альвеолы

Альвеолы имеют очень тонкие стенки нз нежных эластичных волокон и состоят из густой сети капиллярных кровеносных сосудов. Благодаря тонкости стенок альвеол и капиллярных сосудов, находящихся в последних, газы легко диффундируют через эти стенки, представляющие собой полупроницаемые переборки. Диффузия происходит в направлении падения парциального давления газа, т. е. для кислорода — из легочных альвеол в кровь, а для углекислого газа — из крови в легочные альвеолы.

Между кровью в капиллярах и воздухом, прошедшим в легкие, происходит, таким образом, обмен газов: кровь отдает углекислый газ и пары воды и поглощает кислород воздуха. Основными моментами газообмена являются поглощение кислорода и выделение углекислоты.

Кровь в теле человека циркулирует по замкнутой системе кровеносных сосудов и приводится в движение главным образом сердцем, а также сокращениями и расширениями эластичных сосудов. Циркуляция крови в теле человека схематически показана на рис. 49 . Сердце, действующее наподобие насоса с двумя параллельно работающими цилиндрами, при своем сокращении выталкивает кровь правого желудочка в легочные артерии, которые разветвляются вдоль бронхов вплоть до образования мельчайших альвеолярных капилляров.

В легочных альвеолах происходит газообмен - кровь выделяет углекислоту в момент выдоха и насыщается кислородом в момент вдоха. Быстрота газообмена обеспечивается как большой суммарной поверхностью альвеол — у нормального человека 80—90 м2, так и громадной суммарной поверхностью поглощающих кислород красных кровяных шариков (2800 м2).

Рис. 49.Схема циркуляции крови в человеческом теле: 1 — пряный желудочек сердца; 2 — легочные артерии; 3 — легочные вены; 4 — левое предсердие; 5 — левый желудочек; 6 — артерии; 7 — волосные сосуды — капилляры, доставляющие кровь к тканям нижней части тела; 8 — кппилляры, питающие органы пищеварения; 9— капилляры в печени; 10 - капилляры, питающие ткани верхних частей тела, в том числе головы; 11 — вены

Альвеолярные кровеносные сосуды вновь соединяются во все более широкие сосуды — легочные вены, которые, в конце концов, входят в левое предсердие сердца. Обогащенная кислородом кровь при сокращении сердца переходит из левого предсердия в левый желудочек и оттуда нагнетается в аорту и сеть артерий, направляющих кровь ко всем частям человеческого тела. Артерии также разветвляются вплоть до образования в тканях сети тончайших волосных сосудов — капилляров, которые и доставляют тканям необходимый для окислительных процессов кислород. Затем капилляры вновь соединяются в более широкие сосуды — вены, которые отводят кровь, обедненную кислородом и обогащенную продуктами метаболизма, в правое предсердие, из которого она поступает в правый желудочек и вновь направляется в легкие.

Таким образом, кровь постоянно совершает в теле два кругооборота— малый — через легкие и большой — через ткани тела. Полный цикл циркуляции крови через весь организм у здорового человека совершается в среднем в 23 секунды.

Кровообращение выполняет одну из важнейших функций переноса кислорода от легких к тканям, а углекислого газа — от тканей к легким. Потребление кислорода клетками тканей может изменяться в значительных пределах, например при переходе от состояния покоя к физической нагрузке и наоборот. В связи с этим кровь должна обладать большими резервами, необходимыми для увеличения ее способности переносить кислород от легких к тканям, а углекислый газ в обратном направлении.

Транспорт кислорода.

При 37 С растворимость 02 в жидкости составляет 0,225 мл • л-1 • кПа-1 (0,03 мл/л/мм рт. ст.). В условиях нормального парциального давления кислорода в альвеолярном воздухе, т. е. 13,3 кПа или 100 мм рт.ст., 1 л плазмы крови может переносить только 3 мл 02, что недостаточно для жизнедеятельности организма в целом. В покое в организме человека за минуту потребляется примерно 250 мл кислорода. Чтобы тканям получить такое количество кислорода в физически растворенном состоянии, сердце должно перекачивать за минуту огромное количество крови. В эволюции живых существ проблема транспорта кислорода была более эффективно решена за счет обратимой химической реакции с гемоглобином эритроцитов. Кислород переносится кровью от легких к тканям организма молекулами гемоглобина, которые содержатся в эритроцитах.

Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.

Гемоглобин способен захватывать кислород из альвеолярного воздуха (соединение называется ок-сигемоглобином) и освобождать необходимое количество кислорода в тканях. Особенностью химической реакции кислорода с гемоглобином является то, что количество связанного кислорода ограничено количеством молекул гемоглобина в эритроцитах крови. Молекула гемоглобина имеет 4 места связывания с кислородом, которые взаимодействуют таким образом, что зависимость между парциальным давлением кислорода и количеством переносимого кислорода с кровью имеет S-образную форму, которая носит название кривой насыщения или диссоциации оксигемоглобина (рис. 10.18). При парциальном давлении кислорода 10 мм рт. ст. насыщение гемоглобина кислородом составляет примерно 10 %, а при Р02 30 мм рт. ст. — 50—60 %. При дальнейшем увеличении парциального давления кислорода от 40 мм рт. ст. до 60 мм рт. ст. происходит уменьшение крутизны кривой диссоциации оксигемоглобина и процент его насыщения кислородом возрастает в диапазоне от 70—75 до 90 % соответственно. Затем кривая диссоциации оксигемоглобина начинает занимать практически горизонтальное положение, поскольку увеличение парциального давления кислорода с 60 до 80 мм рт. ст. вызывает прирост насыщения гемоглобина кислородом на 6 %. В диапазоне от 80 до 100 мм рт. ст. процент образования оксигемоглобина составляет порядка 2. В результате кривая диссоциации оксигемоглобина переходит в горизонтальную линию и процент насыщения гемоглобина кислородом достигает предела, т. е. 100. Насыщение гемоглобина кислородом под влиянием Р02 характеризует своеобразный молекулярный «аппетит» этого соединения к кислороду.

Значительная крутизна кривой насыщения гемоглобина кислородом в диапазоне парциального давления от 20 до 40 мм рт. ст. способствует тому, что в ткани организма значительное количество кислорода может диффундировать из крови в условиях фадиента его парциального давления между кровью и клетками тканей (не менее 20 мм рт. ст.). Незначительный процент насыщения гемоглобина кислородом в диапазоне его парциального давления от 80 до 100 мм рт. ст. способствует тому, что человек без риска снижения насыщения артериальной крови кислородом может перемещаться в диапазоне высот над уровнем моря до 2000 м.

Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.

Рис. 10.18. Кривая диссоциации оксигемоглобина. Пределы колебания кривой при РС02 = 40 мм рт. ст. (артериальная кровь) и РС02 = 46 мм рт. ст. (венозная кровь) показывают изменение сродства гемоглобина к кислороду (эффект Ходена).

Общие запасы кислорода в организме обусловлены его количеством, находящимся в связанном состоянии с ионами Fe2+ в составе органических молекул гемоглобина эритроцитов и миоглобина мышечных клеток.

Один грамм гемоглобина связывает 1,34 мл 02. Поэтому в норме при концентрации гемоглобина 150 г/л каждые 100 мл крови могут переносить 20,0 мл 02.

Количество 02, которое может связаться с гемоглобином эритроцитов крови при насыщении 100 % его количества, называется кислородной емкостью гемоглобина. Другим показателем дыхательной функции крови является содержание 02 в крови (кислородная емкость крови), которое отражает его истинное количество, как связанного с гемоглобином, так и физически растворенного в плазме. Поскольку в норме артериальная кровь насыщена кислородом на 97 %, то в 100 мл артериальной крови содержится примерно 19,4 мл 02.

Читайте также: