Статолитовый аппарат. Роль киноцилий вестибулярного анализатора.
Добавил пользователь Дмитрий К. Обновлено: 21.12.2024
Понятие и функциональные особенности вестибулярного аппарата, оценка его роли и значения в жизнедеятельности человеческого организма. Основные факторы, оказывающие влияние на данную систему. Ее отделения: периферическое, промежуточное и центральное.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 14.11.2013 |
Размер файла | 16,1 K |
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Вестибулярный аппарат человека - одна из сложнейших сенсорных систем, которая позволяет чувствовать движение, его ускорение или замедление; мгновенно реагировать на изменение положения тела и удерживать его в состоянии равновесия; контролировать перемещение поворотом головы, отведением глаз, движением рук. что в целом и придает походке уверенность и легкость, осанке - аристократизм, позе - артистичность. а жесту - грациозность. Иными словами, природа подарила нам возможность комфортно себя ощущать в трехмерном пространстве.
Вестибулярный анализатор включает периферический, промежуточный и центральный отделы.
Обобщенно можно отметить, что периферический отдел вестибулярного анализатора располагается в лабиринте, промежуточный - во внутреннем слуховом проходе (на отрезке от лабиринта до ствола мозга), центральный отдел - занимает участок от ствола до коры головного мозга.
Периферический вестибулярный анализатор. Клетки вестибулярного анализатора
Периферический вестибулярный рецептор образован гребешками ампулярных концов полукружных протоков и статокинетическими пятнами мешочков.
Функция аппарата равновесия зависит от состояния периферического рецептора и его вспомогательных элементов, от целостности костного каркаса лабиринта и податливости его перепончатого отдела, от вязкости, биохимического состава жидкостей лабиринта и от направления их движения, и наконец, от активности самой вестибулярной клетки.
Гребешок обрамлен сверху купулой, содержащей желатинозную субстанцию, в которую проникают волосковые окончания чувствительных клеток. Тела чувствительных клеток соприкасаются с опорными клетками. Статокинетическое пятно мешочков устроено по тому же принципу, но оканчивается не купулой. а мембраной из отолитов. В пятнах волоски клеток проникают в статолитовую мембрану.
Тела чувствительных клеток гребешков содержат окончания ампулярных нервов, а чувствительные клетки пятен - окончания саккулярного (мешотчатого) или утрикулярного (эллиптического) нервов.
Как же устроена чувствительная волосковая клетка? Путем электронной микроскопии установили, что волосковые клетки вестибулярного и слухового анализаторов имеют большое сходство. Вестибулярный эпителий представлен колбообразными (клетки I типа) и цилиндригескими (клетки П типа) клетками.
В гребешке колбообразные клетки сосредоточены у его вершины, а цилиндрические - по склонам гребешка, аналогично расположены чувствительные клетки и в статокинетических пятнах. Полагают, что цилиндрических клеток гораздо больше в статолитовом аппарате, чем в ампулярном.
Цилиндрические клетки II типа служат своеобразным резервом. В случае поражения вестибулярного анализатора они берут на себя функцию колбообразных клеток I типа. Это находит отражение в феномене вестибулярного рекрунтирования (выравнивание вестибулярных асимметрий).
Волоски чувствительных клеток делятся на два типа. Каждая клетка имеет длинный и толстый волосок киноцилий и примерно до 50 (110) тонких стереоцилий. Высота стереоци-лий возрастает по мере приближения к киноцилию. Киноцилий укреплен в клеточной цитоплазме с помощью базального тела. В пятнах стереоцилий намного короче, чем в гребешках.
У основания колбообразных клеток I типа образуются мощные единичные чашеобразные волокна преддверного нерва. В основании цилиндрических клеток II типа залегает множество тонких гранулярных окончаний. Один тип окончаний имеет постсинаптигеское, другой - пресинаптигеское строение. В эфферентных окончаниях вестибулярного аппарата обнаружена холинэстераза. Сенсорный эпителий состоит из сплетения немиелинизированных волокон, от которых идут миелинизированные волокна. Последние направляются в вестибулярный ганглий, к большим биполярным клеткам.
Конечная роль вестибулярного анализатора - трансформация ускорений в электрическую активность, потенциал действия вестибулярного нерва. Сгибание волосков вестибулярных клеток вызывает изменение электрической проводимости клетки. Наклон волосков в сторону киноцилий ведет к деполяризации и стимуляции клетки, а наклон волосков в сторону стереоцилий сопровождается гиперполяризацией и торможением клетки.
Генераторный потенциал раздражает окончание волосковой клетки. преобразуясь в потенциал действия афферентных нейронов. Поток информации (в виде потенциала действия) поступает к протонейрону (I нейрон) вестибулярного ганглия Скарпа, расположенного на дне внутреннего слухового прохода.
Сторонники цитохимической теории считают, что механическая энергия преобразуется в электрический потенциал благодаря мукополисахаридам волосковой клетки.
В ранних работах по лабиринтологии показано, что и ампулярный, и статолитовый аппараты активизируются под влиянием любых видов ускорений. Но в силу своего строения гребешок полукружного протока больше приспособлен отвечать на угловые ускорения, а статолитовая мембрана - на действие гравитационных сил и линейных ускорений.
Гребешок реагирует на угловое ускорение, т.е. вращение в тех трех плоскостях, в которых расположены полукружные каналы. Угловое ускорение вызывает ток эндолимфы, смещение купулы и сдавливание волосков клетки, что активизирует ампулярный нерв.
Промежуточный вестибулярный анализатор. Центральный вестибулярный анализатор. Вестибулярный ганглий представлен верхней и нижней группой клеток. Верхняя группа клеток иннервирует гребешки переднего и наружного полукружных протоков, пятно эллиптического мешочка и передний верхний участок пятна сферического мешочка. Нижняя группа клеток иннервирует большую часть пятна сферического мешочка и заднего полукружного протока. Из верхней части вестибулярного ганглия начинаются крупные волокна, а из нижней части - мелкие. Верхняя группа клеток формирует верхний преддверный нерв, нижняя группа - нижнюю порцию преддверного нерва.
Вестибулярный ганглий залегает на дне внутреннего слухового прохода. Центральные отростки его клеток образуют преддверный корешок VIII нерва, который во внутреннем слуховом проходе образует анастомоз с улитковым корешком VIII нерва. В области мостомозжечкового угла преддверно-улитковый нерв внедряется в вещество мозга (мост).
Центральный вестибулярный анализатор.
В области моста волокна вестибулярного нерва делятся на восходящие, которые оканчиваются на нейронах верхних вестибулярных ядер или в мозжечке, а также нисходящие волокна, завершающие свой путь в нижней группе вестибулярных ядер.
Все ядра расположены в вестибулярном поле на дне IV желудочка на границе между мостом и продолговатым мозгом. Выделяют четыре вестибулярных ядра: верхнее (ядро Бехтерева), медиальное (ядро Швальбе), латеральное (ядро Дейтерса) и нижнее (ядро Роллера). Ядра формируют регион расположения II нейрона.
В вестибулярных ядрах «собирается» информация от лабиринтов и других соматосенсорных систем. Верхнее вестибулярное ядро принимает афферентные волокна от гребешков полукружных протоков и от мозжечка. Латеральное ядро получает спинальные соединительные волокна и афференты от мозжечка, верхней порции вестибулярного нерва, от сферического и эллиптического мешочков.
В медиальном ядре заканчиваются афферентные волокна гребешков полукружных протоков и мозжечка. В наружную часть ядра поступают волокна от пятна эллиптического мешочка и от ретикулярной формации. К нижнему ядру подходят афферентные волокна от мозжечка, пятен обоих мешочков и волокна от гребешков.
Клетки, окружающие вестибулярные ядра, формируют несколько трактов. Эти пути направляются в спинной мозг, кору головного мозга, мозжечок в составе медиального и заднего продольного пучков. Путь от лабиринта к коре головного мозга переключается в ядрах таламуса (область Ш нейрона) и оканчивается в височно-теменной области в зонах Пен-филда и Форстера (регион IV нейрона).
Вестибулярные ядра связаны с ретикулярной формацией, глазодвигательными ядрами, с моторной частью спинного мозга, а также с мозжечком, вегетативной нервной системой и височными долями больших полушарий мозга.
Благодаря обширным связям вестибулярных ядер осуществляются различные рефлексы. Выделяют кинетические рефлексы, которые контролируют координированное сокращение мышц и движение глаз при перемещении. Эта группа рефлексов инициируются активностью пятен и гребешков на линейные и угловые ускорения. А также рефлексы, направленные на поддержание позы и мышечного тонуса, они возникают при активности статокинетических пятен и служат компенсаторным ответом на действие гравитационных сил. Рефлекторная дуга включает: рецептор, первичный нейрон, нейрон II порядка (ядра), нейрон Ш порядка (мотонейроны) и эффектор (отвечающий орган).
Физиология вестибулярного анализатора. Рецепторы тела.
Из рецепторов вестибулярного анализатора постоянно исходят импульсы, регулирующие тонус мышц как во время покоя (статика), так и во время движения (кинетика). В последнем случае благодаря раздражению этих рецепторов, вызванному ускорением, возникают двигательные реакции, способствующие сохранению равновесия тела.
Поэтому вестибулярный анализатор по праву занимает заметное место среди анализаторов (органы мышечно-суставной чувствительности, кожа, глаза), обеспечивающих равновесие тела и ориентацию в пространстве. Уже в 1870 г. Гольц (Goltz) высказал мысль, что вестибулярный аппарат является «органом чувств для равновесия головы, а значит и тела».
Значение вестибулярного анализатора в жизни животного организма весьма велико. Любое движение животного или человека сопряжено с изменением положения либо тела, либо отдельных его частей в пространстве. Кинестетический анализатор постоянно получает сигналы от всех многочисленных рецепторов, заложенных в мышцах, связках, сухожилиях, суставных поверхностях и коже, и этим обеспечивает точную координацию движений. При локомоции животного раздражению подвергаются рецепторные аппараты, заложенные в полукружных каналах и мешочках преддверия лабиринта.
Этим обеспечивается сигнализация о направлении и скорости движения даже при пассивном перемещении тела, т.е. тогда, когда другие рецепторные аппараты двигательного анализатора раздражаются слабо или совсем не раздражаются. Это наблюдается при определенных условиях передвижения на транспорте, в токах воды или воздуха у рыб и птиц. Значение функции вестибулярного анализатора особенно отчетливо выступает в темноте, при выключенной зрительной ориентации.
Рефлексы положения исходят из отолитового рецептора, который даже при нормальном положении головы постоянно раздражается силой тяжести, благодаря чему поддерживается правильное распределение тонуса мышц шеи, туловища и конечностей.
Любое же изменение положения головы в поле силы тяжести (например, наклон, подъем, поворот) сразу же сказывается на тонусе мышц глаз, шеи, туловища и конечностей, причем создается наиболее выгодное соотношение этого тонуса. Кроме того, возникает ряд двигательных рефлексов, направленных к возврату головы в нормальное симметричное положение.
Благодаря вестибулярному анализатору мы ощущаем и можем подвергнуть анализу движения нашего тела (головы) в пространстве, например, определяем направление и скорость движения как прямолинейного, так и кругового. Наконец, всякое изменение направления земного ускорения по отношению отолитового рецептора ощущается нами как изменение угла наклона тела (головы). Поэтому вестибулярный анализатор по праву можно причислить к органам чувств.
Тонкий анализ и точную координацию движения вестибулярный анализатор выполняет совместно с мышечно-суставным, кожным и зрительным анализаторами, являясь вместе с ними одним из важных анализаторов пространства.
вестибулярный периферический аппарат организм
Подобные документы
Причины нарушения функций вестибулярного аппарата. Роль анамнеза в постановке диагноза. Исследование спонтанного, позиционного и позиционного нистагма, координации движений. Непрямая статолитометрия, видеонистагмография. Битермальный калорический тест.
презентация [891,7 K], добавлен 11.03.2014
Структура организации вестибулярного анализатора, его роль в жизни человека. Изучение распределения возбудительного процесса в центральных отделах вестибулярной системы. Исследование вестибулярного анализатора у детей, занимающихся фигурным катанием.
курсовая работа [37,6 K], добавлен 23.02.2011
Общие сведения об электрокардиодиаграмме. Факторы, оказывающие влияние на формирование показателей ЭКГ. Функциональные значения показателей ЭКГ при норме и отклонениях; интерпретация результатов. Особенности ЭКГ-диагностики у лиц старших возрастных групп.
курсовая работа [451,0 K], добавлен 04.01.2015
Внутренняя структура и элементы сердца, особенности и закономерности его работы. Оценка значения и функциональности сердечной мышцы в жизнедеятельности человеческого организма. Понятие и этапы сердечного цикла. Сущность и принципы процесса автоматики.
презентация [708,0 K], добавлен 06.10.2013
Головной мозг как главный регулятор всех жизненных функций организма. Строение сердца человека. Роль и значение печени и почек в жизнедеятельности организма человека. Влияние табачного дыма на легкие. Воздействие наркотиков на центральную нервную систему.
ВЕСТИБУЛЯРНЫЙ АНАЛИЗАТОР
Вестибулярная система играет наряду со зрительной и соматосенсорной системами ведущую роль в пространственной ориентации человека. Она получает, передает и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает сохранение равновесия тела. Эти влияния осуществляются рефлекторным путем через ряд отделов ЦНС.
Структурно-функциональная организация.
Периферический (рецепторный) отдел вестибулярного анализатора представлен волосковыми клетками вестибулярного органа,расположенного, как и улитка, в лабиринте пирамиды височной кости.
Вестибулярный орган (орган равновесия, орган гравитации) состоит из трех полукружных каналов и преддверия.
Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях: верхний — во фронтальной, задний — в сагиттальнойи наружный — в горизонтальной. Преддверие состоит из двух мешочков — круглого (саккулюс), расположенного ближе к улитке, и овального (утрикулюс) расположенного ближе к полукружным каналам.
Полукружные каналы своими устьями открываются в преддверие и сообщаются с ним пятью отверстиями (колена двух каналов: верхнего и заднего — соединены вместе). Один конец каждого канала имеет расширение, которое называется ампулой. Все эти структуры состоят из тонких перепонок и образуют перепончатый лабиринт, внутри которого находится эндолимфа. Вокруг перепончатого лабиринта и между ним и костным его футляром имеется перилимфа, которая переходит в перилимфу органа слуха. В каждом мешочке преддверия имеются небольшие возвышения, называемые пятнами, а в ампулах полукружных каналов — гребешками. Они состоят из нейроэпителиальных клеток, имеющих на свободной поверхности волоски (реснички), которые разделяются на две группы: тонкие (их много) — стереоцилии и один более толстый и длинный на периферии пучка—киноцилия
Волосковые клетки представляют собой рецепторы вестибулярного анализатора и являются вторичными. Рецепторные клетки преддверия покрыты желеобразной массой, состоящей в основном из мукополисахаридов; благодаря содержанию в ней значительного количества кристаллов карбоната кальция она получила название отолитовой мембраны.В ампулах полукружных каналов желеобразная масса не содержит солей кальция и называется листовидной мембраной(купула). Волоски рецепторных клеток пронизывают эти мембраны.
Возбуждение волосковых клеток происходит вследствие скольжения мембраны по волоскам, изгибания волосков (стереоцилии) в сторону киноцилий. Это связано с тем, что механическое управление ионными каналами мембраны волоска с помощью микрофиламентов, зависит от направления сгиба волоска: отклонение в одну сторону приводит к открыванию каналов и деполяризации волосковой клетки, а отклонение в противоположном направлении вызывает закрытие каналов и гиперполяризацию рецептора.
В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение ацетилхолина и через синапсы активирует окончания волокон вестибулярного нерва.
Этот эффект проявляется в усилении постоянной спонтанной активности вестибулярного нерва.
Для волосковых клеток преддверияадекватными раздражителями являются ускорение или замедление прямолинейного движения тела, а также наклоны головы. Под действием ускорения отолитовая мембрана скользит по волосковым клеткам, а при изменении положения головы меняет позицию по отношению к ним. Это вызывает отклонение ресничек и возникновение возбуждения в рецепторных волосковых клетках. Порог различения ускорения равен 2—20 см/с. Порог различения наклона головы в сторону составляет около 1°, а вперед и назад — около 2°. При сопутствующих раздражениях (вибрация, качка, тряска) происходит снижение чувствительности вестибулярного аппарата. Так, вибрации, имеющие место в самолетах, повышают порог различения наклона головы вперед и назад до 5°, при наклонах в стороны—до 10°.
Для волосковых клеток полукружных каналовадекватным раздражителем является ускорение или замедление вращательного движения в какой-либо плоскости. Поскольку полукружные каналы заполнены эндолимфой, имеющей такую же плотность, как купyлa ампул, линейные ускорения не оказывают влияния на соотношение ресничек и купулы. При поворотах головы или вращении тела, т.е. при появлении углового ускорения, эндолимфа в них в силу своей инерции в первый момент остается неподвижной или потом движется, но с иной скоростью, нежели полукружные каналы. Это вызывает сгибание ресничек рецепторов в купуле и возбуждение их. В зависимости от характера вращательного ускорения или замедления происходит неодинаковое раздражение рецепторов различных полукружных каналов. По картине импульсов, приходящих в центральные структуры вестибулярного анализатора из полукружных каналов с каждой стороны, мозг получает информацию о характере вращательного движения. Рецепторы полукружных каналов дают возможность различать угловое ускорение, равное в среднем , 2—3 ° в 1 секунду (порог различения вращения).
Проводниковый отдел.К рецепторам подходят периферические волокна биполярных нейронов вестибулярного ганглия, расположенного во вутреннем слуховом проходе (первый нейрон). Аксоны этих нейронов в составе вестибулярного нерва направляются к вестибулярым ядрам продолговатого мозга (второй нейрон). Вестибулярные ядра продолговатого мозга (верхнее — ядро Бехтерева, медиальное — ядро Швальбе, латеральное — ядро Дейтерса и нижнее — ядро Роллера) получают дополнительную информацию по аф- ферентным нейронам от проприорецепторов; мышц или от суставных сочленений шейного отдела позвоночника. Эти ядра, где расположен второй нейрон вестибулярного анализатора, тесно связаны с различными отделами центральной нервной системы. Благодаря этому обеспечиваются контроль и управление эффекторными реакциями соматического, вегетативного и сенсорного характера.
Третий нейрон расположен в ядрах зрительного бугра, откуда возбуждение направляется в кору большого полушария.
Центральный отдел вестибулярного анализатора локализуется в височной области коры большого мозга, несколько кпереди от слуховой проекционной зоны (21—22-е поля по Бродману, четвертый нейрон).
Нервные волокна, выходящие из вестибулярных ядер, образуют связи с другими отделами центральной нервной важнейшими из них являются следующие: вестибулоспинальные, вестибуловегетативные и вестибулоглазодвигательные.Эти связи обеспечивают контроль и управление различными двигательными реакциями, а также являются основой для рефлексов обеспечивающих равновесие.
а. Вестибулоспинальный тракт,волокна которого в конечном итоге оказывают влияние в основном на γ-мотонейроны мышц-разгибателей, хотя часть волокон оканчивается и на α-мотонейронах.
б.Связи с мотонейронами шейного отдела спинного мозга,входящие главным образом в вестибулоспинальный тракт.
в. Связи с ядрами глазодвигательного нерва, которые опосредуют движения глаз, вызываемые вестибулярной активностью; эти волокна проходят в составе медиального продольного пучка. Функцию статолитового аппарата можно тестировать, наблюдая глазодвигательные реакции при наклонах головы.
г. Тракты, направляющиеся в вестибулярные ядра противоположной стороны мозга,благодаря которым афферентация с обеих сторон тела может обрабатываться совместно.
д. Связи с ретикулярной формацией,посредством которых обеспечивается воздействие на ретикулоспинальный тракт, являющийся еще одним (полисинаптическим) путем к α - и β -мотонейронам.
е. Тракты, проходящие через таламусв постцентральную извилинукоры головного мозга, обеспечивающие сознательную обработку вестибулярной информации и таким образом сознательную ориентацию в пространстве.
ж. Волокна, направляющиеся в гипоталамус,которые в основном участвуют в возникновении кинетозов (укачивания).
з. Связи с мозжечком,в особенности с archicerebellum( вторичные вестибулярные афференты). мозжечок, может получать некоторые первичные вестибулярные афференты (так называемый прямой сенсорный мозжечковый путь). И первичные, и вторичные вестибулярные афференты у млекопитающих оканчиваются в мозжечке мшистыми волокнами на клетках-зернах флокку-лонодулярной доли (относящейся к archicerebellum) и частично клетках uvula и paraflocculus (paleocerebellum). Клетки-зерна оказывают возбуждающее действие на клетки Пуркине в этих областях, а аксоны последних проецируются опять-таки в вестибулярные ядра. Такая цепь осуществляет тонкую регулировку вестибулярных рефлексов. При нарушениях функции мозжечка вследствие различных заболеваний эти рефлексы утрачивают тормозной компонент, что проявляется в возникновении таких симптомов, как усиленный или спонтанно возникающий нистагм, утрата равновесия, проявляющаяся в неустойчивой походке, избыточной амплитуде движений, особенно при ходьбе («петушиный шаг»). Эти симптомы являются частью синдрома мозжечковой атаксии.
Это множество связей, лишь основные из которых перечислены выше, дают возможность вестибулярной системе играть центральную роль в формировании моторных эфферентов, обеспечивающих поддержание позы и соответствующие глазодвигательные реакции.
Влияние на соматические функции.При возбуждении вестибулярного анализатора возникают соматические реакции, которые осуществляются благодаря вестибулоспинальным связям при участии вестибулоретикулярных и вестибулоруброспинальных трактов. При этом происходят перераспределение тонуса скелетной мускулатуры и рефлекторные реакции, необходимые для сохранения равновесия тела в пространстве. Рефлексы, обеспечивающие данную функцию, подразделяют на две группы — статические и статокинетические.
Равновесие поддерживается рефлекторно, в том числе и без участия сознания. Вестибулярные рецепторы и соматосенсорные афференты, особенно приходящие от проприоцепторов области шеи, связаны с теми и другими. Статические рефлексыобеспечивают взаиморасположение конечностей по отношению друг к другу, а также положение тела в пространстве - позные и позиционные рефлексы соответственно. Афферентным звеном вестибулярного аппарата для статических рефлексов являются макулярные органы. Статическим рефлексом, легко наблюдаемым у кошки благодаря вертикальной форме ее зрачка, является компенсаторное вращение глазного яблока,которое возникает при повороте головы вокруг длинной оси тела (например, левым ухом вниз). Глазные яблоки вращаются в направлении, противоположном вращению головы, так что зрачки сохраняют положение, очень близкое к вертикальному. Этот рефлекс имеется и у человека. Статокинетические рефлексыпредставляют собой реакции на двигательные стимулы и сами выражаются в движениях. Они могут быть вызваны возбуждением рецепторов полукружных каналов и макулярных органов.Одним из примеров таких рефлексов является известное всем падение кошек обязательно на все четыре лапы.
Один из статокинетических рефлексов — вестибулярный нистагм (головы или глаз) имеет большое клиническое значение. Нистагм возникает в условиях быстрого перемещения тела или его вращения. Так, глазной нистагм проявляется сначала в ритмическом медленном движении глаз в сторону, противоположную вращению, а затем — быстром движении глаз (скачком) в обратном направлении. Следует напомнить, что медленная фаза нистагма вызывается вестибулярной системой, а быстрое возвратное движение создает ретикулярная формация моста.Реакции такого типа обеспечивают возможность обзора пространства в условиях перемещения тела. Важным моментом является связь вестибулярного аппарата с мозжечком, благодаря чему осуществляется тонкая регуляция моторных вестибулярных рефлексов. При нарушениях функции мозжечка эти рефлексы утрачивают тормозой компонент, что проявляется в возникновении таких симптомов, как усиленный или спонтанно возникающий нистагм, утрата равновесия, избыточная амплитуда движений. Эти симптомы являются частью синдрома мозжечковой атаксии. Благодаря связям вестибулярных ядер с вегетативной нервной системой проявляются вестибуловегетативные реакции сердечно-сосудистой системы, желудочно-кишечного тракта и других органов. Они могут проявляться в изменениях сердечного ритма, тонуса сосудов, артериального давления, усилении моторики желудка и кишечника, саливации, тошноте, рвоте и др. В условиях невесомости (в космосе) возникает такой тип афферентной импульсации с вестибулярного аппарата, который никогда не встречается на Земле. Однако привыкание к условиям невесомости во время космических полетов происходит быстро. При этом следует учитывать, что космонавты проходят напряженный курс тренировки, чем и объясняется их малая подверженность влиянию условий невесомости.
Физиология равновесия.1.1.Функции вестибулярного анализатора .Организация вестибулярного аппарата.
Вестибулярная сенсорная система состоит из следующих отделов:
периферический отдел включает два образования, содержащие механорецепторы вестибулярной системы — преддверие (мешочек и маточка) и полукружные каналы;
корковый отдел представляют четвертые нейроны, часть которых представлена в проекционном (первичном) поле вестибулярной системы в височной области коры, а другая часть — находится в непосредственной близости к пирамидным нейронам моторной области коры и в постцентральной извилине. Точная локализация коркового отдела вестибулярной сенсорной системы у человека в настоящее время не установлена.
Строение и функции вестибулярного анализатора
Вестибулярный анализатор имеет важное значение в регуляции положения тела в пространстве и его движений. Периферический отдел вестибулярного анализатора является частью внутреннего уха и состоит из полукружных каналов, размещенных в трех взаимно перпендикулярных плоскостях, и из статоцистных органов – двух мешочков – овального (маточки) и круглого, который расположен ближе к улитке.
Вестибулярный орган (орган равновесия, орган гравитации) состоит из трех полукружных каналов и преддверия.Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях: верхний—во фронтальной,задний—в сагиттальной инаружный—в горизонтальной. Преддверие состоит из двух мешочков—круглого (саккулюс), расположенного ближе к улитке, иовального (утрикулюс)расположенного ближе к полукружным каналам.
Полукружные каналы своими устьями открываются в преддверие и сообщаются с ним пятью отверстиями (колена двух каналов: верхнего и заднего — соединены вместе). Один конец каждого канала имеет расширение, которое называется ампулой. Все эти структуры состоят из тонких перепонок и образуют перепончатый лабиринт, внутри которого находится эндолимфа.Вокруг перепончатого лабиринта и между ним и костным его футляром имеетсяперилимфа,которая переходит в перилимфу органа слуха. В каждом мешочке преддверия имеются небольшие возвышения, называемые пятнами, а в ампулах полукружных каналов — гребешками. Они состоят из нейроэпителиальных клеток, имеющих на свободной поверхности волоски (реснички), которые разделяются на две группы: тонкие (их много) — стереоцилии и один более толстый и длинный на периферии пучка—киноцилия
Волосковые клеткипредставляют собой рецепторы вестибулярного анализатора иявляются вторичными. Рецепторные клетки преддверия покрыты желеобразной массой, состоящей в основном из мукополисахаридов; благодаря содержанию в ней значительного количества кристаллов карбоната кальция она получила названиеотолитовой мембраны. В ампулах полукружных каналов желеобразная масса не содержит солей кальция и называетсялистовидной мембраной (купула). Волоски рецепторных клеток пронизывают эти мембраны.
Возбуждение волосковых клеток происходит вследствие скольжения мембраны по волоскам, изгибания волосков (стереоцилии) в сторону киноцилий. Это связано с тем, что механическое управление ионными каналами мембраны волоска с помощью микрофиламентов, зависит от направления сгиба волоска:отклонение в одну сторону приводит к открыванию каналов и деполяризации волосковой клетки, а отклонение в противоположном направлении вызывает закрытие каналов и гиперполяризацию рецептора.
В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение ацетилхолина и через синапсы активирует окончания волокон вестибулярного нерва.
проводниковый отдел. К рецепторам подходят периферическиеволокна биполярных нейронов вестибулярного ганглия, расположенного во вутреннем слуховом проходе (первый нейрон). Аксоны этих нейронов в составе вестибулярного нерва направляются квестибулярым ядрам продолговатогомозга (второй нейрон). Вестибулярные ядра продолговатого мозга (верхнее—ядро Бехтерева,медиальное—ядро Швальбе,латеральное—ядро Дейтерсаинижнее—ядро Роллера) получают дополнительную информацию по аф- ферентным нейронам от проприорецепторов; мышц или от суставных сочленений шейного отдела позвоночника. Эти ядра, где расположен второй нейрон вестибулярного анализатора, тесносвязаны с различными отделами центральной нервной системы.Благодаря этому обеспечиваются контроль и управление эффекторными реакциями соматического, вегетативного и сенсорного характера.
третий нейронрасположен вядрах зрительного бугра, откуда возбуждение направляется в кору большого полушария.
Центральный отделвестибулярного анализатора локализуется ввисочной области коры большого мозга, несколько кпереди от слуховой проекционной зоны (21—22-е поля по Бродману, четвертый нейрон).
Нервные волокна, выходящие из вестибулярных ядер, образуют связи с другими отделами центральной нервной важнейшими из них являются следующие: вестибулоспинальные, вестибуловегетативныеивестибулоглазодвигательные. Эти связи обеспечивают контроль и управление различными двигательными реакциями, а также являются основой для рефлексов обеспечивающих равновесие.
а. Вестибулоспинальный тракт, волокна которого в конечном итоге оказывают влияние в основном наγ-мотонейроны мышц-разгибателей, хотя часть волокон оканчивается и наα-мотонейронах.
б. Связи с мотонейронамишейного отдела спинного мозга, входящие главным образом в вестибулоспинальный тракт.
в.Связи с ядрамиглазодвигательного нерва, которые опосредуют движения глаз, вызываемые вестибулярной активностью; эти волокна проходят в составе медиального продольного пучка. Функцию статолитового аппарата можно тестировать, наблюдая глазодвигательные реакции при наклонах головы.
г. Тракты, направляющиеся ввестибулярные ядра противоположной стороны мозга, благодаря которым афферентация с обеих сторон тела может обрабатываться совместно.
д. Связи сретикулярной формацией, посредством которых обеспечивается воздействие на ретикулоспинальный тракт, являющийся еще одним (полисинаптическим) путем кα- иβ-мотонейронам.
е. Тракты, проходящие через таламус впостцентральную извилину коры головного мозга, обеспечивающие сознательную обработку вестибулярной информации и таким образом сознательную ориентацию в пространстве.
ж.Волокна, направляющиеся вгипоталамус, которые в основном участвуют в возникновении кинетозов (укачивания).
з. Связи смозжечком, в особенности сarchicerebellum( вторичные вестибулярные афференты).мозжечок, может получать некоторые первичные вестибулярные афференты (так называемый прямой сенсорный мозжечковый путь). И первичные, и вторичные вестибулярные афференты у млекопитающих оканчиваются в мозжечке мшистыми волокнами на клетках-зернах флокку-лонодулярной доли (относящейся кarchicerebellum) и частично клеткахuvulaиparaflocculus(paleocerebellum). Клетки-зерна оказывают возбуждающее действие на клетки Пуркине в этих областях, а аксоны последних проецируются опять-таки в вестибулярные ядра. Такая цепь осуществляет тонкую регулировку вестибулярных рефлексов. При нарушениях функции мозжечка вследствие различных заболеваний эти рефлексы утрачивают тормозной компонент, что проявляется в возникновении таких симптомов, как усиленный или спонтанно возникающий нистагм, утрата равновесия, проявляющаяся в неустойчивой походке, избыточной амплитуде движений, особенно при ходьбе («петушиный шаг»). Эти симптомы являются частью синдромамозжечковой атаксии.
Строение вестибулярного анализатора.Периферический отдел вестибулярного анализатора человека является частью внутреннего уха. Он состоит из трех полукружных каналов, расположенных во взаимно перпендикулярных плоскостях, сферического и эллиптического мешочков преддверия (круглого и овального) (рис. 73). В полости их находится жидкость — эндолимфа. В мешочках преддверия расположены рецепторные волосковые клетки, образующие возвышения — пятна. Волосковые клетки могут быть шаровидной и цилиндрической формы, их поверхность снабжена волосками, а к основанию подходят безмиелиновые окончания чувствующих волокон вестибулярно-преддверного нерва (рис. 74, А). Волоски рецепторных клеток погружены в студенистую отолитовую мембрану, в которой находятся кристаллы кальцита — статоконии (отолиты) (рис. 74, Б). Каждая клетка имеет 40—ПО неподвижных волосков и один длинный — подвижный. Пространство между волосками пронизано нитеподобными структурами. Сенсорные клетки расположены группами. Каждая включает несколько сот клеток. Подвижные волоски внутри группы имеют одинаковую ориентацию, но сами группы ориентированы различно.
Рис. 73. Схема строения лабиринта уда:
1 — эллиптический и 2 — сферический мешочки преддверия; 3 — улитка; 4 — задний, 5 — наружный и 6 — верхний полукружные каналы; 7 — ампулы полукружных каналов.
В ампулах полукружных каналов расположены гребешки-кристы, образованные рецепторными клетками, которые снабжены пучком волосков. Число их в каждом пучке составляет 50—80. В разных каналах ориентация волосков различна. Волоски покрыты желеобразным колпачком — купулой.
Волокна, подходящие к волосковым клеткам, являются от-• ростками биполярных клеток узла преддверия, который расположен на дне внутреннего слухового прохода. Второй отросток этих клеток направляется в составе преддверно-улиткового нерва в продолговатый мозг, откуда возбуждение передается на мотонейроны спинного мозга, нейроны мозжечка и ядер глазодвигательных нервов. Корковый конец вестибулярного анализатора локализуется в височной области коры.
Функция вестибулярного анализатора. Рецепторные образования мешочков преддверия предназначены для восприятия изменений положения головы. Возбуждение волосковых клеток возникает в результате сгибания волосков под влиянием скольжения отолитовой мембраны, при натяжении их в результате ее отвисания, при давлении отолитовой мембраны.
Рецепторы полукружных каналов реагируют на изменения скорости движения организма в горизонтальной плоскости и угловые ускорения при его вращательных движениях. При этих ускорениях под влиянием движения эндолимфы происходит смещение купулы, что и является раздражителем. Движение эндолимфы в противоположных направлениях вызывает противоположно направленные изменения возбудимости, т. е. происходит сдвиг в сторону либо возбуждения, либо торможения.
В нерве, отходящем от узла преддверия, всегда регистрируется фоновая электрическая активность. При раздражении волосковых клеток частота импульсации меняется.
Рис. 74. Микроструктура периферического отдела вестибулярного анализатора:
А — структура и расположение волосковых клеток: 1 — волосковые клетки; 2 — опорная клетка; 3 — нервные окончания; 4 — нервное волокно; Б — схема строения отолитового аппарата: 1 — отолиты; 2,— отолитовая мембрана; 3 — волоски; 4 — опорные клетки; 5 — волосковые клетки; 6 — нервные волокна"
Ядро преддверно-улиткового нерва, расположенное в продолговатом мозге, имеет многочисленные связи со спинным мозгом, мозжечком, центрами, регулирующими работу внутренних органов, с ядрами глазодвигательных нервов. Поэтому раздражение вестибулярного аппарата сопровождается перераспределением тонуса мышц, направленным на установление исходного положения тела. Одновременно возникает ряд вегетативных рефлексов: изменения кровяного давления, кожной температуры, частоты сокращения сердца, частоты дыхания и т. д. При поражении вестибулярного аппарата исчезает способность со хранения вертикального положения тела и ряд вегетативных расстройств (головокружение, тошнота). Однако через несколько месяцев недостаточность функции вестибулярного аппарата компенсируется деятельностью других анализаторов, главным образом двигательного и зрительного. Интенсивность вегетативных расстройств, возникающих при раздражении вестибулярного аппарата, можно уменьшить, а иногда и полностью снять путем систематической тренировки.
Статолитовый аппарат. Роль киноцилий вестибулярного анализатора.
Вестибулоспинальный рефлекс. Вестибулярный синдром.
Благодаря связям вестибулярного анализатора со спинным мозгом осуществляются шейные вестибулоокулярные и вестибулоспинальные рефлексы. Например, во время внезапной остановки при вращении в какую-либо сторону наблюдается тенденция к падению. Тот час же запускается вестибулослинальный рефлекс: повышается тонус «антигравитационных мышц-разгибателей конечностей одной стороны, и снижается тонус мышц разгибателей противоположной стороны, и человеку удается сохранить равновесие и не упасть.
Мышечные рефлексы инициируются полукружными протоками и всегда направлены на то, чтобы предотвратить падение независимо от направления ускорения. В вестибулоспинальных рефлексах возникает взаимоотношение между мышцами-сгибателями и разгибателями конечностей (по аналогии с вестибулоокулярными рефлексами).
Преддверно-мозжечковый тракт. Тракт берет начало от верхнего и латерального вестибулярных ядер, проходит через ножки мозжечка и заканчивается в клетках червя мозжечка. Через латеральное ядро Дейтерса и посредством этого тракта мозжечок корригирует функцию спинного мозга.
Вестибулокортикальный тракт. Этот путь называют вестибулярной сенсорной системой. Это координатор всего вестибулярного анализатора. Тракт переключается в таламических ядрах и оканчивается на клетках височно-теменной области коры головного мозга.
Вестибулоталамический тракт. Путь начинается от клеток латерального вестибулярного ядра, он связывает ядpa гипоталамуса с вегетативными ядрами глазодвигательного лицевого, языкоглоточного и блуждающего нервов.
Медиальное вестибулярное ядро располагается рядом с ядрами блуждающего нерва. Этим объясняется мгновенная передача возбуждения с вестибулярного аппарата на парасимпатический отдел нервной системы, что сопровождается появлением тошноты и рвоты.
Однако основные вестибуловегетативные связи осуществляются в диэнцефальном и диэнцефально-гипоталамическом отделах мозга. При поражении указанных отделов чрезвычайно выражены вегетативные реакции.
Вестибулярный синдром
При раздражении вестибулярного анализатора возможны три вида реакций — сенсорные, соматические и вегетативные. Вестибулосенсорные реакции представлены головокружением; вестибулосоматигеские реакции — это нистагм, нарушение тонуса мышц туловища, конечностей и нарушение равновесия (атаксия). Вестибуловегетативные реакции — появление тошиоты, рвоты, изменение пульса, давления, частоты дыхания, а также усиление потоотделения, изменение цвета кожных покровов и понижение температуры тела.
Головокружение. По высказыванию Ebbinghaus, «головокружение — есть конфликт между ощущением движения и положения тела». Это самый яркий и ранний симптом поражения вестибулярного аппарата на всех его уровнях, от рецептора до коры мозга.
В зависимости от уровня поражения вестибулярного анализатора говорят о периферическом и центральном типе головокружения. Чем ближе к лабиринту уровень поражения. тем четче головокружение носит системный и вращательный характер. Чем больше уровень поражения приближен к стволу и коре мозга, тем чаще головокружение — это лишь мнимое перемещение предметов и иллюзорное чувство опрокидывания.
Тяжелые приступы головокружения характерны при болезни Меньера. остром тромбозе в коллекторе вертебробазилярного бассейна, при лабиринтяте, арахноидите мостомозжечкового угла, поперечной трещине пирамиды и сотрясении лабиринта. Резкие головокружения - один нз симптомов подвижных опухолей дна IV желудочка и кист мозжечка.
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.
Читайте также:
- Легочная эозинофилия. Причины и классификация легочной эозинофилии
- Классификация артерио-венозных мальформаций головного мозга. Течение
- Молочнокислое брожение в биотехнологии. Молочные продукты в биотехнологии.
- Волновые фронты сердца. Теорема пространственного - телесного угла
- Глюкокортикоиды для лечения хронического лимфолейкоза - показания, эффективность