Почечный клиренс. Клиренс инулина

Добавил пользователь Евгений Кузнецов
Обновлено: 21.12.2024

Определение почечного клиренса для разных веществ позволяет исследовать интенсивность протекания всех трех процессов (фильтрации, реабсорбции и секреции), определяющих выделительную функцию почек. Почечный клиренс вещества - это объем плазмы крови (мл), который с помощью почек освобождается от вещества за единицу времени (мин). Клиренс описывается формулой

где Кв - клиренс вещества; ПКВ - концентрация вещества в плазме крови; Мв - концентрация вещества в моче; Ом - объем выделенной мочи.

Если вещество свободно фильтруется, но не реабсорбиру- ется и не секретируется, тогда интенсивность его выделения с мочой (Мв • Ом) будет равна скорости фильтрации вещества в клубочках (СКФ • ПКВ). Отсюда можно вычислить СКФ путем определения клиренса вещества:

Таким веществом, удовлетворяющим перечисленным выше критериям, является инулин, клиренс которого составляет в среднем у мужчин 125 мл/мин, у женщин 110 мл/мин. Значит, количество плазмы крови, проходящей через сосуды почек и профильтрованной в клубочках для доставки такого количества инулина в конечную мочу, должно составить 125 мл у мужчин и 110 мл у женщин. Таким образом, объем образования первичной мочи составляет у мужчин 180 л/сут (125 мл/мин • 60 мин • 24 ч), у женщин 150 л/сут (110 мл/мин • 60 мин • 24 ч).

Учитывая, что полисахарид инулин отсутствует в организме человека и его требуется вводить внутривенно, в клинике для определения СКФ чаще используется другое вещество - креатинин.

Определив клиренс других веществ и сравнив его с клиренсом инулина, можно оценить процессы реабсорбции и секреции этих веществ в почечных канальцах. Если клиренсы вещества и инулина совпадают, то данное вещество выделяется только с помощью фильтрации; если клиренс вещества больше, чем у инулина, то вещество дополнительно секрети- руется в просвет канальцев; если клиренс вещества меньше, чем у инулина, то оно, по-видимому, частично реабсорбирует- ся. Зная интенсивность выделения вещества с мочой (Мв • Ом), можно рассчитать интенсивность процессов реабсорбции (реабсорбция = Фильтрация - Выделение = СКФ • ПКв - Мв • Ом) и секреции (Секреция - Выделение - Фильтрация = Мв • Ом - -СКФПКД.

С помощью клиренса некоторых веществ можно оценивать величину почечного плазмотока и кровотока. Для этого используют вещества, которые высвобождаются в мочу путем фильтрации и секреции и при этом не реабсорбируются. Клиренс таких веществ теоретически будет равен общему плазма- току в почке. Подобных веществ практически нет, тем не менее от некоторых веществ кровь очищается при одном прохождении через почки почти на 90%. Одним из таких естественных веществ является парааминогиппуровая кислота, клиренс которой составляет 585 мл/мин, что позволяет оценить величину почечного плазмотока в 650 мл/мин (585 : 0,9) с учетом коэффициента ее извлечения из крови 90%. При гемато- крите, равном 45%, и почечном плазмотоке 650 мл/мин, кровоток в обеих почках составит 1182 мл/мин, т.е. 650 / (1-0,45).

Почечный клиренс. Клиренс инулина

Ткани и органы. Почки

315

А. Основное назначение почек

Основной функцией почек является выведение из организма воды и водорастворимых веществ (конечных продуктов обмена веществ) ( 1 , см. рис. 317). С экскреторной функцией тесно связана функция регуляции ионного и кислотно-основного равновесия внутренней среды организма ( гомеостатическая функция , 2 , см. рис. 319, 321). Обе функции контролируются гормонами. Кроме того, почки выполняют эндокринную функцию, принимая непосредственное участие в синтезе многих гормонов ( 3 , см. с. 323). Наконец, почки участвуют в процессах промежуточного метаболизма ( 4 ), особенно в глюконеогенезе и расщеплении пептидов и аминокислот (см. с. 157).

Через почки проходит очень большой объем крови: 1500 л в сутки. Из этого объема отфильтровывается 180 л первичной мочи. Затем объем первичной мочи существенно снижается за счет реабсорбции воды, в итоге суточный выход мочи составляет 0,5-2,0 л.

Б. Процесс мочеобразования

Функциональной (и структурной) единицей почек является нефрон , в почке человека содержится примерно 1 млн нефронов. Процесс мочеобразования в нефронах складывается из трех этапов.

Ультрафильтрация (гломерулярная или клубочковая фильтрация). В клубочках почечных телец из плазмы крови в процессе ультрафильтрации образуется первичная моча, изоосмотическая с плазмой крови. Поры, через которые фильтруется плазма, имеют эффективный средний диаметр 2,9 нм. При таком размере пор все компоненты плазмы крови с молекулярной массой (М) до 5 кДа свободно проходят через мембрану. Вещества с M < 65 кДа частично проходят через поры, и только крупные молекулы (М >65 кДа) удерживаются порами и не попадают в первичную мочу. Так как большинство белков плазмы крови имеют достаточно высокую молекулярную массу (М > 54 кДа) (см. с. 271) и заряжены отрицательно, они удерживаются гломерулярной базальной мембраной и содержание белков в ультрафильтрате незначительно.

Реабсорбция. Первичная моча концентрируется (примерно в 100 раз по сравнению с исходным объемом) за счет обратной фильтрации воды. Одновременно по механизму активного транспорта (см. с. 321) в канальцах реабсорбируются практически все низкомолекулярные вещества, особенно глюкоза, аминокислоты , а также большинство электролитов ( неорганических и органических ионов ). Реабсорбция аминокислот осуществляется с помощью группоспецифичных транпортных систем (переносчиков), с дефектом которых связан ряд генетически обусловленных наследственных заболеваний (цистиноз, глицинурия, синдром Хартнупа).

Секреция. Большинство веществ, подлежащих выведению из организма, поступают в мочу за счет активного транспорта в почечных канальцах. К таким веществам относятся ионы H + и К + , мочевая кислота и креатинин, лекарственные вещества, например пенициллин.

Обмен веществ. Процессы концентрирования и селективного транспорта требуют больших затрат энергии. Необходимый АТФ синтезируется за счет окисления жирных кислот, кетоновых тел и некоторых аминокислот и в меньшей степени лактата, глицерина, цитрата и глюкозы, которые содержатся в крови. В почках так же, как и в печени, может идти процесс глюконеогенеза. Субстратами служат углеродные скелеты глюкогенных аминокислот, азот которых в форме аммиака используется для регуляции рН мочи (см. рис. 319). В почках обнаружены ферменты расщепления пептидов и метаболизма аминокислот, обладающие высокой активностью (например, оксидазы аминокислот, аминооксидазы, глутаминаза).

Почечный клиренс (почечное очищение). Это наиболее используемый показатель, по которому определяют скорость почечной экскреции отдельных веществ из крови. Он определяется как объем плазмы крови, который в единицу времени может быть очищен от конкретного вещества. Клиренс инулина , полифруктазана с Μ ≈ 6 кДа, который хорошо отфильтровывается, но не подвергается активной реабсорбции и секреции, служит показателем скорости клубочковой фильтрации. Нормальное значение скорости клубочковой фильтрации, определенное по инулину, составляет 120 мл/мин * .

* Почечный клиренс достигает максимальных значений (450-600 мл/мин) у веществ, удаляемых секрецией в канальцах; клиренс минимален у веществ, хорошо фильтрующихся, но интенсивно реабсорбируемых канальцами (для натрия 1,3±0,8 мл/мин). — Прим. перев.

Почечный клиренс. Клиренс инулина

Почечный клиренс. Клиренс инулина

а) Использование методики клиренса для количественной оценки функции почки. Оценка интенсивности, с которой плазма «очищается» от различных веществ, предоставляет хорошую возможность количественно определить эффективность их выделения почками (просим вас изучить таблицу ниже).

Почечный клиренс. Клиренс инулина

Почечным клиренсом данного вещества называют объем плазмы крови, который с помощью почек освобождается от вещества за единицу времени. Это определение является отчасти отвлеченным, поскольку объема плазмы, который полностью освобождается от данного вещества, в отдельности не существует. Тем не менее, почечный клиренс позволяет исследовать выделительную функцию почек и, как рассмотрим далее, может использоваться для количественного определения почечного кровотока, а также для оценки основных функций почек, таких как клубочковая фильтрация, канальцевая реабсорбция и канальцевая секреция.

Проиллюстрируем принцип клиренса на следующем примере: если в каждом миллилитре плазмы, протекающей через почки, содержится 1 мг вещества и если каждую минуту 1 мг этого вещества выделяется с конечной мочой, «очищение» плазмы в данном случае составит 1 мл/мин. Таким образом, клиренс (коэффициент «очищения») имеет отношение к объему плазмы, который должен пройти через почки и доставить необходимое количество вещества для выделения его с мочой в единицу времени. Математически клиренс выражают формулой:

Св х Рв = Uв x V,

где Св — клиренс вещества; Рв — концентрация вещества в плазме; Uв — концентрация вещества в моче; V — объем мочи.

Преобразовав уравнение, клиренс может представить как: Св = Uв х V / Pв.

Таким образом, клиренс вещества равен интенсивности выделения данного вещества с мочой (Uв x V), деленного на концентрацию его в плазме.

б) Клиренс инулина можно использовать для оценки СКФ. Если вещество свободно, как и вода, фильтруется в клубочке, не реабсорбируется и не секретируется почечными канальцами, тогда интенсивность его выделения с мочой (Uв x V) будет равна скорости фильтрации вещества в клубочках (СКФ х Рв). Таким образом: СКФ х Рв = Uв х V.

СКФ может быть вычислена путем определения клиренса вещества: СКФ = (Uв x V) / Pв = Св.

Веществом, удовлетворяющим перечисленным критериям, является инулин — полисахарид с молекулярной массой около 5200. Инулин в организме не синтезируется, он присутствует в корнях определенных растений, для изучения СКФ его следует вводить внутривенно.

Почечный клиренс. Клиренс инулина

Измерение скорости клубочковой фильтрации с помощью клиренса инулина. Инулин свободно фильтруется в клубочках, но не реабсорбируется почечными канальцами. Pинулин - концентрация инулина в плазме, Uинулин - концентрация инулина в моче, V - отделение мочи, СКФ - скорость клубочковой фильтрации

На рисунке выше приведены данные по содержанию инулина в различных сегментах нефрона. В этом примере концентрация инулина в плазме — 1 мг/мл, в моче — 125 мг/мл, интенсивность образования мочи — 1 мл/мин. Следовательно, за 1 мин в мочу попадают 125 мг инулина. Затем подсчитывают клиренс инулина через отношение его содержания в моче к концентрации в плазме, что составит 125 мл/мин. Следовательно, количество плазмы, проходящей через почечные сосуды и профильтрованной в клубочках для доставки такого количества инулина в конечную мочу, должно составить 125 мл.

Инулин — не единственное вещество, которое может применяться для определения СКФ. Другие соединения, используемые в клинике для оценки СКФ, включают радиоактивный иоталамат и креатинин.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Клиренс инулина соответствует скорости клубочковой фильтрации, т.е. части общего почечного плазмотока, фильтруемой в мочевыводящие канальцы.

Клиренс парааминогиппуровой кислоты (ПАГ) почти достигает максимально возможного значения, т.е. практически равен величине общего почечного плазмотока.

Оценка функции почек методом определения клиренса.

Для клинической оценки функции почек не обязательно определять клиренс всех выводимых почками веществ. Как правило, бывает достаточно оценить почечный плазмоток, исходя из клиренса парааминогиппуровой кислоты (3) и скорость клубочковой фильтрации, соответствующую клиренсу инулина.

Uпаг х Vмочи х 100 %

где: Uпаг - концентрация ПАГ в конечной моче;

Vмочи - объем конечной мочи в(мл), образующейся за 1 минуту;

Pпаг - концентрация ПАГ в плазме крови;

ПГ - показатель гематокрита.

Если оба этих параметра отчетливо снижены, то, по всей вероятности, уменьшены и показатели очищения веществ, выделяющихся в естественных условиях. Об этом свидетельствует повышение концентрации этих веществ в плазме крови. Так, повышение содержания в плазме крови небелкового азота (т.е. азотсодержащих веществ, не относящихся к белкам) свидетельствует о почечной недостаточности .

Исходя из клиренса инулина, можно также определить количество того или иного вещества, фильтрующихся в клубочках, а также скорость переноса этого вещества в почках в целом.

Расчет скорости секреции

С пл • F + S = Cм • Vм

S = Cм • Vм - Cпл • F

F – объем фильтрации по инулину;

C пл - концентрация вещества в плазме

Cм - концентрация вещества вмоче;

Vм- объем диффузии за 1мин

Расчет скорости канальцевой реабсорбции

Сгл/пл • F= R+ C гл/м • Vм

R= Сгл/пл • F - C гл/м • Vм

R-скорость реабсорбции в 1мин;

Сгл/пл - концентрация глюкозы в плазме;

F- объем почечной фильтрацииза 1 мин по инулину;

C гл/м – концентрация глюкозы в моче; Vм- диурез за 1 мин.

Почечный клиренс и способы выделения различных веществ.

Клубочковая фильтрация и канальцевая секреция способствуют выделению веществ с мочой, тогда как канальцевая реабсорбция отфильтрованного или секретируемого вещества уменьшает его экскрецию. Если принять упрощенное допущение (справедливое для ряда низкомолекулярных веществ), согласно которому то или иное вещество беспрепятственно фильтруется, а в канальцах либо только реабсорбируется, либо только секретируется, либо не реабсорбируется и не секретируется, то клиренс этого вещества (Св) позволяет судить о способе его выделения. Сравнивая клиренс исследуемого вещества с клиренсом инулина, можно сделать следующие выводы.

2. Св = С инулин: экскреция вещества происходит только путем фильтрации.

3. Св > С инулин: экскреция вещества происходит путем фильтрации и секреции.

Правомочность подобных заключений зависит от того, насколько исходные допущения применимы по отношению к исследуемому веществу. В связи с этим бывает необходимо производить дополнительные исследования (например, определять молекулярную массу вещества и степень его связывания белками плазмы, зависимость экскреции и скорости канальцевого транспорта от содержания в плазме и т.д.). Если речь идет о совершенно неизвестном экзогенном соединении, сравнение клиренса этого соединения с клиренсом инулина позволяет сделать обоснованный вывод только тогда, когда Св > С инулин. В этом случае можно считать, что исследуемое вещество секретируется в почечных канальцах.

III. РЕГУЛЯЦИЯ ДЕЯТЕЛЬНОСТИ ПОЧЕК

Почка - исполнительный орган, который регулирует постоянство состава и объема внутренней среды. Регуляция деятельности почки, обеспечивается при участии эфферентных нервных волокон или эндокринных желез.

Нервный центр представлен-гипоталамо-лимбико-ретикулярными структурами и корой больших полушарий. Кортикальные влияния реализуются через изменение секреции АДГ гипоталамусом.

Выделяют следующие виды рецепторов:

Хеморецепторы:

a) .центральные (гипоталамуса)

b) переферические осморецепторы

( дуга аорты и каротидного синуса, осморецепторы печени, почек, селезенки, сердца, в костном мозге и т.д)

c) .натриорецепторы

Волюморецепторы(в предсердиях,в полых венах)

Барорецепторы( дуга аорты и каротидного синуса)

В ЦНС информация о состоянии внутренней среды поступает по афферентным путям от рефлексогенных зон самой почки(механо и хеморецепторы), а также рецепторов дуги аорты, каротидного синуса, от осмо- и хеморецепторов печени, и гипоталамуса, а также от волюморецепторов предсердий. Афферентные нервы почки играют существенную роль как информационное звено системы ионной регуляции, обеспечивают осуществление рено-ренальных рефлексов.

Как известно, в почках симпатическая иннервация преобладает над парасимпатической, причем нервная регуляция кровотока охватывает как корковое, так и мозговое вещество. Почки получают богатую иннервацию от нижних грудных и верхних поясничных (Th 4IX -L 4IV ) симпатических узлов. В экспериментах было показано, что симпатикотония сопровождается уменьшением кровотока в мозговом веществе и снижением диуреза. Импульсы поступающие по эфферентным нервам почки, регулируют гемодинамику и работу юкстагломерулярного аппарата почки, оказывают прямое влияние на реабсорбцию и секрецию ряда неэлектролитов и электролитов в канальцах. Показано что при раздражении почечных нервов ( ЮГА инервируется симпатическими волокнами) усиливается выделение ренина, что обусловлено возбуждением бета-адренорецепторов (чувствителеных к адреналину). Иннервация почки осуществляется адренергическими и холинергическими нервами. Импульсы поступающие по адренергическим волокнам, стимулируют транспорт натрия, а по холинергическим - активируют реабсорбцию глюкозы и секрецию органических кислот. Механизм изменения мочеобразования при участии адренергических нервов обусловлен активацией аденилатциклазы и образования цАМФ в клетках канальцев. Катехоламинчувствительная аденилатциклаза имеется в базолатеральных мембранах клеток дистального извитого канальца и начальных отделов собирательных трубок.

Работа почки, как и других органов, подчинена не только безусловнорефлекторному контролю, но и регулируется корой большого мозга, т. е. мочеобразование может меняться условнорефлекторным путем. В эксперименте, обнаружено, что при болевом раздражении наблюдалось прекращение диуреза. Механизм болевой анурии основан на раздражении гипоталамических центров, стимулирующих секрецию АДГ нерогипофизом. Наряду с этим усиливается активность симпатической нервной системы и секреция катехоламинов надпочечниками, что и вызывает резкое уменьшение мочеотделения вследствие, как снижения клубочковой фильтрации, так и увеличения канальцевой реабсорбции воды.

Не только уменьшение, но и увеличение диуреза может быть вызвано условнорефлекторным путем. Многократное введение воды в желудок собаки в сочетании с действием условного раздражителя приводит к образованию условного рефлекса, который сопровождается увеличением мочеоотделения. Механизм условнорефлекторной полиурии основан на том, что от коры больших полушарий поступают импульсы в гипоталамус и уменьшается секреция АДГ. Гипнотическое внушение может также приводить к полиурии.

Доказательство участия коры:

Возможность выработки условных мочеотделительных рефлексов:

1) увеличивающих диурез – путем многократного сочетания введения воды в желудок собакам с фистулой мочеточников и условного сигнала – звука трубы (опыты К.М. Быкова)

2) уменьшающих диурез - путем многократного сочетания болевого раздражения задней конечности собаки электрическим током и условного сигнала (опыты Л.А. Орбели).

Механизм болевой анурии -боль: 1) стимулирует супраоптическое ядро гипоталамуса, что увеличивает секрецию АДГ;

Повышает активность симпатической нервной системы и секрецию катехоламинов надпочечниками, что уменьшает фильтрацию.

Нервная регуляция имеет меньшее значение – если почку пересадить на шею животному, соединив почечную артерию с сонной, а почечную вену с яремной, она будет функционировать в течение нескольких месяцев. Кроме того, при нагрузке организма водой или солью пересаженная почка увеличивает их выделение.

Норадреналин через бета-адренорецепторы юкстамедуллярных клеток стимулирует секрецию ренина, оказывающего вазоконстрикторное действие:

1) если уменьшается просвет vas afferens, ЭФД падает и фильтрация снижается;

2) если уменьшается просвет vas efferens, ЭФД повышается и фильтрация увеличивается.

Гормоны, регулирующие реабсорбцию ионов:

Атриальный натрийуретический пептид(АНП) Вырабатывается миоцитами предсердий (в основном, правого). Оказывает эффекты - сосудистые (вазодилатация, снижение артериального давления) и почечные:

1) уменьшает реабсорбцию натрия (в 90 раз) и хлора (в 50 раз), что повышает их экскрецию;

2) 2) стимулирует клубочковую фильтрацию и снижает реабсорбцию воды, что увеличивает диурез;

3) подавляет секрецию ренина, ингибирует эффекты ангиотензина II и альдостерона, т.е. является антагонистом ренин-ангиотензин-альдостероновой системы.

Реабсорбцию калия регулируют:-альдостерон: уменьшает; -инсулин:увеличивает Реабсорбцию кальция регулируют: -кальцитриол,паратгормон:-увеличивают- тиреокальцитонин: уменьшает

IV. Невыделительные функции почек

ИНКРЕТОРНАЯ ФУНКЦИЯ ПОЧЕК

Помимо экскреторной, почки обладают инкреторной функцией, благодаря которой в них вырабатываются биологически активные вещества, оказывающие влияние на деятельность некоторых органов и систем.

При уменьшении АД в почке, эпителиальные клетки секретируют ренин. Ренин, компонент ренин-ангиотензиновой системы, представляет собой фермент, секретирующийся в почках гранулярными клетками юкстагломерулярного аппарата. Находясь в кровотоке, ренин катализирует отщепление декапептида, ангиотензина I, образующегося из белка плазмы, известного под названием ангиотензиноген, который синтезируется в основном в печени и всегда присутствует в плазме в высокой концентрации. Под влиянием другого ангиотензинпревращающего фермента, две терминально расположенные аминокислоты отщепляются от относительно неактивного ангиотензина I с освобождением в плазме высокоактивного октапептида ангиотензина II. Некоторое количество ангиотензинпревращающего фермента присутствует в плазме, но основная его масса содержится в эндотелии кровеносных сосудов во всем организме, включая почки. Капилляры легких особенно богаты данным ферментом, и поэтому значительная часть ангиотензина I плазмы превращается в ангиотензин II по мере протекания крови через легкие. Ангиотензиноген и ангиотензинпревращающий фермент в норме присутствуют в высокой и относительно постоянной концентрации в плазме и главным фактором, определяющим скорость продукции ангиотензина II в ренин-анигиотензиновой системе, является концентрация ренина в плазме крови. Следует отметить, что определенные ткани и органы, а не только почки (например, мозг, сердце, матка) также могут продуцировать ренин (или его изформы) и ангиотензиноген. Поскольку, как указывалось ранее, ангиотензинпревращающий фермент широко представлен в эндотелии капилляров, то все компоненты, необходимые для образования ангиотензина II, содержаться локально в этих тканях и органах. Т.е. существуют полностью изолированные внепочечные ренин-ангиотензиновые системы; ангиотензин II , продуцируемый такими системами, действует локально, как паракринный фактор. Физиологический эффект ангиотензина II состоит в том, что он повышает артериальное давление благодаря сужению артериальных сосудов, усиливает секрецию альдостерона, увеличивает чувство жажды, регулирует реабсорбцию натрия в дистальных отделах канальцев и собирательных трубках. Все эти эффекты способствуют нормализации объема крови и артериального давления.

В почках вырабатываются кинины (например, брадикинин), которые являются сильными вазодилятаторами, участвующими в регуляции почечного кровотока и выделения натрия.

В мозговом веществе почки образуются простагландины (в том числе простагландин А или медуллин), которые участвуют в регуляции общего и почечного кровотока, вызывают натрийурез, уменьшают чувствительность клеток к АДГ. Есть основания считать, что простагландиновая система,нахаходится в тесной функциональной связи с ренин-ангиотензин-альдостероновой и является ее антагонистом. Активация простагландиновой системы приводит к уменьшению почечной гемодинамики. Вместе с тем простагландиновая система является как бы связующим звеном между ренин-ангиотензин-альдостероновой и калликреин-кининовой системами.

Основные эффекты, связанные с взаимодействием калликреин-кининовой и простагландиновой систем почки, сводятся к следующему:

1) под влиянием кининов усиливается синтез простагландинов;

Простагландины, образованные под влиянием кининов, выполняют функции медиаторов, опосредуя действие кининов, свзанное с увеличением выделения натрия с мочой, а также со снижением чувствительности сосудов почки к прессорным воздействиям ангиотензина II и адренергических стимулов.

Таким образом, все три основные эндокринные системы почки - ренин - ангиотензиновая, простогландиновая и калликреин - кининовая, - обеспечивающие ауторегуляцию почечного кровотока и поддержание водно-солевого равновесия, тесно связаны между собой.

В последние годы были получены доказательства новой гормонообразующей функции почки, связанной с регуляцией обмена кальция. Клетки почки извлекают из плазмы крови, образующийся в печени прогормон - ОН- витамин Д3, - превращают его в физиологически активный гормон - активные формы витамина D3. Этот стероидный гормон стимулирует образование кальцийсвязывающего белка в кишечнике, способствует освобождению кальция из костей и регулирует реабсорбцию Са + в почечных канальцах.

Клиренс

Почечный клиренс какого-либо вещества В равен отношению скорости выделения этого вещества с мочой к его концентрации в плазме крови:

где Св - клиренс , Мв и Пв - содержание в моче (М) и плазме (П) крови соответственно, V - объем мочи, образующейся за 1 мин.

Путем простого преобразования уравнения (1) получаем Св х Пв = Мв х V (количество вещества/время) (2)

Отсюда видно, что формула для расчета клиренса выведена на основании уравнивания количества вещества, удаляемого из плазмы крови за единицу времени (Св . Пв) , и количества вещества, выделяемого за это же время мочой (Мв . V). Иными словами, почечный клиренс отражает скорость очищения плазмы от того или иного вещества. Этот показатель измеряется в мл/мин, и поэтому его можно рассматривать как "объемную скорость очищения" плазмы от определенного вещества.

Таким образом, клиренс какого-либо вещества количественно равен объему плазмы, полностью очищающему от этого вещества почками за 1 мин.

Такое определение довольно удобно для описания уравнения (1), однако оно точно отражает фактическое положение вещей лишь в двух случаях. Дело в том, что обычно не происходит полного очищения какой-либо части почечного кровотока; напротив, происходит частичное очищение всей проходящей через почки крови. В то же время существуют два вещества, от которых определенный объем плазмы действительно полностью очищается. Эти два исключения имеют особое значение для гипотезы мочеобразования и служат основой для общей оценки функции почек.

1. Клиренс инулина соответствует скорости клубочковой фильтрации, т.е. части общего почечного плазмотока, фильтруемой в мочевыводящие канальцы.

2. Клиренс парааминогиппуровой кислоты (ПАГ) почти достигает максимально возможного значения, т.е. практически равен величине общего почечного плазмотока.

Гомеостатические функции почек

Почки участвуют в регуляции:

1.Объема крови и других жидкостей внутренней среды.

2.Постоянства осмотического давления крови, плазмы, лимфы и других жидкостей тела.

3. Ионного состава жидкостей внутренней среды и ионного баланса организма (Na + , К + , Cl _ , Р _ , Ca + ).

4. В поддержании кислотно-щелочного равновесия.

5. Экскреции избытка органических веществ, поступающих с пищей, или образовавшихся в ходе метаболизма (глюкоза, аминокислоты).

6. Экскрекции конечных продуктов азотистого обмена и чужеродных веществ.

7. В поддержании артериального давления (ренин-ангиотензин-альдостероновая система).

8. Секреции ферментов и физиологически активных веществ (ренин, брадикинин простагландины, урокиназа, витамин Д3).

9. Участвуют в регуляции эритропоэза (эритропоэтин).

10 В почках синтезируется - урокиназа, которая участвует в фибринолизе.

Таким образом - почки являются органом участвующими в обеспечении постоянства основных физико-химических констант крови и других жидкостей внутренней среды организма, циркуляторного гомеостаза, регуляции обмена различных органических веществ.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Читайте также: