Вирус или клетка первичны
— Вирусная или бактериальная инфекция — чем они различаются? Как понять, какую подхватил?
— Как отличить вирусную инфекцию от бактериальной? Прежде всего обратите внимание на то, есть ли у вас болезненные ощущения в носоглотке, как изменяется температура тела. Если горло сильно болит, першит, резкого повышения температуры нет — значит, вы имеете дело с бактериальным заражением. А вот высокая температура тела (выше 39 градусов) без признаков чёткой локализации боли — факт встречи с вирусами. Это два основных признака, по которым можно отличить природу возбудителей.
Следует сказать, что при вирусной инфекции дебют заболевания скоротечен и не имеет видимой причины, отмечается выраженная общая интоксикация. Это и боль позади глазных яблок, и боль в мышцах при движении. Если говорить об отделяемом из верхних дыхательных путей, то при вирусной инфекции они (выделения. — RT) прозрачны, при бактериальной — жёлто-зелёные. Обратите внимание на сухой кашель! Но даже если вы считаете, что самостоятельно распознали причину недуга, вызовите врача на дом!
— Чем так опасен новый коронавирус в сравнении с теми вирусами, о которых мы уже наслышаны?
— Новая коронавирусная инфекция относится к острым респираторным вирусным инфекциям (ОРВИ), и осложнения у неё могут быть такие же, как и у других ОРВИ: пневмония, бронхит, синусит и другие. Опасность этого вируса в том, что он легко передаётся от человека к человеку. Особому риску подвержены пожилые люди.
— Какой у него принцип действия? Как влияет на организм?
Это усложняет распознавание вируса системой иммунитета. Так начинается разрушительная работа вируса в организме. Самой опасной точкой повреждения является система органов дыхания.
— Пара вопросов о профилактике. Кто-то говорит пить витамин С, кто-то — парацетамол. Кого слушать и слушать ли вообще?
— Ответ очень простой: слушать только вашего лечащего врача! Отдельно — о парацетамоле. Известен целый ряд случаев его бесконтрольного применения. А непреднамеренная передозировка парацетамола ведёт к отравлению, сопровождающемуся тяжёлым поражением печени. Крайне не рекомендуется принимать этот препарат с алкоголем! Итак, главный помощник — ваш лечащий доктор!
— Первое — чистота рук и окружающих поверхностей. Часто мойте руки водой с мылом и используйте дезинфицирующие средства.
Потрудитесь не касаться рта, носа и глаз руками (такие прикосновения неосознанно свершаются человеком более 15 раз в час).
Носите с собой дезинфицирующее средство для рук, чтобы в любой обстановке вы могли им воспользоваться.
Обязательно мойте руки перед едой.
Будьте особенно осторожны, когда находитесь в людных местах. Максимально сократите прикосновения к находящимся в таких местах поверхностям и предметам и не касайтесь лица.
Носите с собой одноразовые салфетки и всегда прикрывайте нос и рот, когда вы кашляете или чихаете, обязательно утилизируйте их после использования.
Не ешьте еду (орешки, чипсы, печенье и другие снеки) из общих упаковок или посуды, если другие люди погружали в них свои пальцы.
Избегайте приветственных рукопожатий и поцелуев.
Регулярно очищайте поверхности и устройства, к которым вы прикасаетесь: клавиатуру компьютера, панели оргтехники для общего использования, экран смартфона, пульты, дверные ручки и поручни.
Помните, почему предметы личной гигиены так называются!
— Рассмотрим пример: человек приехал из-за границы с кашлем и решил самоизолироваться. Врача не вызывает, думает, что это обычный ОРВИ или грипп, сейчас полечится — и пройдёт. Это рабочая схема, как думаете?
— Стоит ли вообще заниматься самолечением без диагноза? Какой порядок действий порекомендуете для тех, кто заболел?
— При подозрении на коронавирусную инфекцию самолечение абсолютно противопоказано. Не выходите из дома. Вызовите врача.
— Мыть руки — казалось бы, суперпросто, но об этом так часто сейчас говорят, как будто до этого вообще не мыли. Какие ещё полезные привычки посоветуете ввести в обиход?
— Мыть руки нужно правильно! То есть часто мыть руки с мылом (не менее минуты), причём не только ладони, но и тыльную их сторону, между пальцами, под ногтями. При этом очень важно их хорошо высушивать одноразовыми полотенцами, так как вирус на влажных руках также может сохраняться.
Обрабатывайте доступные поверхности общепринятыми дезинфицирующими средствами.
Используйте домашние ультрафиолетовые облучатели-рециркуляторы и кварцевые лампы.
Часто проветривайте помещение, где вы находитесь.
И самое главное: не паниковать! Инфекция не любит паники. Страх — первый помощник врага, и на всякую беду страха не напасёшься.
Что появилось сначала – вирус или клетка?
Этот вопрос я подняла в 2013 г. в Давосе (Швейцария) во время ежегодной встречи по РНК. Я разговаривала со своими коллегами, многими вирусологами и учеными, которые первыми стали заниматься РНК, вопросами химической эволюции и т.д. Они отвечали одно и то же, то, что написано в большинстве учебников, что говорили рецензенты всех моих статей в международных журналах и, возможно, читатели. Все они сразу же отвечали: сначала появилась клетка, поскольку вирус в ней нуждается. Я была разочарована тем, что даже ведущие исследователи РНК и рибозимов приводили эти же доводы, несмотря на то, что рибозимы являются первым активными биомолекулами, которые могут реплицироваться, эволюционировать, расщеплять и присоединять. Рибозимы – основа рибосом, и поэтому они являются ключевыми молекулами при синтезе белка, а cirРНК и с недавнего времени piРНК – основные регуляторы генов.
Новые методы химического анализа свидетельствуют о том, что три основных строительных блока жизни – аминокислоты, нуклеотиды и липиды – можно синтезировать в первичном бульоне Дарвина при поступлении энергии из окружающей среды. Британский химик Джон Сазерленд может осуществлять однореакторный синтез всех трех строительных блоков жизни в одной пробирке, и при этом стартовым условием является наличие простых предшественников, в частности синильной кислоты, фосфора, сероводорода и воды, а также ультрафиолетового излучения. Вот так и могла начаться жизнь. Только после появления типичных клеток вирусы смогли изменить образ существования и превратиться во внутриклеточных паразитов – это хорошо известная тенденция в эволюционном развитии, определяемая средовыми условиями. Борясь за клеточные ресурсы, они сталкивались с конкурентами и создали ранние примитивные механизмы противовирусной защиты, клеточного иммунитета. Возможно даже, что вирусы принесли ядро в первые эукариотические клетки.
В соответствии с третьим сценарием вирусы отвечают за горизонтальный перенос генов (ГПГ). Затем гены и вирусы перемещаются горизонтально и используются для переноса генов. Нам известно о существовании горизонтального переноса генов в обоих направлениях – от вирусов к клеткам и от клеток к вирусам. Это вполне соответствовало бы большому количеству параллельных линий. Такого не могло быть на первых этапах существования жизни на Земле, но могло появиться позже.
И тут вступаю я со своим личным заключительным апофеозом вирусов. Все органисты знают, что у Иоганна Себастьяна Баха после прелюдии следует фуга, которая заканчивается слиянием всех голосов и полным звучанием максимального числа труб – . И вот я со своим – резюме – применительно к вирусам.
Вирусы и клетки учатся друг у друга, обмениваются генами, рекомбинируют их в обоих направлениях, то есть мы имеем дело с коэволюцией. В последние годы у нас неоднократно вызывали удивление результаты наблюдений, согласно которым различные экосистемы – от тех, что обитают в кишечнике человека, до состава микробиома океана – мирно сосуществуют. Я слушала доклад Эрика Карсенти об океанической экспедиции. Его удивило мирное сосуществование компонентов, составляющих микробиом Мирового океана. Меня же удивило, что 73% микробиома Мирового океана и кишечника человека, состоящего из вирусов и фагов, родственны с функциональной точки зрения и что самый распространенный белок – обратная транскриптаза.
Подверженная ошибкам обратная транскриптаза ретровирусов или ретроэлементов является самым щедрым поставщиком новой информации. Полученные свидетельства подтверждают, что ретроэлементы являются предшественниками ретровирусов. Ретроэлементы могут заполнять 75% генома кукурузы и 50% генома риса. Приобретя оболочку, они становятся подвижными и могут покинуть клетку. Обратная транскриптаза и РНКаза Н – самые распространенные белки в мире, и их структуры в ретровирусах, дрожжах, бактериях, планктоне, растениях или организме млекопитающих и человека практически ничем не отличаются.
Лично для меня удивительно, что я стала свидетелем открытия обратной транскриптазы и что до сих пор, по прошествии более 45 лет, это открытие сохраняет свою важность, что мои исследования расщепляющего фермента РНКазы привели меня к ретровирусам и позволили проследить весь эволюционный путь, а также иммунологические защитные системы. Вирусы создали противовирусную защиту. Интегрированные ретровирусы, ДНК-содержащие провирусы как клеточные гены легкодоступны для противовирусной защиты.
И те и другие используют один и тот же инструментарий. Вирусные компоненты создают противовирусные эффекты, такие как РНК-интерференция, сайленсинг, интерферон и иммуноглобулины, у которых очень схожие механизмы расщепления по принципу действия РНКазы. Ретроэлементы являются двигателем эволюции. Вероятно, даже ядра эукариотов произошли от вирусов. Возможно, они сформировали эукариоты. И наконец, скорость репликации вируса в миллионы раз быстрее, чем при прочих способах. Вирусов огромное количество, и они очень успешны.
Итак, относятся ли вирусы к живым организмам? Почти. Скорее да, чем нет. Не существует четкой границы между живыми и неживыми микроорганизмами. И на этом моя сольная партия на орг?не заканчивается.
Лекция 4 Неклеточные формы жизни. ВИРУСЫ
Открытие.В 1852 году русский ботаник Дмитрий Иосифович Ивановский впервые получил инфекционный экстракт из растения табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, задерживающий бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства.
Вирусы оказались среди первых биологических структур, которые были исследованы в электронном микроскопе сразу после его изобретения в 30-е годы ХХ столетия.
Вирусы – это мельчайшие живые организмы (20-300 нм); в среднем они в 50 раз мельче бактерий. Вирусы являются облигатными (обязательными) внутриклеточными паразитами, то есть они способны воспроизводить себя только внутри живой клетки хозяина. Вирусы поражают все живые организмы, например, вирусы растений (фитопатогенные вирусы): рак картофеля, вирус табачной мозаики, вирусы животных – вирус ящура, бешенства; для человека – вирус гриппа, ВИЧ-инфекция, вирус полиомиелита, оспы, кори. Есть вирусы и у бактерий – бактериофаги.
Вирусы обладают следующими свойствами.
1. Это мельчайшие живые организмы. Размеры которых варьируют в пределах от 20 до 300 нм; в среднем они в 50 раз меньше бактерий. Вирусы не задерживаются бактериальными фильтрами, не осаждаются в обычных центрифугах, только в ультрацентрифугах. Их нельзя рассмотреть в обычный микроскоп, только в электронный. По своим размерам Вирусы занимают промежуточное положение между наименьшими живыми клетками и самыми крупными молекулами химических соединений.
2. Они не имеют клеточного строения.
3. Вирусы способны воспроизводиться, лишь проникнув в живую клетку. Следовательно, все они — облигатные внутриклеточные паразиты.Иными словами, вирусы могут жить, лишь паразитируя внутри других клеток. Большинство из них вызывает болезни.
4. Вирусы состоят из молекулы нуклеиновой кислоты, либо ДНК, либо РНК, окруженной белковой или липопротеиновой оболочкой.
5. Вирусы высокоспецифичны в отношении своих хозяев (каждый тип вируса способен распознавать и инфицировать лишь определенные типы клеток).
Различия между вирусами и клеточными организмами.
1. Клетка имеет нуклеиновые кислоты двух типов (ДНК и РНК). Вирусы имеют только 1 тип нуклеиновых кислот (ДНК или РНК).
2. Вирус имеет ограниченный набор ферментов, необходимых только для проникновения в клетку хозяина и удвоения своей нуклеиновой кислоты.
3. В отличие от клетки, которая возникает из предыдущей путем деления, вирусы не возникают из предшествующего вируса. Вирус возникает в результате сборки синтезированных клеткой хозяина вирусной нуклеиновой кислоты и вирусной белковой оболочки (метод самосборки).
4. Вирусы не размножаются на искусственных питательных средах и могут существовать только в организме восприимчивого к ним хозяина.
Строение вирусов.
1) сердцевины– генетического материала, представленного либо ДНК, либо РНК; ДНК двухцепочечной или РНК одноцепочечной; Молекула ДНК замкнута в кольцо, а РНК имеет, как правило, линейную форму.
2)капсида– защитной белковой оболочки, окружающей сердцевину;
* нуклеокапсида– сложной структуры, образованной сердцевиной и капсидом;
3) оболочки– у некоторых вирусов, таких как ВИЧ и вирусы гриппа, имеется дополнительный липопротеиновый слой, происходящий из плазматической мембраны клетки-хозяина;
4) капсомеров– идентичных повторяющихся субъединиц, из которых построены капсиды. Такой принцип строения гарантирует максимальный эффект при минимальной затрате генетического материала.
Общая форма капсида отличается высокой степенью симметрии, обуславливая способность вирусов к кристаллизации (это дает возможность исследовать их методами ренгеновской кристаллографии и электронной микроскопии).
Для структуры вирусов характерны определенные типы симметрии, особенно полиэдрическая и спиральная. Полиэдр – это многогранник. Наиболее распространенная полиэдрическая форма у вирусов – икосаэдр, у которого имеется 20 треугольных граней, 12 углов и 30 ребер. Примером может служить вирус герпеса, в частице которого 162 капсомера организованы в икосаэдр.
Иллюстрацией спиральной симметрии может служить РНК-содержащий вирус табачной мозаики (ВТМ). Капсид этого вируса образован 2130 идентичными белковыми капсомерами. ВТМ был первым вирусом, выделенным в чистом виде. При заражении этим вирусом на листьях больного растения появляются желтые крапинки – так называемая мозаика листьев. Вирусы распространяются очень быстро либо механически, когда больные растения или его части приходят в соприкосновение со здоровыми растениями, либо воздушным путем с дымом от сигарет, для изготовления которых были использованы зараженные листья.
Среди вирусных болезней человека особый интерес вызывает СПИД (синдром приобретенного иммонодефицита человека), поскольку это относительно новая болезнь. Впервые сообщение о ней появилось в США в 1981 году. СПИД вызывается вирусом иммунодефицита человека (ВИЧ). ВИЧ относится к группе ретровирусов. Обычно перенос генетической информации идет в направлении ДНК→РНК, т.е. информация, закодированная в определенном отрезке ДНК (гене) транскрибируется, т.е. считывается, с образованием соответствующей РНК. У ретровирусов же, у которых наследственным материалом служит РНК, происходит обратная транскрибция, т.е. генетическая информация считывается в обратном направлении: от РНК к ДНК. Фермент, участвующий в обратной транскрипции, называется обратной транскриптазой. Он широко используется в генетической инженерии.
Строение вируса иммонудефицита человека (ВИЧ): Конусовидный капсид состоит из уложенных по спирали капсомеров. Спереди капсид срезан, чтобы были видны две копии РНК-геномов. Под действием фермента, называемого обратной транскриптазой, информация, закодированная в этих одноцепочечных РНК-цепях, транскрибируется в соотвествующие ДНК-нити. Капсид окружен белковой оболочкой, заякоренной в липидном бислое – оболочке, полученной от плазматической мембраны клетки-хозяина. В этой оболочке содержатся встроенные в нее вирусные гликопротеины, которые, специфически связываясь с рецепторами Т-клеток, обеспечивают проникновение вируса в клетку-хозяина.
Жизненный цикл ВИЧ. ВИЧ инфицирует и разрушает лейкоциты определенной группы, называемые Т-хелперными лимфоцитами, подавляя в результате активность иммунной системы.
1) Вирус приближается к Т4- лимфоциту.
2) Вирусный гликопротеин прикрепляется к рецепторному белку, находящемуся на плазматической мембране
3) Вирус проникает в клетку путем эндоцитоза
4) Вирусная РНК высвобождается в цитоплазму вместе с ферментом обратной транскриптазой
5) В результате транскрипции одноцепочечной вирусной РНК при участии обратной транскриптазы образуется двухцепочечная ДНК
6) Образовавшиеся ДНК проникает в клеточное ядро и встраивается в ДНК клетки-хозяина. При каждом клеточном делении одновременно с копированием клеточной ДНК происходит копирование и встроенной вирусной ДНК. В результате число инфицированных клеток увеличивается.
7) По истечении неактивного периода, называемого латентным периодом, который длится примерно 5 лет, вирус вновь активируется. Факторы, индуцирующие превращение латентного вируса в активный, не установлены.
8) С использованием белоксинтезирующего аппарата клетки-хозяина образуется новая РНК (транскрипция) и синтезируются вирусные белки
9) Сборка новых вирусных частиц
10) Вирусные белки отпочковываются от клетки путем экзоцитоза
11) В конечном счете инфицирование клетки вирусом приводит к ее гибели
Если у вас течет из носа, в этом, как правило, виноват обычный простудный вирус. К счастью, у нас имеется иммунитет, способный справиться с простудой, так что она быстро проходит. Другие вирусы, такие как коронавирус, заразивший множество человек, победить сложнее. Какие бывают вирусы и как с ними бороться, разбирается норвежское интернет-издание Forskning.
Существуют лекарства против вирусов, но они не всегда эффективны. Поэтому если вирус проник в клетки организма, задача иммунной системы — очистить их.
Между бактериями и вирусами — большая разница
В России сделали фото частиц коронавируса.
Вирус проникает в клетку. А затем начинает пользоваться ею, производя множество своих копий. Некоторые вирусы копируют себя в таких количествах, что клетка в итоге просто лопается и погибает. Из нее высвобождаются миллионы новых вирусов, готовых атаковать следующую клетку.
Коробка с инструкцией внутри
Клетка — очень сложная система. Вирус же, напротив, относительно примитивен. На самом деле он даже не выполняет все требования, сформулированные учеными, чтобы дать определение живого существа. Вирусы ничего не поглощают и не выделяют. Все эти заботы они перекладывают на других. Представьте себе вирус в виде маленькой коробочки. Внутри лежат его гены — своего рода инструкция, в которой описывается, как вирус работает.
Хорошие вирусы
Мы постоянно носим в себе множество вирусов. Они присутствуют повсюду. Но, к счастью, далеко не все вирусы опасны. Некоторые из них даже участвуют в очень важных процессах в природе. Например, в чайной ложке воды — несколько миллионов вирусов! В море они убивают бактерии, обеспечивая питанием прочие организмы. Большинство вирусов не вредят людям, ведь они атакуют лишь определенный тип клеток.
Некоторые вирусы нападают только на свиней, другие вызывают заболевания у растений. Третьи предпочитают бактерии. На земле существуют вирусы практически для всего живого.
Коронавирус
Нынешний коронавирус изначально был вирусом животных. Вероятно, его носителями были летучие мыши. Как вышло, что он перекинулся на людей?
Клетка стала фабрикой по производству вируса
Готовые вирусы затем могут покинуть клетку и отправиться в путешествие по организму. Либо клетка настолько переполняется вирусами, что лопается и погибает. И тогда множество новых вирусов вырываются на волю и атакуют новые жертвы. В организме поднимается тревога. Иммунитет выпускает своих агентов, чтобы они арестовали непрошеных гостей. В этот момент человек чувствует себя слабым и больным.
Вирусы гриппа и коронавирус атакуют и повреждают клетки легких. У заболевших коронавирусом поднимается температура и начинается кашель. Когда мы болеем гриппом, мы тоже страдаем от насморка и кашля. Так организм реагирует на инфекцию и защищается от нее.
Коронавирус распространяется по воздуху в маленьких капельках жидкости, при кашле вылетающих изо рта человека. Вдохнуть эти капельки может кто угодно. Либо кто-то может прикоснуться к месту, где они осели, а затем дотронуться до рта. Таким образом, вирус распространяется.
Лекарства и вакцины могут помочь
Сейчас ученые одновременно разрабатывают и лекарства, и вакцины против коронавируса.
Такое случается, например, когда иммунная система не в состоянии отследить вирус. К подобному типу относится вирус герпеса.
Выглядит как инопланетянин
Вирусы — это мельчайшие и простейшие микроорганизмы из всех существующих на Земле. Если представить, что клетка — это авианосец, то бактерия по сравнению с ней покажется обычной весельной лодкой. А вирус — бутылочной пробкой, качающейся на волнах поблизости. Но на самом деле есть и вирусы побольше. Их обнаружили всего несколько лет назад. Самые большие вирусы даже крупнее, чем простые бактерии. У них гораздо больше генов, чем у остальных вирусов, и большая часть их генетического материала совершенно не изучена.
Ученые задаются вопросом, откуда взялись гигантские вирусы. Может, прежде чем стать паразитами, они относились к отдельному виду живых организмов, обитавших на планете давным-давно?
К счастью, нам не стоит особенно бояться этих гигантских вирусов, как свидетельствуют проведенные исследования. Похоже, они предпочитают жить за счет амёб — одноклеточных организмов.
Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства. Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию. Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.
В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака. А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия. Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.
Строение вирусов
Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.
Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам. С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.
Формы вирусов
Вирусы встречаются в трех основных формах. Они бывают:
- Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
- Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
- Сложными. Например, бактериофаги.
Проникновение вирусов в клетку-хозяина
Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента. Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки. Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.
Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:
Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.
Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.
Проникновение вирусов в клетку достигается за счет:
Размножение вирусов
После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).
Механизм репликации зависит от вирусного генома.
- ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
- РНК-вирусы обычно используют ядро РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.
Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.
Вироиды
Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.
30 известных вироидов были классифицированы в две семьи.
- Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
- Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.
В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.
Бактериофаги
Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:
Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.
Существует три основных структурных формы фага:
- Икосаэдрическая (20-сторонняя) головка с хвостом
- Икосаэдрическая головка без хвоста
- Нитевидная форма
Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).
Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.
Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.
Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция. При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда. Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.
При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.
Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.
Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.
Покажите ножницы которыми вирусы разрезают молекулу РНК что бы встроиться для мутации.Может что нибудь придумаете другое.К примеру деление цепочка аминокислот получив энергию из вне как одноименные заряды распадается на две. К каждой соединятся только те какие были ранее (другие проскочат мимо),казалось бы копии,но внутренняя энергия разная(уменьшается увеличивается) поэтому распад и создание. Вся химия углерода на этом построена 1000 орган соединений создает у других хим элементов этого свойства нет. Иммунная система делает накладку(интерференция)с помощью энергии интерферонов пытаясь разрушить цепочку РНК вируса.Надо помочь организму но не вакциной(вирус быстро мутирует)
Читайте также: