Руководство по вирусологическим исследованиям при полиомиелите
Методы вирусологической (в том числе и серологической) диагностики полиомиелита применяются в зависимости от задач, которые возникают в каждом отдельном случае. При наличии ясной клинической характеристики в типичных паралитических случаях болезни следует определить иммунологический тип и генетические признаки вирусного штамма, вызвавшего данное заболевание. Но, конечно, в этих случаях клиницист не очень заинтересован в вирусологическом подтверждении диагноза и обычно удовлетворяется результатами обследования на антитела в парных пробах крови. Следует указать на возможность ошибочного клинического диагноза полиомиелита даже в паралитических случаях, т. к. описаны сходные с полиомиелитом заболевания, вызванные вирусами из группы Коксаки и ЕСНО (М.П. Чумаков, М.К. Ворошилова и др., 1959). Поэтому необходимо вирусологическое подтверждение даже в ясных для клинициста случаях.
В непаралитических и абортивных случаях полиомиелита, когда клиническая и клинико-лабораторная диагностика недостаточно обоснована, выделение из патологических субстратов и определение типа вируса в сочетании с результатами серологического обследования может подтвердить или отвергнуть предполагаемый диагноз полиомиелита, что имеет практическое значение (например, для организации противоэпидемических мероприятий).
Многие агенты могут вызывать синдром асептического менингита, который нельзя без лабораторного исследования отличить от непаралитической формы полиомиелит. Серозный менингит, не отличимый от непаралитической формы полиомиелита, могут вызывать следующие вирусы: возбудители свинки (паротита), лпмфоцитарного хориоменингита, ряд вирусов из групп ЕСНО и Коксаки, герпес простой, герпес зостер, вирусные энцефалиты, кроме того, лептоспиры и др. Чаще всего приходится проводить одновременное обследование материала на присутствие вируса полиомиелита и других энтеровирусов (Коксаки, ЕСНО, РЭО-групп). И, наконец, вирусологические, серологические методы исследования приобретают особое значение для контроля качества профилактических прививок пероральной полиомиелитной живой вакциной, напр. для определения частоты хорошей прививаемости живой вакцины по результатам выделения вакцинных штаммов из кишечного содержимого или из глоточного отделяемого у привитых и контактирующих с ними лиц, а также по динамике нарастания уровней антител в крови у вакцинированных людей. Периодически могут потребоваться выборочные обследования здорового населения на распределение уровней антител к разным типам полиовирусов, а также на частоту спонтанного носительства штаммов вируса полиомиелита и других энтеровирусов.
Материал для обследования. Полиовирус можно выделить заражением обезьяны или восприимчивых тканевых культур, в отдельных случаях также хлопковых крыс и новорожденных белых мышей (для штаммов II и IV типов). Вирусы ЕСНО и нескольких типов Коксаки могут быть выделены заражением культур, а большинство вирусов Коксаки группы А только заражением новорожденных белых мышей. Фекалии больного или здорового человека в очаге инфекции представляют наиболее богатый и регулярный источник для изоляции полиовируса и других энтеровирусов. Полиовирус в фекалиях может обнаруживаться в течение 2—3 недель, иногда 12 недель и больше после начала болезни или скрытой инфекции; максимальное количество полиовируса в фекалиях — до 10 инфекционных доз в 1 г.Выделение энтеровирусов возможно также из сточных вод канализации, из мух и других объектов внешней среды, которые могут быть загрязнены фекалиями. Полиовирус можно выделить также из носоглоточных смывов и тампонов из зева вскоре после начала заболевания или при скрытой инфекции (примерно в течение первой недели).
Исследование крови на присутствие вируса полиомиелита (например, вакцинного штамма) чрезвычайно трудоемкое, сложное и возможно только при решении экспериментальных задач в особых условиях. Исследование спинномозговой жидкости при полиомиелите нецелесообразно.
В секционных случаях следует получить асептично пробы из спинного (шейного и поясничного отделов) и продолговатого мозга по 2 см 3 (способ сохранения при 1° 4° в 50% растворе нейтрального глицерина или в замороженном состоянии без глицерина); кроме того, следует в этих случаях обследовать на вирус содержимое кишечника (5—15 г)пли отмытую ткань кишечной стенки на разных уровнях. Все пробы должны пересылаться в лаборатории и сохраняться на холоду (при 1° от -(-4 0 до +8°) или в замороженном виде (от —20° до -70°).
Подготовка обследуемых материалов для заражения культур или животных предусматривает обязательное удаление бактериальных контаминантов путем обработки проб антибиотиками (смесью пенициллина от 500 до 10 000 ЕД в 1 мл,стрептомицина — 500—2000 [в 1 мли, возможно, других антибиотиков). Раньше для этих целей применялась обработка проб эфиром, но она уступает антибиотикам по эффективности. До обследования экстракты фекалий с антибиотиками (20 или 10% взвеси) следует освободить от грубых частиц путем центрифугирования.
Методика исследования. При первичном выделении вирусов из группы Коксаки заражаются в мозг и подкожно новорожденные белые мыши в возрасте не старше 24 час. Молодые белые мыши и хлопковые крысы могут быть заражены материалом, содержащим полиовирус II типа, в головной мозг или в спинной мозг и в брюшную полость, или внутримышечно. Для перевивки вируса от заболевших к свежим животным используется взвесь спинного и головного мозга.
Обезьяны макаки (любой вид), мартышки и др. могут быть заражены материалом, содержащим вирус полиомиелита, разными путями: в головной или в спинной мозг (по 1,0 или 0,2 млсоответственно), через нос под легким наркозом (можно 3—5 дней подряд), в брюшную полость и внутримышечно. В пассажах на обезьянах используется ткань спинного и продолговатого мозга заболевших животных.
Наиболее употребительны в наст, время культуральные пробирочные методы вирусологической и серологической диагностики как самые дешевые и доступные для обследования большого числа проб. Благодаря целой серии исследований Эндерса, Солка, Янгнера, Мельника, Дульбекко и многих других в 1949—1955 гг. были разработаны эффективные методики выделения, размножения и идентификации энтеровирусов в культурах клеток.
Выделение и размножение вируса полиомиелита для лабораторных целей возможно в первичных культурах нормальных тканей от человека (хирургические отходы и эмбрионы) или разных видов обезьян. Для этого чаще всего использовались фибробласты кожно-мышечной ткани, клетки почек, семенника, амниона и др. Кроме того, могут с успехом использоваться вторичные культуры или лабораторные линии непрерывно растущих клеток ракового происхождения (часто применялись лабораторные линии клеток человеческого рака: Не1а, НЕР-2, КВ, НЬ8, Детройт-6 и др.), а также непрерывные линии клеток, происходящих от нормальных тканей (напр., клетки амниона человека и клетки СОЦ— из сердца обезьяны циномольгус). Кроме того, оказалось, что в ряде случаев непрерывные лабораторные линии клеток, происходящие от животных (кроликов, свиней), не восприимчивых к полиомиелиту, могут становиться полностью восприимчивыми к заражению полиовирусом в результате происходящей трансформации (возможно ма-лигнизации ткани) в процессе длительных пассажей непрерывно растущих клеток.
Культуры клеток в подходящей жидкой среде для размножения полиовируса могут изготовляться асептично разными методами (взвесь фрагментов ткани, однослойная клеточная мембрана на стекле; фиксирование фрагментов в куриной плазме; покрытие агаром клеточного слоя на стекле и т. п.) в герметически закрытых стерильных сосудах. Добавление небольшого количества антибиотиков (100—200 ЕД пенициллина, 50 цг стрептомицина на 1 млсреды) надежно предохраняет большинство асептично приготовленных культур клеток от случайного прорастания ми-кробами-контаминантами из воздуха.
О присутствии активного полиовируса в растущей культуре клеток можно судить по наступающей дегенерации клеток в результате цитопатогенного действия вируса. При этом необходимо сравнение с контрольными незараженными клетками и последующая проверка специфичности цитопатогенного эффекта в опыте нейтрализации типовой иммунной сывороткой.
Кроме того, цитопатогенное действие полиовируса во взвеси клеток можно зарегистрировать с помощью наблюдений за изменениями цвета фенолрот или другого индикатора рН среды, а именно клетки во взвеси, не содержащей полиовируса, постепенно в течение нескольких дней сдвигают рН среды в кислую сторону и цвет фенолрот меняется из красного в желтый; в то же время в пробирках с активным вирусом полиомиелита клетки быстро дегенерируют, метаболизм прекращается, кислотность среды не изменяется, и исходный красный цвет среды (с индикатором фенолрот около 0,004%) сохраняется до конца наблюдения. На этой основе разработана методика так наз. цветной пробы (или рН-тест) для выделения и титрования вируса полиомиелита, а также для определения титра антител в сыворотке. В цветной пробе могут ставиться и опыты нейтрализации с целью определения иммунологического типа обследуемого вируса.
Вирус полиомиелита можно обнаруживать и по образованию изолированных колоний, или бляшек, в культурах однослойных клеток, покрытых слоем питательного агара. Бляшкообразование в агаровых культурах растущих клеток с индикатором нейтральрот используется для точного определения титра полиовируса в материале или для дифференциации выделенных штаммов по чувствительности к снижению концентрации бикарбонатов и катионов.
Ход исследования материала в пробирочных культурах ткани на вирус полиомиелита включает следующие методики: предварительное выращивание в течение нескольких дней незараженных клеточных культур, внесение в хорошо развившиеся культуры исследуемого материала, предварительно обработанного антибиотиками и др., инкубирование зараженных культур при 1° 37° и наблюдение за состоянием клеток культуры примерно в течение 10 дней. Некоторые пробы фекалий токсичны для культур, что обычно выявляется через 24 часа, и в этих случаях следует перевить материал культуры на 5-й день. Специфическое действие вируса на клетки обычно выявляется на 3—5-й день, иногда на 6—8-й день после заражения; при отсутствии дегенерации в культурах первого заражения можно попытаться продолжить наблюдение за культурами после замены среды свежей питательной жидкостью. При обнаружении дегенерации клеток зараженных культур проводится перевивка жидкости из таких культур на свежие культуры и определение в серии культур титра выделенного цитопатогенного вируса, а затем опыт нейтрализации с включением специфических иммунных сывороток. Выделение и типирование вируса можно проводить одновременно, добавляя в питательную среду культур разные виды типоспецифических иммунных сывороток; при этом вирус будет подавляться в культурах с гомотиповои иммунной сывороткой и проявлять свое действие в культурах с гетеротиповыми иммунными сыворотками или без сыворотки.
ведущий научный сотрудник, руководитель отдела вирусологии и молекулярнобиологических методов исследования, д.б.н.,
старший научный сотрудник отдела вирусологии и молекулярно-биологических методов исследования, к.б.н.,
научный сотрудник отдела вирусологии и молекулярно-биологических методов исследования, к.б.н.,
научный сотрудник отдела вирусологии и молекулярно-биологических методов исследования, к.м.н.,
1. Скрипченко, Н.В. Энтеровирусная инфекция у детей (эпидемиология, этиология, диагностика, клиника, терапия, профилактика): учебное пособие для врачей и медицинских сестер / Н.В. Скрипченко. – СПб.: НИИДИ, 2009. – 96 с.
3. Беляков, В. Д. Эпидемиология: учебник / В. Д. Беляков, P. X. Яфаев – М.: Медицина, 1989. – 416 с.
4. Лобзин, Ю.В. Энтеровирусные инфекции: руководство для врачей / Ю.В. Лобзин, Н.В. Скрипченко, Е.А. Мурина. – СПб, 2012. – 432 с.
5. Лещинская, Е.В. Случаи вакциноассоциированного паралитического полиомиелита в Российской Федерации в 2000–2002 гг. / Е.В. Лещинская [и др.] // Российский медицинский журнал. – 2004. – № 3. – С. 19–24.
7. Программа ликвидации полиомиелита в СанктПетербурге на 1997–2000 годы. – 1997. – СПб. – 7 с.
8. Drake J.W., Holland J.J. Mutation rates among RNA viruses. Proc Natl AcadSci USA. 1999; 96: 13910- 13
9. Ward CD, Stokes MA, Flanegan JB. Direct measurement of the poliovirus RNA polymerase error frequency in vitro. J Virol. 1988; 6: 558-62
10. Kew O.M., Mulders M.N., LipskayaG.Yu, da Silva E.E., Pallansch M.A. Molecular epidemiology of polioviruses. SemVirol. 1995; 66: 401-14.
11. Kinnunen L, Poyry T, Hovi T. Genetic diversity and rapid evolution of poliovirus in human hosts. Curr Top MicrobiolImmunol. 1992; 176: 49-61.
12. Gavrilin G.V., Cherkasova E.A., Lipskaya G.Y., at al. Evolution of circulating wild poliovirus and of vaccine-derived poliovirus in an immunodeficient patient: a unifying model. J Virol. 2000; 74(16): 7381-90.
13. Shiomi H., Urasawa T., Urasawa S., at al. Isolation and characterisation of poliovirus mutants resistant to heating at 50 degrees Celsius for 30 min. J. Med. Virol. 2004; 74(3): 484–91.
14. Ackermann W.W., Fujioka R.S., Kurtz H.B. Cationic modulation of the inactivation of poliovirus by heat. Arch. Environ. Health. 1970; 21(3): 377–81
15. Dorval B.L., Chow M., Klibanov A.M. Stabilization of poliovirus against heat inactivation. Biochem. Biophys. Res. Commun. 1989; 159(3): 1177–83.
16. Shin G.-A., Sobsey M.D. Reduction of Norwalk virus, Poliovirus 1 and coliphage MS2 by monochloramine disinfection of water. Water Sci. Technol. 1998; 38(12):151–54.
17. Alvarez M.E., O’Brien R.T. Effects of chlorine concentration on the structure of Poliovirus. Appl. Environ. Microbiol. 1982; 43(1): 237–39.
18. Alvarez M.E., O’Brien R.T. Mechanism of inactivation of Poliovirus by chlorine dioxide and iodine. Appl. Environ. Microbiol. 1982; 44(5): 1064–71.
19. Herbold K., Flehmig B., Botzenhart K. Comparison of ozone inactivation, in flowing water, of Hepatitis A virus, Poliovirus 1, and indicator organisms. Appl. Environ. Microbiol. 1989; 55(11): 2949–53
20. Носов, С. Д. Руководство по инфекционным болезням у детей / С.Д. Носов. – 2-е издание, переработанное и дополненное – М.: Медицина, 1980. – 600 с.
21. Руководство по вирусологическим исследованиям полиомиелита. ВОЗ. Женева, 1998.
22. Руководство по лабораторным исследованиям полиомиелита. ВОЗ. Женева. 2005.
23. Лашкевич, В.А. Неполиомиелитные энтеровирусные инфекции: эпидемиология, характеристика энтеровирусов, клиника, диагностика, профилактика: методическое пособие / В.А. Лашкевич, С.Г. Дроздов, В.П. Грачев. – М.: Федеральный центр Госсанэпиднадзора РФ, 2004.
24. Энтеровирусные заболевания: клиника, лабораторная диагностика, эпидемиология, профилактика: Методические указания (МУ 3.1.1.2130-06).
25. DulbeccoR, VogtM. Plaque formationand isolation ofpure lines with poliomyelitis viruses. J Exp Med 1954, 99: 167-182.
26. Enders J.F. Early observations on cytopathogenicity of poliovirus. American Journal of Clinical Pathology 1972; 57(6): 846
27. Melnick, J.I., Ledinko N. Vaccination as a provoking factor in poliomyelitis: An experimental approach. Journal of Infectious Diseases. 1952; 90:279.
28. Организация и проведение вирусологических исследований материалов от больных полиомиелитом, с подозрением на это заболевание, с синдромом острого вялого паралича (ОВП). Методические указания. МУК 4.2.2410-08 (утв. Роспотребнадзором 28.07.2008).
29. Manor Y, Handsher R, Halmut T, at al. Detection of poliovirus circulation by environmental surveillance in the absence of clinical cases in Israel and the Palestinian authority. J. Clin. Microbiol. 1999; 37: 1670 – 75.
30. Dahling D.R., Wright B.A. Optimization of the BGM cell line culture and viral assay procedures for monitoring viruses in the environment. Appl. Environ. Microbiol. 1986; 51 (4): 790- 812.
31. Профилактика инфекционных болезней. Кишечные инфекции. Эпидемиологический надзор за полиомиелитом и острыми вялыми параличами в постсертификационный период. Методические указания МУ 3.1.1.2360-08.
32. Arola A., Kallajoki M., Ruuskanen O., Hyypia T. Detection of enteroviral RNA in end-stade dilated cardiomyopathy in children and adolescents. J.Med.Virol. 1998; 56(4): 364-71.
33. Mullis K.B., Faloona F.A. R.Wu(ed.). Methods in enzymology. London. Academic Press. 1987; 155: 335 – 50.
34. Innis M.A., Gelfand D.H., Sninsky J.J., at al. PCR protocols, a guide to methods and applications. California: Academia Press & San Diego. 1990; 241р.
35. Glimaker M., Johansson B., Ols n P., at al. Detection of enteriviral RNA by polymerase chain reaction in cerebrospinal fluid from patients with aseptic meningitis. Scand. J. Infect. Dis. 1992; 25: 547–57.
36. Petitjean J., Freymuth F., Kopecka H., at al. Detection of enteroviruses in cerebrospinal fluids: enzymatic amplification and hybridization with biotinylated riboprobe. Mol. Cell. Probes. 1994; 8:15–22
37. Rotbart H.A. Diagnosis of enteroviral meningitis with polymerase chain reaction. J. Pediatr. 1990; 117:85–89.
38. AhmedA, Hickey SM, Ehrett S, at al. Clinical utility of the polymerase chain reaction for diagnosis of enteroviral meningitis in infancy. Pediatrics. 1997; 131:393–97.
39. Andraeoletti L., Blassel-Damman N., Dewilde A. Comparison of use of cerebrospinal fluid, serum, and throat swab specimens in diagnosis of enteroviral acute neurological infection by a rapid RNA detection PCR assay. J. Clin. Microbiol. 1998; 36: 589– 91.
40. Hamilton M.S., Jackson M.A., Abel D. Clinical etility of polymerase chain reaction testing for enteroviral meningitis. Pediatr. Infect. Dis. J. 1999; 18: 533–37.
41. Akhtar N., Ni J., Stromberg D., Rosenthal G.L., at al. Tracheal aspirate as a substrate for polymerase chain reaction detection of viral genome in childhood pneumonia and myocarditis. Circulation. 1999; 99:2011–18.
42. Egger D., Pasamontes L., Ostermayer M., Bienz K. Reverse transcription multiplex PCR for differenciation between polioand enteroviruses from clinical and environmental samples. J. Clin. Microbiol. 1995; 33:1442 -47.
43. Muir P., Nicholson F., Jhetam M., at al. Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical samples. J. Clin. Microbiol. 1993; 31:31–38.
44. Pichichero M.E., McLinn S., Rotbart H.A., at al. Clinical and economic impact of enterovirus illness in private pediatric practice. Pediatrics. 1988; 102: 1126–34.
45. Carrie L., Byington C.L., Taggart E.W., at al. A polymerase chain reaction-based epidemiologic investigation of the incidence of nonpolioenteroviral infections in febrile and afebrile infents 90 days and younger. Pediatrics. 1999;103: 27.
46. Marshall G.S., Hauck M.A., Buck G., Rabalais G.P. Potential cost savings through rapid diagnosis of enteroviral meningitis. Pediatr. Infecs. Dis. J.1997; 16: 1086 –87.
47. Casas J., Pozo F., Trallero G., at al. Viral diagnosis of neurological infection by RT multiplex PCR: A search for entero- and herpesviruses in a prospective stidy. J.Med.Virol. 1999; 57(2):145-51. 48. Федоров, Н.А. Методы генодиагностики инфекционных и неинфекционных заболеваний / Н.А.Федоров // Российский журнал гастроэнтерологии, гепатологии и колопроктологии. – 1996. – Т 6, № 1. – С. 20–23.
48. Duck P., Alvarado-Urbina G., Burdick B.,Collier B. Probeamplifier system based on chimeric cycling oligonucleoti des. BioTechniques 1990; 9:142-148.
49. Залесских, А.Ф. Ускоренный метод идентификации энтероврирусов методом встречного иммуноэлектрофореза / А.Ф. Залесских // Вопросы вирусологии. -1982.- № 2. – С. 197-199.
50. Ланская, Т.И. Электронномикроскопическое исследование культуры клеток Hep-2, инфицированных вирусом Коксаки группы В / Т.И. Ланская, Б.А. Ерман, В.С. Головин // Материалы XV научой сессии института полиомиелита и вирусных энцефалитов.- M.; 1968. – С. 65-68.
51. Дяченко, С.С. Изучение возможных механизмов дифференциации вирусов Коксаки по свойству адсорбции на бентоните // С.С. Дяченко, В.П. Широбоков // Материалы XV научной сессии института полиомиелита и вирусных энцефалитов. – М.; 1968. – С. 32-39.
53. Мурина, Е.А. Характеристика вирулентных серотипов энтеровирусов и их роль в генезе серозных менингитов и острых вялых параличей : автореф. дис. … д-ра биол. наук. / Е.А. Мурина. – СПб.: НИИДИ, 2002. – 43 с.
- Обратные ссылки не определены.
Контент доступен под лицензией Creative Commons Attribution 4.0 License.
Глава 45. Возбудители полиомиелита
Заболевание полиомиелитом было известно очень давно. В египетском храме был обнаружен барельеф с изображением египетского жреца, у которого одна нога тоньше другой (сухая нога), а стопа другой находилась в положении "конской стопы" - теперь известно, что это результат заболевания полиомиелитом.
Возбудители полиомиелита входят в семейство Picornaviridae (от лат. pico - маленький, rna - РНК-содержащий).
Это семейство включает три рода, из которых в патологии человека наибольшее значение имеют энтеровирусы: возбудители полиомиелита, Коксаки и ECHO (Enteric cytopathogenic human orphan viruses) (orphan - сирота).
Вирусная этиология полиомиелита была установлена К. Ландштейнером и Э. Папером в 1909 г. в опытах на обезьянах.
Морфологическая структура (см. рис. 52) Полиовирус относится к малым вирусам (15-30 нм). Вирус состоит из однонитчатой РНК и белкового капсида, состоящего из 32 капсомеров. Форма вируса кубоидальная. Внешней оболочки нет. Углеводы и липиды не обнаружены. Инфекционные свойства связаны с РНК.
Культивирование. Вирус полиомиелита хорошо размножается в культуре клеток почек обезьян, фибробластов, эмбриона человека и перевиваемых культурах клеток. Размножение вируса сопровождается цитопатическим действием (дегенерацией клеток).
Антигенная структура. Известны три серологических типа вируса полиомиелита, которые обозначаются римскими цифрами (I, II, III). Наибольшее эпидемиологическое значение имеет вирус I типа (вызывает заболевания в 65-90% случаев). Вирус II типа обнаруживается в 10-12%, вирус III типа вызывает отдельные спорадические заболевания.
Серотипы полиовируса различаются в реакции нейтрализации. Они не вызывают перекрестного иммунитета.
Устойчивость к факторам окружающей среды. Кипячение убивает вирус быстро. Температура 50° С губит его через 30 мин. При комнатной температуре вирус может сохраняться до 3 мес. Низкие температуры он переносит хорошо. В испражнениях на холоде полиовирус сохраняется до 6 мес. В молоке - до 3 мес. Полиовирусы длительно сохраняются в почве, открытых водоемах, что имеет эпидемиологическое значение. Вирусы устойчивы к воздействию желудочного сока и к 1% фенолу. Чувствительны к формалину, хлорамину, перекиси водорода, перманганату калия и др.
Восприимчивость животных. К вирусу полиомиелита I и III типа чувствительны обезьяны (шимпанзе, макаки). К вирусу II типа чувствительны грызуны (хлопковые крысы, хомяки, мыши). Экспериментальное заражение вызывает у них заболевание, сопровождающееся параличами.
Источники инфекции. Больные люди и вирусоносители.
Пути передачи. Пищевой (вирус выделяется с фекалиями до 40 дней). Заболевание может передаваться мухами (мухи переносят вирус на лапках, брюшке) и через объекты окружающей среды; воздушно-капельный (в первые дни болезни вирус выделяется из носоглотки).
Патогенез. Входными воротами является слизистая оболочка верхних дыхательных путей и пищеварительного тракта. Попав в организм на слизистую носоглотки, вирус проникает в лимфатические узлы глоточного кольца и тонкого кишечника, где происходит его репродукция (размножение). В крови накапливаются вируснейтрализующие антитела, блокирующие проникновение вируса в ЦНС. В том случае, когда вирус все-таки проникает в ЦНС, он локализуется с двигательных клетках передних рогов спинного мозга и в сером веществе подкорки, где вызывает воспалительно-дегенеративный процесс. В результате возникают вялые параличи, чаще нижних конечностей.
Клинически полиомиелит протекает в трех формах: абортивной, непаралитической (менингеальной) и паралитической (в 1% случаев).
Полиомиелитом чаще болеют дети в возрасте от 5 мес до 5-6 лет. Выделяется вирус полиомиелита с испражнениями и слизью носоглотки.
Иммунитет. После перенесенного заболевания остается пожизненный иммунитет, обусловленный образовавшимися вируснейтрализующими антителами к гомологичным типам вируса.
Профилактика. Ранняя диагностика и изоляция больных.
Специфическая профилактика осуществляется активной иммунизацией. Первая вакцина была предложена Солком в 40-х годах XX века. Эта вакцина состояла из инактивированных формалином полиовирусов I, II и III типа. Однако она не вызывала образования стойкого иммунитета и была очень болезненна при внутримышечном введении.
Вторая вакцина была предложена Сэбином. Она состояла из живых аттенуированных (ослабленных) штаммов-мутантов трех типов полиомиелита. Эти штаммы были лишены инфекционных свойств, но сохранили иммуногенность.
В 60-х годах М. П. Чумаков и А. А. Смородинцев, использовав ослабленный штамм, полученный Сэбином, разработали метод приготовления вакцины в виде конфет-драже, что значительно облегчило ее применение. Массовая вакцинация детей привела к почти полной ликвидации полиомиелита в СССР, за, что авторы получили Ленинскую премию.
Механизм действия вакцины состоит в интерференции вирусов, т. е. вакцинный штамм вируса, заселяя клетки кишечника, блокирует репродукцию дикого штамма, а также в образовании вируснейтрализующих антител.
Лечение. Симптоматическое. Применяют иммуноглобулин.
Цель исследования: выявление вируса и определение его типа; серодиагностика.
1. Кал больных (взятые на 1-й и 2-й неделе заболевания).
2. Носоглоточное отделяемое (взятое в первые дни заболевания).
3. Кусочки головного и спинного мозга, содержимое тонкого и толстого кишечника, лимфоузлы (секционный материал).
Способы сбора материала
1. Выделение вирусов путем заражения различных культур клеток.
2. Серологическое исследование (реакция нейтрализации) и РСК.
Выделение вирусов проводят путем заражения исследуемым материалом двух видов культур - первичных и перевиваемых клеток.
Ход исследования
О наличии вируса судят по цитопатическому действию на клетки.
При отсутствии дегенерации клеток в течение 7-10 дней после заражения проводят следующий пассаж. Для второго посева используют культуральную жидкость, взятую из первого пассажа, и заражают новую культуру клеток.
При отсутствии дегенерации клеток во втором пассаже результат считают отрицательным.
При положительном результате проводят типирование выделенного вируса с коммерческими сыворотками против вируса полиомиелита трех типов методом нейтрализации в культуре клеток и РСК.
Методы ретроспективной диагностики. Для подтверждения диагноза полиомиелита ставят реакцию нейтрализации с парными сыворотками больного. Одну сыворотку берут в начале заболевания, вторую - через месяц после начала заболевания. Обе сыворотки исследуют одновременно в реакции нейтрализации. Для этого сыворотки прогревают в течение 30 мин при 56° С и разводят раствором Хенкса. Разведения делают от 1:4 до 1:1024. Каждое разведение смешивают со стандартной дозой вируса I, II и III типа. После часового контакта (при комнатной температуре) каждой смесью заражают по 2 пробирки со взвесью культуры клеток и помещают в термостат на 4-9 дней. О результатах реакции судят по изменению цвета среды (от малинового до желтого). Изменение цвета свидетельствует о наличии антител. Изменение цвета происходит потому, что клетки остаются жизнеспособными, образуют продукты обмена, изменяющие реакцию рН и соответственно цвет среды. Жизнеспособность клеток обеспечивает нейтрализация вируса соответствующей сывороткой.
Положительной реакцию считают только при четырехкратном увеличении титра вируснейтрализующих антител, т. е. если, например, титр первой сыворотки был 1:8, а во второй, взятой через 1-2 мес, титр не менее чем 1:32.
Вирус Коксаки впервые выделили в 1948 г. Г. Долдорф и И. Сиклс в городе Коксаки в США из испражнений детей при полиомиелитоподобных заболеваниях.
Морфологическая структура. Вирусы Коксаки относятся к мелким вирусам (20-30 нм). В их состав входит РНК и белок, форма кубоидальная.
Культивирование. Культивируются они так же как и полиовирус.
Антигенная структура. По антигенной структуре и патогенным свойствам вирусы Коксаки разделяют на 2 группы: А и В.
В группу А входят 24 серологических типа, которые различаются в реакции нейтрализации.
В группу В входят 6 серотипов, различающихся также в реакции нейтрализации.
Устойчивость к факторам окружающей среды. Кипячение губит вирусы Коксаки быстро, 50-55° С - через 30 мин. Низкие температуры вирусы переносят хорошо. При температуре -70° С они сохраняются около 3 мес. Вирусы устойчивы к различным концентрациям водородных ионов, действию эфира, 5% лизолу, но проявляют чувствительность к хлороводородной кислоте, формальдегиду и т. д.
Восприимчивость животных. Вирус типа А вызывает у новорожденных мышей параличи, а серотип 7 - полиомиелитоподобные заболевания у обезьян и хлопковых крыс. Вирус типа В у новорожденных мышей вызывает спастические параличи.
Источники инфекции. Вирусы Коксаки в природе широко распространены. Они выделяются с испражнениями и из носоглотки от больных и вирусоносителей.
Пути передачи. Пищевой (при использовании зараженной воды, пищи и при контакте с объектами внешней среды, инфицированными вирусом; вирусы могут переноситься мухами), воздушно-капельный (больной выделяет вирусы при чиханье, кашле в первые дни болезни).
Патогенез. Входными воротами является слизистая оболочка носоглотки и пищеварительного такта. Вирусы Коксаки характеризуются нейро- и миотропностью. Вирусы Коксаки А могут вызвать паралитические заболевания, схожие с полиомиелитом. Вирусы Коксаки группы В вызывают асептический серозный менингит, асептический миокардит и другие энтеровирусные заболевания.
Иммунитет. После перенесенного заболевания остается стойкий типоспецифический иммунитет.
Профилактика. Санитарные мероприятия: изоляция больных, карантин. Специфическая профилактика не разработана.
Цель исследования: выделение вируса и определение его типа.
Материал для исследования, способы его сбора и основные методы исследования такие же, как и при полиомиелите.
Методы диагностики. Выделение вирусов проводят так же, как и при полиомиелите: посев исследуемого материла на первичные и перевиваемые культуры клеток. Некоторые серотипы Коксаки А с трудом адаптируются в культуре клеток.
Выделенные вирусы идентифицируют в РСК и реакции нейтрализации.
Для дифференциации вируса Коксаки типа А от типа В ставят биологическую пробу: заражают новорожденных белых мышей (сосунков).
Вирус типа А вызывает у них вялые параличи без энцефалита, а вирус типа В вызывает судороги и параличи, кроме того, наблюдается поражение внутренних органов - печени, поджелудочной железы и др. При заболевании, вызванном вирусами Коксаки, используют также ретроспективный метод серодиагностики, ставят реакции нейтрализации с парными сыворотками (см. главу 45).
В 1941 г. Д. Эндерс при изучении полиомиелита выделил из кишечника больного вирус, который по серологическим свойствам отличался от вируса полиомиелита и других кишечных вирусов, и назвал его orphan - сирота. Дальнейшие работы показали, что имеется большое количество схожих с ним вирусов, а всю группу назвали ECHO - Enteric cytopathogenic human orphan viruses.
Морфологическая структура. Величина вируса ECHO 10-15 нм. По своей структуре и репродуктивной способности он мало отличается от полиовирусов и вирусов Коксаки.
Культивирование. Вирусы ECHO, так же как вирусы полиомиелита и Коксаки, культивируют на первичных и перевиваемых линиях клеток.
Антигенные свойства. Вирусы ECHO включают 32 серологических типа, не создающих перекрестного иммунитета.
Устойчивость к факторам окружающей среды. Такая же, как и у вирусов Коксаки.
Восприимчивость животных. Животные не чувствительны к вирусам ECHO.
Источники инфекции, пути передачи и входные ворота. Такие же, как у вирусов полиомиелита и Коксаки.
Патогенез. Вирусы ECHO являются причиной разнообразных заболеваний - вызывают асептический серозный менингит, энтеровирусную лихорадку, эпидемические экзантемы, миокардит и другие лихорадочные заболевания.
Иммунитет. Вирусы ECHO создают стойкий иммунитет за счет вируснейтрализующих антител.
Профилактика. Общесанитарные мероприятия как и при других кишечных инфекциях, но следует помнить, что переохлаждение и перегревание способствуют распространению энтеровирусных заболеваний. Специфическая профилактика не разработана.
Материал для исследования, способы его сбора, основные методы исследования и диагностики такие же, как и для других энтеровирусных заболеваний. Однако в качестве культуры клеток ткани лучше использовать первично-трипсинизированные.
1. Какие вирусы включены в семейство Picornaviridae?
2. Каковы величина и морфологическая структура вирусов полиомиелита, Коксаки и ECHO?
3. Какие Вы знаете методы культивирования полиовирусов? Чем сопровождается размножение вирусов в культурах клеток?
4. Какие Вы знаете типы полиовирусов? Какой из них имеет наибольшее эпидемиологическое значение?
5. Источники заболевания, ворота инфекции и патогенез при заболевании полиомиелитом.
6. Расскажите о специфической профилактике полиомиелита.
7. Какой материал следует взять для исследования и какие основные методы используются для диагностики при подозрении на полиомиелит?
Читайте также: