Строение клетки эукариот (эукариотическая клетка)
Добавил пользователь Валентин П. Обновлено: 21.12.2024
Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.
Клетки всех типов содержат два основных компонента, тесно связанных между собой, - цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. Мембранные органоиды : наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.
Схема строения эукариотической клетки. А - клетка животного происхождения; Б - растительная клетка:1 - ядро с хроматином и ядрышком, 2 - цитоплазматическая мембрана, 3- клеточная стенка, 4 - поры в клеточной стенке, через которые сообщается цитоплазма соседних клеток, 5 - шероховатая эндоплазматическая сеть, б - гладкая эндоплазматическая сеть, 7 - пиноцитозная вакуоль, 8 - аппарат (комплекс) Гольджи, 9 - лизосома, 10 - жировые включения в каналах гладкой эндоплазматической сети, 11 - клеточный центр, 12 - митохондрия, 13 -свободные рибосомы и полирибосомы, 14 - вакуоль, 15 - хлоропласт
Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний - из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка - клеточная стенка. Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.
На поверхности клеток мембрана образует удлиненные выросты - микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. "фаго" - пожираю, "питое" - клетка). При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называетсяпиноцитозом (от греч. "пино" - пью, "цитос" - клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.
Цитоплазма на 85 % состоит из воды, на 10 % - из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки.
В стенках канальцев располагаются мельчайшие зернышки-гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной. Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами.Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов.
Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу.
Рибосомы встречаются во всех типах клеток - от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.
Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды.
Митохондрии - небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки - кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества - аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.
Лизосомы - мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных" условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки.
Пластиды есть только в растительных клетках и встречаются, у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.
Хлоропласты - зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл (рис. 6). В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза.
Хромопласты - пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов.
Лейкопласты-бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток - масла, белки.
Все пластиды возникают из своих предшественников - пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов.
Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле.
У многих растительных и животных клеток имеются органоиды специального назначения: реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.). Включения -временные элемеаты, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках-крахмал, капельки жира, блки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках - гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы - в виде кристаллов, пигментов и др.
Вакуоли - это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. - накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.
Цитоскелет. Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элемеиты цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.
Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.
Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин - спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы - это сложный комплекс белков с ДНК, называемый нуклеопротеидом.
Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.
Кариоплазма - жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур
Ядрышко - обособленная, наиболее плотная часть ядра. В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.
Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду - так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.
Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы - ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.
Помимо организмов с типичной клеточной организацией (эукариотические клетки) существуют относительно простые, доядерные, илипрокариотические, клетки - бактерии и синезеленые, у которых отсутствуют оформленное ядро, окруженное ядерной мембраной, и высокоспециализированные внутриклеточные органоиды. Особую форму организации живого представляют вирусы и бактериофаги (фаги). Их строение крайне упрощено: они состоят из ДНК (либо РНК) и белкового футляра. Свои функции обмена веществ и размножения вирусы и фаги осуществляют только внутри клеток другого организма: вирусы - внутри клеток растений и животных, фаги - в бактериальных клетках как паразиты на, генетическом уровне.
Строение эукариотической клетки
Строение эукариотической клетки сложнее, чем у прокариотической. В первую очередь это касается наличия ядра и мембранных органелл у эукариот. Однако это не единственные отличия. Согласно наиболее принятой гипотезе эукариотическая клетка произошла в результате симбиогенеза нескольких прокариот.
Структурные компоненты клетки взаимосвязаны между собой различными биохимическими процессами, направленными на поддержание гомеостаза, деление, приспособление к окружающей среде, в том числе внутренней (для многоклеточных организмов).
В строении эукариотических клеток можно выделить такие основополагающие части:
- ядро,
- цитоплазма, содержащая органоиды и включения,
- цитоплазматическая мембрана и клеточная стенка.
Ядро выполняет роль управляющего центра, регулирует все клеточные процессы. Здесь содержится генетический материал — хромосомы. Также важна роль ядра в клеточном делении.
Цитоплазма состоит из полужидкого содержимого — гиалоплазмы, в которой находятся органеллы, включения, различные молекулы.
Клеточная мембрана есть у всех клеток, представляет собой липидный бислой с содержащимися в нем и на его поверхностях белками. Клеточная стенка есть только у растительных и грибных клеток. Причем у растений основным ее компонентом является целлюлоза, а у грибов — хитин.
Органеллы, или органоиды, эукариотических клеток принято делить на мембранные и немембранные. Содержимое мембранных органоидов окружено мембраной, подобной той, которая окружает всю клетку. При этом одни органоиды окружены двумя мембранами — внешней и внутренней, а другие — только одной.
Ключевыми мембранными органеллами эукариотических клеток являются:
- митохондрии,
- хлоропласты,
- эндоплазматическая сеть,
- комплекс Гольджи,
- лизосомы.
К немембранным органоидам относятся:
Особенности строения органоидов эукариотической клетки связаны с выполняемыми ими функциями.
Так митохондрии выполняют роль энергетических центров клетки, в них синтезируется большая часть молекул АТФ. В связи с этим внутренняя мембрана митохондрий имеет множество выростов — крист, содержащих ферментативные конвейеры, функционирование которых приводит к синтезу АТФ.
Хлоропласты есть только у растений. Это тоже двумембранный органоид, содержащий внутри себя структуры — тилакоиды. На мембранах тилакоидов происходят реакции световой фазы фотосинтеза.
В процессе фотосинтеза за счет энергии Солнца происходит синтез органических веществ. Эта энергия накапливается в химических связях сложных соединений. В процессе дыхания, которое большей частью происходит в митохондриях, происходит расщепление органических веществ с высвобождением энергии, которая сначала аккумулируется в АТФ, а далее используется для обеспечения любой активности клетки.
По каналам эндоплазматической сети (ЭПС) идет транспорт веществ из одной части клетки в другую, здесь же синтезируется большая часть белков, жиров и углеводов. Причем белки синтезируются рибосомами, расположенными на поверхности мембраны ЭПС.
В комплексе Гольджи образуются лизосомы, содержащие различные ферменты в основном для расщепления поступивших в клетку веществ. Им формируются везикулы, содержимое которых экскретируется за пределы клетки. Также Гольджи принимает участие в построении цитоплазматической мембраны и клеточной стенки.
Рибосомы состоят из двух субъединиц, выполняют функцию синтеза полипептидов.
Клеточный центр у большинства эукариот состоит из пары центриолей. Каждая центриоль похожа на цилиндр. Его составляют расположенные по окружности микротрубочки в количестве 27 штук, объединенные по 3, т. е. получается 9 триплетов. Основная функция клеточного центра — организация веретена деления, состоящего из «вырастающих» из него микротрубочек. Веретено деления обеспечивает равномерное распределение генетического материала при делении эукариотической клетки.
Выше перечислены наиболее важные и обязательные компоненты эукариотической клетки. Однако строение клеток разных эукариот, а также разных клеток одного организма несколько отличается. У дифференцированных клеток может исчезать ядро. Такие клетки уже не делятся, а только выполняют свою функцию. У растений клеточный центр не имеет центриолей. Клетки одноклеточных эукариот могут содержать специальные органоиды, такие как сократительные, выделительные, пищеварительные вакуоли.
Крупная центральная вакуоль есть во многих зрелых растительных клетках.
Также все клетки содержат цитоскелет из микротрубочек и микрофилламентов, пероксисомы.
Необязательными компонентами клетки являются включения. Это не органоиды, а различные продукты обмена веществ, имеющие разное предназначение. Например, жировые, углеводные и белковые включения используются как питательные вещества. Есть включения, подлежащие выделению из клетки, - экскреты.
Таким образом, строение эукариотической клетки показывает, что это сложная система, функционирование которой направлено на поддержание жизни. Такая система возникла в процессе длительной сначала химической, биохимической и потом биологической эволюции на Земле.
Строение клетки эукариот (эукариотическая клетка)
Организация клетки. Структура клеток
А. Сравнение прокариот и эукариот
Существующие в настоящее время организмы подразделяются на две большие группы — прокариоты и эукариоты. К прокариотам относятся бактерии (эубактерии и архебактерии) а к эукариотам — грибы, растения и животные, большинство из которых являются многоклеточными организмами и только некоторые — одноклеточными. Многоклеточные эукариоты построены из разнообразных по своим функциям клеток, причем эти клетки значительно крупнее клеток прокариот (соотношение объемов приблизительно 2000:1). Наиболее важный отличительный признак эукариотических клеток — наличие ядра (греч. karion; отсюда и название "эукариоты") и других органелл.
Структуры и функции эукариотических клеток сложнее и более специализированы, чем структуры и функции клеток прокариот. ДНК (DNA) эукариот представляют собой очень длинные линейные молекулы (от 10 7 до более чем 10 10 пар оснований). Они локализованы в ядре, связаны с гистонами и включают некодирующие области ( интроны ). Напротив, ДНК прокариот представляют собой более короткие (до 5ּ10 6 пар оснований) кольцевые молекулы, расположенные в цитоплазме и не имеющие интронов. Эукариотические клетки состоят из специализированных отделов — органелл (см. ниже). Процессы синтеза и созревания РНК (RNA) и белков протекают в различных отделах клеток и механизмы их регулирования не зависят один от другого. У прокариот, напротив, эти процессы значительно проще и взаимосвязаны.
Б. Структура животной клетки
Эукариотические клетки значительно разнообразнее по размеру и структуре, чем прокариотические. Только в организме человека имеются по крайней мере 200 различных типов клеток. Поэтому на схеме структура животной клетки представлена в предельно упрощенном виде.
Эукариотическая клетка организована системой мембран. Снаружи она ограничена плазматической мембраной. Внутренний объем клетки заполнен цитоплазмой, содержащей многочисленные растворимые компоненты. Цитоплазма разделена на хорошо различимые , окруженные внутриклеточными мембранами отделы, называемыми клеточными органеллами .
Самой крупной органеллой является ядро клетки (см. рис. 211), его можно легко видеть в световой микроскоп. Внешняя мембрана ядра связана с мембранами эндоплазматической сети [ эндоплазматический ретикулум (ER)], представляющей собой замкнутую систему связанных друг с другом канальцами уплощенных мешочков, составляющую единое целое с перинуклеарным пространством. Другая ограниченная мембранами органелла, также представляющая собой систему мембран, — аппарат Гольджи (или комплекс Гольджи) [на схеме эта система напоминает сложенные в стопку листы). Экзосомы и эндосомы — пузыреобразные органеллы (везикулы), участвующие в процессе обмена веществ между клеткой и ее окружением. Вероятно, наиболее важными в клеточном метаболизме являются митохондрии , представляющие собой органеллы, по размерам приближающиеся к бактериям. Лизосомы и пероксисомы — маленькие глобулярные органеллы, предназначенные для выполнения специфических функций. В клетке имеется белковая нитевидная структура, напоминающая строительные леса (так называемый цитоскелет ).
Помимо этих органелл в клетках растений (см. с. 48) имеются хлоропласты (места фотосинтеза), вакуоли , выполняющие структурные функции и являющиеся хранилищами, а также прочная клеточная стенка , построенная из целлюлозы и других полисахаридов.
На схеме для гепатоцитов (клеток печени) приведены приблизительный объем, который приходится на каждый вид органелл (в % к общему объему клетки, на схеме желтого цвета), и число каждой из органелл на клетку (на схеме голубого цвета); эти данные могут значительно различаться для разных типов клеток. Органеллы и другие клеточные структуры более детально описаны в следующих разделах.
Эукариотическая клетка строение, свойства и функции (Таблица)
Эукариоты или ядерные, — это надцарство живых организмов, клетки в которых содержится ядро. Все организмы, кроме прокариот (бактерий и архей), являются ядерными. Вирусы и вироиды не относятся ни к прокариотам, ни эукариотам.
Эукариотические клетки в основном намного крупнее прокариотических, разница в объёме достигает тысяч раз. Клетки эукариот включают около десятка видов различных структур - органеллы, из которых многие отделены от цитоплазмы одной или несколькими мембранами. Ядро — часть клетки, окружённая у эукариот двойной мембраной (двумя элементарными мембранами) и содержащая генетический материал: молекулы ДНК, «упакованные» в хромосомы. Ядро обычно одно, но бывают и многоядерные клетки.
Таблица строение эукариотической клетки и функции
Строение и свойства эукариотической клетки
Органоиды, характерные для животной и растительной клеток
Тонкая пленка 7-10мк, состоящая из двойного слоя фосфолипидов, с включением белков. Гидрофобные (отталкивающие воду) молекулы липидов погружены в толщу мембраны, а гидрофильные - обращены наружу в окружающую водную среду. К некоторым белкам на поверхности клеток прикреплены углеводы; такие белки называют гликопротеинами, они являются рецепторами. Снаружи углеводный слой - гликока-ликс. Белки, гликопротеины и липиды, находящиеся на поверхности разных клеток, очень специфичны и являются указателями типа клеток. С их помощью клетки «узнают» друг друга
— Изолируетклетку от окружающей среды.
— Обеспечивает обмен веществ и энергии между клеткой и внешней средой, движение клеток и сцепление их друг с другом.
— Соединяет клетки в ткани.
— Клеточная мембрана обладает избирательной проницаемостью, регулирует поступление веществ в клетку, водный баланс, выведение продуктов обмена.
— Участвует в фагоцитозе и пиноцитозе.
— Большинство мембранных белков служат катализаторами химических реакций, осуществляют транспорт веществ или являются рецепторами
Цитоплазма - коллоидный раствор различных солей и органических веществ - цитозоль. Вода составляет 60-90 % всей массы цитоплазмы. Белки - 10-20 %, а иногда до 70 % сухой массы. Система белковых нитей, пронизывающая цитоплазму называется цитоскелетом. Кроме белков в состав цитоплазмы могут входить липиды 23 %, различные органические 1,5 % и неорганические соединения 1,5 %. Цитоплазма находится в постоянном движении
— Жидкая среда клетки для химических реакций.
— Участвует в передвижении веществ.
— Поддерживает тургор клетки.
— Механическая функция, за счет цитоскелета
Ядро - важнейший органоид эукариотической клетки, в прокариотической клетке отсутствует
Окружено двухслойной пористой мембраной, образующей комплекс с остальными мембранами клетки. Содержит хроматин - комплекс ДНК и белка, образует хромосомы в момент деления клетки. Ядрышко - состоит из белка и РНК, может быть несколько. Ядерный сок - кариолимфа - коллоидный раствор органических и неорганических веществ
— Хранение наследственной информации в хромосомах.
— Регуляция синтеза белка и процессов происходящих в клетке.
— Синтез РНК (иРНК, тРНК, рРНК), а также сборка рибосом.
— Руководит процессами самовоспроизведения и процессами развития организма
Эндоплазматическая сеть (ретикулум)
Шероховатый (гранулярный) ретикулум - представляет собой систему мембран, образующих канальцы, цистерны, трубочки, несущую рибосомы. Строение мембран сходно с наружной мембраной и образуете ней единую сеть
— Синтез белка на рибосомах.
— Транспорт веществ по цистернам и трубочкам.
— Деление клетки на отдельные секции - компартменты
Гладкий ретикулум - имеет такое же строение, как и шероховатый, но не несет рибосом
— Участвует в синтезе липидов, белок не синтезируется.
— Остальные функции, сходные с шероховатым ретикулум
Мельчайшие органоиды клетки диаметром около 20нм. Рибосомы состоят из двух неравных субъединиц (частиц): большой и малой. В состав рибосомы входят рибосомальная РНК и белки. Синтезируются в ядрышке. Объединяются вдоль иРНК в цепочки, образуя полисому
Биосинтез первичной структуры белка по принципу матричного синтеза
— Пищеварительная - обеспечивает переваривание органических веществ, попавших в клетку при фагоцитозе и линоцитозе
— При голодании лизосомы могут участвовать в растворении органоидов, клеток и частей организма (утрата хвоста у головастика) - автолизе
Двухмембранные органоиды. Наружная мембрана гладкая, а внутренняя образует многочисленные складки и выросты -кристы. Внутри митохондрия заполнена бесструктурным матриксом. В матриксе содержатся молекулы ДНК, РНК, рибосомы. Митохондрии имеют разнообразную форму: округлые, овальные, цилиндрические и палочковидные тельца
— Энергетический и дыхательный центр клеток.
— Освобождение энергии в процессе дыхания.
— «Запасание» энергии в виде молекул АТФ. Источником энергии являются органические вещества, окисляющиеся под действием ферментов до СO2 и Н2O
Клеточный центр - характерен для клеток животных и низших растении
Органоид немембранного строения, состоящий из двух центриолей - цилиндрической формы, расположенных перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована из 9пар микротрубочек.
Участвуют в делении клеток животных и низших растений, образуя веретено деления
Аппарат (комплекс) Гольджи
— Участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки.
— Вещества упаковываются в пузырьки.
— В растениях - участвуют в построении клеточной стенки.
Микротрубочки - длинные тонкие полые цилиндры, диаметром 25нм. Стенки микротрубочек состоят из белков
— Опорная - образуют внутренний каркас, помогающий клеткам сохранять форму.
— Двигательная - входят в состав ресничек и жгутиков
Микронити - тонкие структуры, состоящие из тысяч молекул белка, соединенных друг с другом
— Образуют опорно-двигательную систему, называемую цитоскелетом.
— Способствуют току цитоплазмы в клетках
Реснички - многочисленные цитоплазматические выросты на поверхности мембраны - образованы микротрубочками, покрытыми мембраной
Обеспечивают передвижение некоторых одноклеточных организмов и ток жидкости в организмах, удаление частичек пыли (дыхательный реснитчатый эпителий)
Жгутики - единичные выросты на поверхности клетки. Реснички и жгутики имеют общую основную структуру: девять пар микротрубочек, расположенных кольцом, две одиночные микротрубочки в центре и базальное тельце в основании
Служат для движения одноклеточным организмам, сперматозоидам,зооспорам
Непостоянные структуры цитоплазмы. Плотные включения в виде гранул
Содержат запасные питательные вещества (крахмал, жиры, белки, сахар)
Органоиды, характерные только для растительных клеток
Содержимое пластид называют стромой. Наружная мембрана гладкая, внутренняя образует пластинчатые апячивания - тилакоиды. Большая часть их укладывается в виде стопки монет и образует граны.
В мембранах гран находится хлорофилл, придающий зеленую окраску и обеспечивающий протекание световой фазы светосинтеза
Округлые, бесцветные органоиды, внутренняя мембрана образует 2-3 выроста. На свету преобразовываются в хлоропласты
Служат местом отложения запасных питательных веществ, чаще всего крахмала
Двухмембранные шарообразные органоиды, шаровидной формы. Содержат пигменты - каротиноиды, окраска желтая, красная, оранжевая
Придают лепесткам цветков, плодам и прицветным листьям окраску, привлекают насекомых-опылителей
Клеточная оболочка (стенка)
Состоит из целлюлозы, имеет поры. Имеется в клетках грибов, состоит из хитина
Защищает клетку от внешних воздействий, придает прочность, является скелетом растения
Вакуоль, характерна только для растительных клеток
Мембранная полость, заполненная клеточным соком. Вакуоль является производной эндоплазматической сети. Клеточный сок является водным раствором органических веществ: органических кислот, сахара, солей, белков, дубильных веществ, алкалоидов, пигментов и так далее.
— регуляция водно-солевого обмена;
— поддержание тургорного давления;
— накопление продуктов обмена веществ и запасных веществ;
— выведение из обмена токсичных веществ
_______________
Источник информации:
1. Биология в таблицах и схемах / Спб. — 2004.
2. Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.
Строение эукариотической клетки
Эукариоты или ядерные клетки устроены намного сложнее, чем прокариоты. Строение эукариотической клетки направлено на осуществление внутриклеточного метаболизма.
Плазмалемма
Снаружи любая клетка окружена тонкой эластичной плазматической мембраной, которая называется плазмалеммой. В состав плазмалеммы входят органические вещества, описанные в таблице.
Вещества
Особенности
Соединения фосфора и жиров. Состоят из двух частей – гидрофильной и гидрофобной
Образуют два слоя. Гидрофобные части примыкают друг к другу, гидрофильные смотрят наружу и внутрь клетки
Соединения липидов и углеводов. Встроены между фосфолипидами
Принимают и передают сигналы
Жирный спирт. Встроен в гидрофобные части фосфолипидов
Два вида – поверхностные (примыкают к липидам) и интегральные (встроены в мембрану)
Различаются структурой и выполняемыми функциями
Рис. 1. Строение плазмалеммы.
Над плазмалеммой клетки растений находится клеточная стенка, в состав которой входит целлюлоза. Она поддерживает форму и ограничивает подвижность клетки. Животная клетка покрыта гликокаликсом, состоящим из различных органических соединений. Главная функция дополнительных покрытий – защита.
Через плазмалемму осуществляется транспорт веществ и передача сигналов посредством встроенных белков.
Эукариоты отличаются от прокариотов наличием ядра – мембранной структуры, состоящей из трёх компонентов:
- двух мембран, имеющих поры;
- нуклеоплазмы – жидкости, состоящей из хроматина (содержит РНК и ДНК), белка, нуклеиновых кислот, воды;
- ядрышка – уплотнённого участка нуклеоплазмы.
Ядро контролирует все процессы клетки, а также осуществляет:
которые читают вместе с этой
- хранение и передачу наследственной информации;
- образование рибосом;
- синтез нуклеиновых кислот.
Цитоплазма
В цитоплазме эукариот находятся различные органеллы, осуществляющие метаболизм за счёт постоянного движения цитоплазмы (циклоза). Их описание представлено в таблице строения эукариотической клетки.
Органоиды
Строение
Функции
Эндоплазматическая сеть или эндоплазматический ретикулум (ЭПС или ЭПР)
Состоит из внешней ядерной мембраны. Бывает двух типов – гладкая и шероховатая (с рибосомами)
Синтезирует липиды, гормоны, накапливает углеводы, обезвреживает яды
Немембранная структура, образованная большой и малой субъединицами. Содержит белок и РНК. Находится на ЭПС и в цитоплазме
Комплекс (аппарат) Гольджи
Состоит из мембранных цистерн, заполненных ферментами. Взаимосвязан с ЭПС
Производит секреты, ферменты, лизосомы
Пузырьки, состоящие из тонкой мембраны и ферментов
Переваривает вещества, попавшие в цитоплазму
Состоит из двух мембран. Внутренняя образует кристы – складки. Заполнена матриксом, содержащим белки и собственную ДНК
Для растительной клетки характерны две особые органеллы, отсутствующие у животных:
- вакуоль– накапливает органические вещества, воду, поддерживает тургор;
- пластиды– в зависимости от вида выполняют фотосинтез (хлоропласты), накапливают вещества (лейкопласты), окрашивают цветки и плоды (хромопласты).
В клетках животных (отсутствуют у растений) находится центросома (клеточный центр), собирающая микротрубочки, из которых впоследствии образуются веретено деления, цитоскелет, жгутики и реснички.
Рис. 3. Растительная и животная клетки.
Эукариоты размножаются делением – митозом или мейозом. Митоз (непрямое деление) характерен для всех соматических (неполовых) клеток и одноклеточных ядерных организмов. Мейоз – процесс образования гамет.
Что мы узнали?
Из урока 9 класса биологии узнали кратко о строении и функциях эукариотической клетки. Эукариоты – сложноорганизованные структуры, состоящие из клеточной оболочки, цитоплазмы и ядра. В цитоплазме эукариотической клетки находятся различные органеллы (комплекс Гольджи, ЭПС, лизосомы и т.д.), осуществляющие внутриклеточный метаболизм. Помимо этого для клеток растений характерны вакуоль и пластиды, а для животных – клеточный центр.
Читайте также:
- Фиброзный слой суставной капсулы. Связки плечевого сустава. Мышцы укрепляющие плечевой сустав.
- Анатомия: Семенной канатик. Опускание яичка
- Синдром короткой кишки
- Аспираторы-ирригаторы в операционной. Инсуффляторы эндоскопической операционной.
- ЭхоКГ клапанного гомотрансплантата и аутологичного клапана (операция Росса)