Что такое проводимость в нервной системе
От нервных клеток, находящихся в головном и спинном мозгу, отходят отростки, которые и являются нервными волокнами, идущими к периферии. Нервные волокна собираются в пучки разной толщины. Такое скопление нервных волокон называется нервом.
Нервы осуществляют связь между центральной нервной системой и отдельными органами нашего тела. По нервам возбуждение идет либо из центральной нервной системы к рабочему органу, либо от разных участков нашего тела в центральную нервную систему.
Нервы делятся на две группы в зависимости от того, в каком направлении они проводят возбуждение.
Рис. Схема распространения возбуждения при раздражении нерва
Одна группа нервов проводит возбуждение из центральной нервной системы к рабочим органам. Они называются эфферентными (центробежными, или двигательными) нервами. Другая группа проводит возбуждение с разных участков нашего тела и от разных органов в центральную нервную систему. В отличие от предыдущей группы нервов они получили название афферентных (центростремительных, или чувствительных) нервов. Оба рода нервных волокон часто идут в одном стволе, поэтому большинство нервов являются смешанными.
СТРОЕНИЕ НЕРВА
Нервная система состоит из нервных клеток, которые называются нейронами. Нейрон состоит из тела нервной клетки и ее отростков. Различают два вида отростков: а) отростки короткие, ветвистые — дендриты, и б) очень длинный отросток, который тянется от центральной нервной системы до рабочего органа,— а к с о н, который участвует в формировании нервов.
Наконец, имеются еще и особые образования на окончаниях нервов- так называемые концевые аппараты, при помощи которых осуществляется связь нервного волокна с мышцей, железой или другими органами, или рецепторы — окончания центростремительных нервов, воспринимающие раздражение.
Короткие отростки — дендриты — осуществляют связь между отдельными нервными клетками и почти не выходят за пределы центральной нервной системы.
Аксон же тянется из головного или спинного мозга до рабочего органа. Нервы, которые мы встречаем в организме, состоят из аксонов, несущих возбуждение в центральную нервную систему или, наоборот, из центральной нервной системы.
Нормальное протекание обмена веществ во всех отростках нервной клетки связано с ее целостностью. В этом можно убедиться, если перерезать нервное волокно и тем самым нарушить его связь с телом клетки. Деятельность такого волокна нарушается, и та часть, которая отрезана от клетки, отмирает. Совершенно иные явления наблюдаются в той части волокна, которая осталась связанной с телом клетки. Эта часть продолжает жить, нормально функционирует, обмен веществ не нарушен. Более того, такой отрезок растет и через некоторое, время может дойти до мышцы, чем и восстановится целость, нерва. Этим объясняется наблюдающееся иногда восстановле ние движений парализованной конечности через определенный промежуток времени, если паралич был вызван поражением нерва.
Такой особенностью пользуются и хирурги, которые часто производят сшивание нервов с целью восстановления деятельности парализованного органа.
Нервная клетка возбуждается под влиянием тех волн возбуждения, которые поступают с периферии по центростремительным нервам. Однако многие нервные клетки могут возбуждаться даже без поступления импульсов с рецепторов. В этих клетках возбуждение может возникнуть под влиянием гуморальных воздействий. Примером может служить деятельность теплового центра, на функции которого влияет температура крови, и др.
СВОЙСТВА НЕРВНОГО ВОЛОКНА
Нервное волокно обладает возбудимостью и проводимостью. В этом можно убедиться, если нанести электрическое раздражение какому-либо участку нерва нервно-мышечного препарата. Почти тотчас после нанесения раздражения мышца сокращается. Сокращение мышцы стало возможным потому, что при раздражении в нерве возникло возбуждение, которое, пройдя по нерву, поступило к мышце и обусловило ее деятельность.
Для проведения возбуждения необходима анатомическая целость нервного волокна. Перерезка нерва делает невозможной передачу возбуждения. Возбуждение не проводится в случае перевязки, сдавливания или нарушения целости нерва любым иным способом. Однако не только анатомические, но и физиологические нарушения вызывают прекращение про ведения. Нерв может быть целым, но он не будет проводить возбуждения, так как его функ ции нарушены.
Нарушение проведения мож но наблюдать при охлаждении или нагревании нерва, прекращении его кровоснабжения, от равлении и т. д.
Проведение возбуждения по нерву подчиняется двух основ ным законам.
1. Закон двустороннего проведения. Нервное волокно обладает способностью проводить возбуждение по двум направлениям: центростремительно и центробежно. Независимо от того, какое это нервное волок но — центробежное или центростремительное, если ему нане сти раздражение, то возникшее возбуждение будет распространяться в обе стороны от места раздражения (рис.). Это свойство нервного волокна впервые открыл выдающийся русский ученый Р. И. Бабухин (1877).
2. Закон изолированного проведения. Периферический нерв состоит из большого числа отдельных нервных волокон, которые вместе идут в одном и том же нервном стволе. В нервном стволе одновременно могут проходить самые разнообразные центробежные и центростремительные нервные волокна. Однако возбуждение, которое передается по одному нервному волокну, не передается на соседние. Благодаря такому изолированному проведению возбуждения по нервному волокну возможны отдельные весьма тонкие движения человека. Художник может создавать свои полотна, музыкант — исполнять сложные музыкальные произведения, хирург — производить тончайшие операции потому, что каждое волокно изолированно передает импульс мышце, и тем самым центральная нервная система имеет возможность координировать мышечные сокращения. Если бы возбуждение могло переходить на другие волокна, стало бы невозможным отдельное мышечное сокращение, каждое возбуждение сопровождалось бы сокращением самых разнообразных мышц.
Статья на тему Строение нерва
Электронейромиография (ЭНМГ) – инновационный метод исследования функции нервной и мышечной системы, который врачи Юсуповской больницы широко используют в диагностике различных заболеваний. Нейрофизиологи Юсуповской больницы применяют все известные сегодня методы электронейрографии.
Врачи Юсуповской больницы с помощью ЭНМГ выявляют заболевания нервов и мышц на ранних стадиях, когда при клиническом осмотре отклонений ещё не наблюдается, устанавливают уровень поражения нерва. Индивидуальный подход к выбору метода электронейромиографии позволяет провести дифференциальную диагностику между периферическим поражением нерва, нервного корешка и сплетения, оценить тяжесть поражения мышц и периферической нервной системы и мышц, оценить результаты лечения и степень восстановления, характер течения заболевания. С помощью ЭНМГ неврологи определяют причину нарушения мочеиспускания и эректильной дисфункции.
Методики
- компактный;
- молниеносно регистрирует ЭНМГ;
- вызванные потенциалы всех модальностей находятся в базовом комплекте;
- регистрирует электронейромиограмму по мировым стандартам.
Мышечные волокна сокращаются за счёт происходящих в нём электрохимических реакций, в результате чего возникает очень слабый электрический потенциал. Электромиограф усиливает его и выводит в виде кривой на мониторе компьютера. Расшифровав полученный результат, нейрофизиологи определяют, какие патологические изменения имеются в нервах и мышцах.
- моторные – отвечают за работу мышц;
- сенсорные – обеспечивают чувствительность;
- вегетативные – в компетенции которых находится работа внутренних органов.
Нервные корешки выходят из спинного мозга и образуют парные сплетения (шейные, плечевые, поясничные и крестцовые. Они распадаются на периферические нервы. Сенсорные нервы получают информацию от болевых, температурных, тактильных и рецепторов, фиксирующих давление. Моторные нейроны связаны с мышечными волокнами посредством нервно-мышечных синапсов. С помощью синапсов контактируют с внутренними органами и вегетативные нервы.
Патологический процесс может локализоваться на любом уровне – от клетки спинного мозга до нервно-мышечного синапса. Иногда проводимость нервного импульса блокируется за счёт повреждения нерва или его оболочки. Анализ ЭНМГ позволяет найти место повреждения и определить его характер.
Стандартная методика исследования моторных и сенсорных волокон периферических нервов врач проводит согласно алгоритму:
- на кожу над поверхностью мышцы, иннервируемой изучаемым нервом, накладывает электроды;
- подключает их к электронейромиографу;
- фиксирует электрические потенциалы;
- убирает электроды и протирает кожу спиртовым раствором антисептика.
Исследование и анализ состояния большинства крупных нервов не вызывает сложностей. Сплетения образуются из множества периферических нервов. Часто возникает необходимость исследовать каждый из них. ЭНМГ периферических нервов выполняют в Юсуповской больнице.
Игольчатая ЭНМГ применяется для исследования мышц. Процедуру проводят при наличии следующих показаний:
- подозрение на патологию двигательного нейрона спинного мозга;
- заболевания мышц;
- необходимость в определении степени поражения мышцы при неврологической патологии.
Врач вводит тонкую иглу-электрод в исследуемую мышцу, регистрирует электрическую активность мышцы в покое и при умеренном напряжении. Игольчатая ЭНМГ представляет собой более сложный с точки зрения интерпретации метод. Исследование часто занимает больше времени, чем поверхностная электронейромиография.
Показания для исследования функции мышц и нервов
ЭНМГ неврологи назначают при наличии следующих симптомов и синдромов:
Врачи клиники неврологии применяют ЭНМГ для диагностики и мониторинга результативности проводимой терапии пациентам, страдающим боковым амиотрофическим склерозом, диабетической полинейропатией, миастеническим синдромом Ламберта-Итона. Исследование показано больным миастенией, миелодисплазией спинного мозга, миозитом и полимиозитом. Электронейромиография проводится в случае миопатии, неврита тройничного нерва, невропатии лицевого нерва (паралича Белла).
Показанием к ЭНМГ периферических нервов являются следующие заболевания:
- мононевропатия;
- плексопатия, плексит;
- невропатия седалищного нерва;
- полимиалгия, полиневрит;
- радикулопатия при грыже межпозвонкового диска.
Подготовка к процедуре
Электронейромиография не требует особых приготовлений. Невролог предупреждает пациента, что за сутки до исследования необходимо прекратить принимать лекарственных препаратов, которые снижают тонус скелетных мускулов (миорелаксантов), блокируют ацетохинолин (антихолинергиков), влияют на процессы передачи нервных импульсов. В течение 3 дней, предшествующих процедуре, следует исключить приём алкоголя, а в день исследования не курить.
Для того чтобы предотвратить кровоподтёки в местах введения игольчатых электродов, врачи Юсуповской больницы назначают пациентам анализ свёртываемости крови. Если показатели не соответствуют норме, проводят корригирующую терапию. При наличии воспаления или гнойничков кожи в месте введения электродов назначают лечение основного заболевания, а затем делают ЭНМГ. Процедуру не выполняют беременным и кормящим грудью женщинам. Больным эпилепсией и пациентам, страдающим расстройствами психического здоровья, процедуру выполняют после стабилизации их состояния на фоне поддерживающей терапии. Не проводят ЭНМГ пациентам, у которых в организме присутствуют эндопротезы, металлические пластины, стимуляторы сердечной деятельности.
Этапы процедуры и анализ результатов
Перед началом исследования пациента информируют обо всех последующих манипуляциях и о том, что он может чувствовать во время процедуры. Получить точные результаты ЭНМГ врачам Юсуповской больницы позволяет точное соблюдение этапов исследования:
- пациент принимает комфортное положение – сидя или лёжа;
- врач накладывает накожные электроды на определённые точки;
- при проведении игольчатой электронейромиографии вводит в мышцу стерильную разовую иглу-электрод;
- нейрофизиолог направляет к электроду сигнал, который определяет скорость проведения импульса по нервным волокнам и результаты реакции мышц.
Во время обследования пациент может ощущать лёгкое покалывание в местах присоединения электродов. Процедура длится от 30 минут до 1 часа, в зависимости от объёма исследования. ЭНМГ позволяет оценить общее состояние функции периферических нервных волокон, выявить патологические участки нервной и мышечной систем, определить выраженность выявленных нарушений.
В Юсуповской больнице расшифровку результатов ЭНМГ проводят неврологи-нейрофизиологи, кандидаты медицинских наук. Они сверяют полученные показания с нормой, определяют степень отклонения и на основании этих данных ставят диагноз. При поражении периферического нерва скорость проведения импульсов значительно снижена как по чувствительному, так и по двигательному нерву. Амплитуда потенциала действия нерва и ответа иннервируемых мышц в этом случае уменьшена, растянута и имеет изменённую форму.
При наличии диффузного аксонального повреждения изменения скорости незначительны, но хорошо прослеживается снижение амплитуды М-ответа мышцы и потенциала действия нерва. У пациентов с туннельным синдромом и демиелинизирующими заболеваниями нервной системы изменяется скорость проведения возбуждения по нервам. Сегментарные поражения спинного мозга или его передних рогов диагностируют по снижению амплитуды М-ответа, вплоть до полного его исчезновения.
Для того чтобы сделать электронейромиографию периферических нервов, запишитесь на приём к неврологу-нейрофизиологу Юсуповской больницы по телефону. Врач не только проведёт обследование перед процедурой и при отсутствии противопоказаний выполнит исследование, но и проведёт анализ ЭНМГ, установит диагноз и назначит лечение.
Помимо нейронов в состав нервной системы входят клетки глии. Совокупность нейронов и глиальных клеток составляет нервную ткань. Клетки глии, окружая со всех сторон нейроны, выполняют для них опорные, питательные и электроизолирующие функции.
Основными свойствами нервной ткани являются возбудимость, проводимость и лабильность, которые в свою очередь связаны с одним из самых общих свойств всего живого — раздражимостью.
Изменения в окружающей среде или организме называют раздражителями, процесс действия раздражителя — раздражением, а ответные изменения в деятельности клеток и целого организма — биологическими реакциями.
Основные физиологические свойства нервной ткани, ее проводимость, возбудимость и лабильность характеризуют функциональное состояние нервной системы человека, определяют его психические процессы. Нарушение проводимости и возбудимости нервной ткани, например при общем наркозе, прекращает все психические процессы человека и приводит к полной потере сознания.
Возбудимость и возбуждение. Клетки нервной ткани в процессе эволюции приспособились к быстрой ответной реакции на действие раздражителя, поэтому нервную ткань называют возбудимой, а ее способность быстро реагировать на раздражение — возбудимостью.
Возбуждение нервной клетки связано с изменением обмена веществ и сопровождается появлением электрических потенциалов — электрических, или нервных, импульсов.
Проводимость . Проводимость — способность живой ткани проводить возбуждение. Проводимость нервной ткани связана с распространением по ней процессов возбуждения. Возникнув в одной клетке, электрический (нервный) импульс легко переходит на соседние клетки и может передаваться в любой участок нервной системы.
Проводимость нервной ткани связана с тем, что возникший в месте возбуждения потенциал действия в свою очередь вызывает изменения ионных концентраций в соседнем участке. Возникнув на новом участке, потенциал действия вновь вызывает изменение концентрации ионов в соседнем участке и, соответственно, новый потенциал действия и т. д. Таким способом волна возбуждения распространяется вдоль всей ткани или отдельной нервной клетки.
Лабильность . Способность возбудимой ткани отвечать максимальным числом потенциалов действия в ответ на определенную частоту раздражений Н. Е. Введенский назвал лабильностью или функциональной подвижностью. Иначе говоря, лабильность — свойство, характеризующее способность возбудимой ткани воспроизводить максимальное количество потенциалов действия в единицу времени. Оказалось, что нервная ткань обладает наибольшей лабильностью, у мышечной она значительно ниже, самая низкая лабильность у синапсов.
Лабильность ткани в значительной степени зависит от функционального состояния этой ткани. Патологические процессы и утомление приводят к снижению лабильности нервной ткани, а систематические специальные тренировки — к ее повышению.
30. Основные процессы в центральной нервной системе, их координация и возрастные особенности.
В основе деятельности нервной системы лежат два процесса: возбуждение и торможение нейронов.
Возбуждение в ЦНС. Основное свойство нервной системы имеет ряд особенностей в ЦНС по сравнению с возбуждением в нервном волокне. В связи с особенностями строения синапсов в ЦНС возможно только одностороннее проведение возбуждения — от окончания аксона, где освобождается медиатор, к постсинаптической мембране. В синапсах ЦНС отмечается замедленное проведение возбуждения. Известно, что возбуждение по нервным волокнам проводится быстро. В синапсах скорость проведения возбуждения примерно в 200 раз ниже скорости проведения возбуждения в нервном волокне.
В деятельности всех отделов нервной системы играет важную роль и процесс торможения, результатом которого является ослабление или подавление возбуждения.
Явление торможения в ЦНС было открыто И. М. Сеченовым.
Торможение участвует в осуществлении любого рефлекторного акта.
Взаимодействие процессов возбуждения и торможения обеспечивает всю сложную деятельность нервной системы и согласованную деятельность всех органов человеческого тела. На воздействия из внешней и внутренней среды организм реагирует как единое целое. Объединение деятельности различных систем организма в единое целое (интеграция) и согласование, взаимодействие, ведущее к приспособлению организма к различным условиям среды (координация), связаны с деятельностью ЦНС.
Координация нервных процессов. (Иррадиация, индукция, доминанта нервных процессов)
Любая реакция организма представляет собой результат деятельности нервной системы и зависит от функционального состояния многих нервных центров и составляющих их нейронов. Такое согласованное взаимодействие нейронов и нервных процессов называют координацией рефлекторных процессов.
Координация нервных процессов, без которой были бы невозможны согласованная деятельность всех органов детского организма и его адекватные реакции на воздействия внешней среды, основывается на следующих особенностях, или принципах.
Конвергенция нервных процессов. В связи с широкой межнейронной связью нервные импульсы к одному нейрону могут приходить из различных участков нервной системы. Например, на один и тот же нейрон могут конвергировать импульсы от слуховых, зрительных и кожных рецепторов.
Иррадиация нервных процессов. Возбуждение или торможение, возникнув в одном нервном центре, могут распространяться на другие нервные центры. Это явление называют иррадиацией.
Индукция нервных процессов. В каждом нейроне или их скоплениях (нервные центры) один нервный процесс легко переходит в свою противоположность. Это явление называют индукцией. Если возбуждение сменяется на торможение, говорят об отрицательной индукции. Если вслед за торможением наступает возбуждение, говорят о положительной индукции.
Концентрация нервных процессов. Явление концентрации противоположно иррадиации. При этом процессы возбуждения или торможения концентрируются в каком-либо участке нервной системы.
Возрастные особенности координации нервных процессов
Деятельность целостного организма всегда связана со сложной координацией безусловно-рефлекторной и условно-рефлекторной реакций и их двигательных и вегетативных компонентов. Особое значение имеет координация вегетативных функций, выражающаяся в согласованных изменениях дыхания, работы сердца и всей сердечно-сосудистой системы, деятельности желез внутренней секреции и т. д. Вся совокупность этих изменений связана с энергетическим обеспечением рефлекторных реакций ребенка и необходима для достижения полезного организму результата в кратчайший срок и с наименьшей энергетической издержкой.
Ребенок рождается с далеко несовершенной координацией рефлекторных реакций. Ответная реакция у новорожденного всегда связана с обилием ненужных движений и широкими неэкономичными вегетативными сдвигами.
Дети в сравнении со взрослыми имеют более высокую возбудимость нервной ткани, меньшую специализацию нервных центров, более распространенные явления конвергенции и более выраженные явления индукции нервных процессов.
Доминантный очаг у ребенка возникает быстрее и легче, чем у взрослого, с чем в значительной степени связана неустойчивость внимания детей. Новые раздражители легко вызывают и новую доминанту в мозге ребенка.
В процессе развития все недостатки координации рефлекторных процессов у детей и подростков сглаживаются. Своего совершенства координационные процессы достигают только к 18—20 годам
31. Нервные центры, их физиологические особенности.
Нервный центр- это совокупность нейронов, расположенных на различных уровнях центральной нервной системы и регулирующих сложный рефлекторный процесс.
Нервные центры состоят из множества нейронов, связанных между собой еще большим множеством синаптических связей. Это обилие синапсов определяют основные свойства нервных центров: односторонность проведения возбуждения, замедление проведения возбуждения, суммацию возбуждений, усвоение и трансформацию ритма возбуждений, следовые процессы и легкую утомляемость.
Односторонность проведения возбуждения в нервных центрах связана с тем, что в синапсах нервные импульсы проходят только в одном направлении — от синаптического окончания аксона одного нейрона через синаптическую щель на клеточное тело и дендриты других нейронов.
Замедление движения нервных импульсов связано с тем, что «электрический, способ передачи нервных импульсов в синапсах сменяется химическим, или медиаторным, скорость которого в тысячу раз меньше.
Чем больше синапсов на пути движения нервных импульсов, тем больше проходит времени от начала раздражения до начала ответной реакции. Это время называют временем реакции или латентным временем рефлекса.
У детей время центральной задержки больше, оно увеличивается также при различных воздействиях на организм человека.
Суммация возбуждений была открыта И. М. Сеченовым в 1863 г. В настоящее время различают пространственную и временную суммацию нервных импульсов.
Первая наблюдается при одновременном поступлении к одному нейрону нескольких импульсов, каждый из которых в отдельности является подпороговым раздражителем и не вызывает возбуждение нейрона. В сумме же нервные импульсы достигают необходимой силы и вызывают появление потенциала действия.
Временная суммация возникает при поступлении к постсинаптической мембране нейрона серии импульсов, в отдельности не вызывающих возбуждение нейрона. Сумма этих импульсов достигает пороговой величины раздражения и вызывает возникновение потенциала действия.
После прекращения действия раздражителя активность нейронов, составляющих нервные центры, не прекращается. Время этого последействия, или следовых процессов, сильно варьирует у различных нейронов и в зависимости от характера раздражителей. Предполагают, что явление последействия имеет важное значение в понимании механизмов памяти.
Быстрая утомляемость — также связана в значительной степени с деятельностью синапсов. Существуют данные, что длительные раздражения приводят к постепенному истощению в синапсах запасов медиаторов, к снижению чувствительности к ним постсинаптической мембраны. В результате рефлекторные ответные реакции начинают ослабевать и в конечном итоге полностью прекращаются.
Весь функционал ЦНС и нервной системы человека зависит от того, насколько хорошо нейроны взаимодействуют друг с другом. Только при совместной работе начинают образовываться сигналы, которые передаются железами, мышцами, клетками организма. Запуск и распространение сигналов происходит посредством ионов, генерирующих электрический заряд, проходимый через нейрон.
Общее число таких клеток в головном мозге человека – около 1011, в каждой из которых содержится примерно 10 тыс. синапсов. Если представить, что каждый синапс – это место для хранения информации, то теоретически мозг человека может хранить все данные и знания, которые накоплены человечеством за всю историю его существования.
Физиологические свойства и функции нейронов будут варьироваться в зависимости от того, в какой мозговой структуре они находятся. Объединения нейронов отвечают за регулирование какой-то конкретной функции. Это могут быть самые простые реакции и рефлексы человеческого организма (например, моргание или испуг), а также особо сложный функционал мозговой деятельности.
Особенности строения
Структура включает в себя три основных составляющих:
- Тело. Тело включает в себя нейроплазму, ядро, которое разграничено мембранным веществом. Хромосомы ядра содержат гены, отвечающие за кодировку синтеза белков. Здесь также осуществляется синтез пептидов, которые требуются для обеспечения нормальной работы отростков. Если тело будет повреждено, то в скором времени произойдет и разрушение отростков. При повреждении одного из отростков (при условии сохранения целостности тела) он будет постепенно регенерироваться.
- Дендриты. Образуют дендритное дерево, имеют безграничное число синапсов, сформированных аксонами и дендритами соседних клеток.
- Аксон. Отросток, который, кроме нейронов, не встречается больше ни в одних клетках. Сложно переоценить их значение (например, аксоны ганглиозных клеток ответственны за формирование зрительного нерва).
Классификация нейронов в соответствии с функциональными и морфологическими признаками выглядит следующим образом:
- по числу отростков.
- по типу взаимодействия с другими клетками.
Все нейроны получают грандиозное число электрических импульсов из-за наличия множества синапсов, которые расположены по всей поверхности нейронной структуры. Импульсы также получаются через молекулярные рецепторы ядра. Электрические импульсы передаются разными нейромедиаторами и модуляторами. Поэтому важным функционалом также можно считать способность интеграции полученных сигналов.
Чаще всего сигналы интегрируются и обрабатываются в синапсах, после чего в остальных частях нейронной структуры суммируются постсинаптические потенциалы.
Мозг человека содержит примерно сто миллиардов нейронов. Число будет варьироваться в зависимости от возраста, наличия хронических заболеваний, травм мозговых структур, физической и умственной активности человека.
Передача возбуждения в синапсах
Рассматривая механизм проведения возбуждения в нейронах, мы ознакомились с синапсами – образованиями, возникающими в месте контакта двух нейроцитов. Возбуждения в первой нервной клетке вызывает образование в коллатералях её аксона молекул химических веществ – медиаторов. К ним относятся аминокислоты, ацетилхолин, норадреналин. Выделяясь из пузырьков синоптических окончаний в синоптическою щель, он может влиять как на собственную постсинаптическую мембрану, так и воздействовать на оболочки соседних нейронов.
Молекулы нейромедиаторов служат раздражителем для другой нервной клетки, вызывая в её мембране изменения зарядов – потенциал действия. Таким образом, возбуждение быстро распространяется по нервным волокнам и достигает отделов центральной нервной системы или же поступает в мышцы и железы, вызывая их адекватное действие.
Развитие и рост нейронов
Современные ученые до сих пор дискутируют на тему деления нервных клеток, т.к. единого мнения по этому вопросу в сфере анатомии на данный момент нет. Многие специалисты в этой области уделяют больше внимания свойствам, а не строению нейронов, что является более важным и актуальным вопросом для современной науки.
Наиболее распространенная версия – развитие нейрона происходит из клетки, деление которой прекращается еще до момента выпуска отростков. Сначала развивается аксон, после чего дендриты.
Зависимо от основного функционала, места расположения и степени активности, нервные клетки развиваются по-разному. Их размеры существенно варьируются в зависимости от места расположения и выполняемых функций.
Структуры нервной ткани
Нейроциты окружены особым веществом, которому присущи опорные и защитные свойства. Для него также характерная способность к делению. Это соединение называется нейроглия.
Эта структура находится в тесной связи с нервными клетками. Так как главные функции нейрона – это генерация и проведение нервных импульсов, то глиальные клетки оказываются под воздействием процесса возбуждения и изменяют свои электрические характеристики. Кроме трофической и защитной функций, глия обеспечивает метаболические реакции в нейроцитах и способствует пластичность нервной ткани.
Основные свойства
Нервные клетки выполняют огромное количество функций. Основные свойства нейрона выглядят следующим образом: возбудимость, проводимость, раздражимость, лабильность, торможение, утомляемость, инертность, регенерация.
Раздражимость считается общей функцией всех нейронов, а также остальных клеток организма. Это их способность давать адекватный ответ на всевозможные раздражения с помощью изменений на биохимическом уровне. Подобные трансформации обычно сопровождаются изменениями ионного равновесия, ослаблением поляризации электрических зарядов в зоне воздействия раздражителя.
Несмотря на то, что раздражимость является общей способностью всех клеток человеческого организма, наиболее выражено она проявляется именно у нейронов, которые связаны с восприятием запаха, вкуса, света и иных подобных раздражителей. Именно процессы раздражимости, протекающие в нервных клетках, запускают другую способность нейронов – возбудимость.
Важнейшее физиологическое свойство нервных клеток, которое заключается в генерировании потенциала действия на раздражитель. Под ним подразумеваются различные изменения, происходящие внутри и снаружи организма человека, которые воспринимаются нервной системой, что и приводит к вызову ответной детекторной реакции. Принято различать два вида раздражителей:
- Физические (получение электрических импульсов, механическое воздействие на разные участки тела, изменение окружающей температуры и температуры тела, световое воздействие, наличие или отсутствие света).
- Химические (изменения на биохимическом уровне, которые считываются нервной системой).
При этом наблюдается разная чувствительность нейронов к раздражителю. Она может быть адекватной и не адекватной. Если в организме человека есть структуры и ткани, которые могут воспринимать конкретного раздражителя, то к нему нервные клетки имеют повышенную чувствительность. Подобные раздражители считаются адекватными (электроимпульсы, медиаторы).
Свойство возбудимости актуально только для нервной и мышечной ткани. Также принято считать, что возбудимостью обладает и ткань желез. Если железа активно работает, то могут отмечаться различные биоэлектрические проявления с ее стороны, потому что она включает в себя клетки разных тканей организма.
Соединительная и эпителиальная ткани не обладают свойством возбудимости. Во время их работы не генерируются потенциалы действия даже в том случае, если происходит непосредственное воздействие раздражителя.
Левое полушарие мозга всегда содержит большее количество нейронов, нежели правое. При этом разница совсем незначительная – от нескольких сотен миллионов до нескольких миллиардов.
Разговаривая о том, каковы свойства нейронов, после возбудимости практически всегда отмечают проводимость. Функция проводника у нервной ткани заключается в особенности проведения возникшего в результате воздействия раздражителя возбуждения. В отличие от возбуждения, функцией проводимости наделены все клетки человеческого тела – это общая способность ткани менять тип своей активной деятельности в условиях воздействия раздражителя.
Повышенная проводимость в нейронных структурах наблюдается при развитии доминантного очага возбуждения. В одном нейроне может происходить конвергенция (объединение сигналов множественных входов, которые исходят от одного источника). Подобное актуально для ретикулярной формации и ряда других систем человеческого организма.
При этом клетки, вне зависимости от структур, в которых они располагаются, могут по-разному реагировать на воздействие раздражителя:
- Изменяется выраженность и выполнение процессов по обмену веществ.
- Изменяется уровень проницаемости мембраны клеток.
- Изменяются биоэлектрические проявления нейронов, двигательная активность ионов.
- Ускоряются процессы развития и деления клеток, повышается выраженность структурных и функциональных реакций.
Выраженность этих изменений также может серьезно варьироваться в зависимости от типа раздражителя, ткани и структуры, в которых находятся нейроны.
Часто можно слышать выражение – нужно предотвращать гибель нервных клеток. Но их гибель запрограммировала природа – за один год человек теряет примерно 1% всех своих нейронов, и никак предупредить подобные процессы нельзя.
Под лабильностью нервных клеток подразумевается скорость течения простейших реакций, которые лежат в основе раздражителя. В обычных условиях, при нормальном развитии всех мозговых структур, у человека отмечается максимально возможная скорость течения. Нейроны, которые различаются электрофизиологическими свойствами и размерами, имеют разные значения лабильности за единицу времени.
В одной нервной клетке лабильность различных структур (аксонной и дендритной частей, тела) будет заметно отличаться. Показатели лабильности нервной клетки определяют с помощью степени ее мембранного потенциала.
Показатели мембранного потенциала должны находиться на определенном уровне, чтобы в нейроне могла получиться наиболее подходящая степень возбудимости и лабильности (зачастую вкупе с ритмической активностью). Только в этом случае нервная клетка сможет в полной мере передать полученную информацию в виде электрических импульсов. Подобные процессы и обуславливают работу нервной системы в целом, а также гарантируют нормальное протекание и формирование всех необходимых реакций.
В спинном мозге предельный уровень ритмической активности нервных клеток может достигать значения в 100 импульсов в секунду, что соответствует наиболее оптимальным значениям мембранного потенциала. В обычных условиях данные значения редко превышают уровень в 40-70 импульсов в секунду.
Существенное превышение показателей наблюдается при характерных выраженных реакциях, поступающих со стороны главных отделов ЦНС, мозговых структуры, коры. Частота разрядов при определенных условиях может достигать значений в 250-300 импульсов в секунду, но подобные процессы развиваются крайне редко. Также они являются кратковременными – их быстро сменяют замедленные ритмы активности.
Наиболее высокие показатели частоты разрядов обычно наблюдаются в нервных клетках спинного мозга. В возникающих в результате выраженного воздействия раздражителя очагах начальных реакций частота разрядов может составлять 700-1000 импульсов в секунду. Протекание подобных процессов в нейронных структурах является необходимостью, чтобы клетки спинного мозга могли резко и быстро воздействовать на мотонейроны. Спустя небольшой промежуток времени частота разрядов существенно снижается.
Нейроны существенно различаются по размеру (в зависимости от места расположения и других факторов). Размеры могут варьироваться от 5 до 100 мкм.
С точки зрения физиологии человека торможение, как ни странно, является одним из наиболее активных процессов, протекающих в нейронных структурах. Особенности строения и свойств нейронов подразумевают, что торможение вызывается возбуждением. Процессы торможения проявляются в снижении активности или предупреждении вторичной волны возбуждения.
Способность нервных клеток к торможению совместно с функцией возбуждения позволяет обеспечить нормальную работу отдельных органов, систем, тканей организма, а также всего человеческого тела в целом. Одна из наиболее важных характеристик процессов торможения в нейронах – обеспечение защитной (охранной) функции, что актуально для клеток, располагающихся в коре головного мозга. За счет процессов торможения также обеспечивается защита ЦНС от чрезмерного перевозбуждения. Если они нарушены, у человека проявляются негативные психоэмоциональные черты и отклонения.
Важной функцией торможения также является прямое взаимодействие с возбуждением, что позволяет анализировать и синтезировать в центральной нервной системе полученные электрические импульсы. Это помогает правильно согласовывать деятельность и функции всех систем, тканей и органов человеческого тела, а также адекватно контактировать с окружающей средой. Данную функцию также принято называть координационной.
Несмотря на то, что нейроны имеют удивительно малые размеры, современные технологии позволяют ученым провести измерение активности каждого найденного нейрона. Подобные процедуры зачастую проводятся для диагностики различных заболеваний (например, эпилепсии).
К общим признакам всех нейронов относится их способность к физиологической и репаративной регенерации. В нервных клетках она подразумевает протекание следующих процессов:
- Частичное увеличение количества хромосом в ядре.
- Восстановление синапсов (если они были повреждены).
- Развитие и возвращение в обычное состояние отростков (при их повреждении).
- Обновление метаболических и химических компонентов нервных клеток в процессе протекания внутриклеточного обмена веществ.
Если нервная ткань будет повреждена, то в зоне поражения сразу начнет развиваться нейроглия. Это невыраженная дифференцированная ткань, которая делится митозом.
В случае получения повреждений, которые нарушили целостность нервных волокон, происходит распадение периферических частей на отдельные части миелиновых оболочек и осевых цилиндров. Если отсутствуют воспалительные процессы, рубцы соединительной ткани, то есть высокая вероятность восстановления иннервации нервных тканей. Отростки нейронов регенерируются довольно быстро – 2-3 мм за 24 часа.
Вопреки распространенному мнению, нейроны вполне могут восстанавливаться – их генерирование происходит сразу в трех частях организма человека.
Образование нервной ткани
Прежде чем изучать функции нейрона, давайте разберемся, каким образом формируются клетки-нейроциты. На стадии нейрулы у зародыша закладывается нервная трубка. Она формируется из эктодермального листка, имеющего утолщение – нервной пластинки. Расширенный конец трубки в дальнейшем сформирует пять частей в виде мозговых пузырей. Из них образуются отделы головного мозга. Основная часть нервной трубки в процессе зародышевого развития сформировывает спинной мозг, от которого отходит 31 пара нервов.
Нейроны головного мозга объединяются, образуя ядра. Из них выходит 12 пар черепно-мозговых нервов. В организме человека нервная система дифференцируется на центральный отдел – головной и спинной мозг, состоящий из клеток-нейроцитов, и опорную ткань – нейроглию. Периферический отдел состоит из соматической и вегетативной части. Их нервные окончания иннервируют все органы и ткани организма.
Читайте также: