Химическое и электрическое взаимодействие нервных клеток
Мозг человека содержит большое количество нервных клеток (нейронов), их число сопоставимо с количеством звезд в галактике. В среднем каждый из 10 12 нейронов имеет до 10 000 контактов с другими, поэтому мозг представляет собой огромную сеть взаимосвязей. Функционирование мозга изучают с различных точек зрения: как орган психической деятельности, как информационную сеть, как систему управления жизнедеятельностью человека. При этом используют как физические методы исследования (например томографию, термографию, энцефалографию), так и методы биохимии. Если первая группа методов дает сравнительно интегральную картину тепловых или электромагнитных полей, генерируемых мозгом, то вторая группа методов направлена на изучение внутриклеточных и межклеточных процессов. В частности, в последние годы были предприняты попытки сранения энцефалограмм ребенка, еще не умеющего как следует управлять своими эмоциями, и далай-ламы, способного мысленными усилиями влиять на жизнедеятельность своего организма (рис. 127).
Рис. 127. Исследование электромагнитной активности мозга
На рис. 128 показана форма отдельного нейрона и его партнеров - глиальных клеток: астроцита и олигодендроцита. Это основные типы клеток, в разных количественных пропорциях составляющие все отделы
Рис. 128. Три основных типа клеток мозга
головного мозга человека. Считают, что олигодендроциты выполняют в основном конструкционную функцию, скрепляя и поддерживая форму того или другого отдела мозга. Астроциты нс только создают имунный барьер между плазмой крови и нейронами, но и участвуют в управлении передачей сигналов. Основными элементами нейрона являются цитозоль клетки с ядром и аппаратом синтеза белков- нейромедиаторов, аксоны и дендриты. Ветвистые дендриты собирают входные сигналы от соседей, аксон проводит выходной сигнал к другим клеткам, с которыми он соединяется контактами-синапсами. По аксону (его длина от 1 мм до 1 м и более) распространяется электрический сигнал, скорость которого зависит от толщины слоя миелина на аксоне.
Рис. 129. Распространение электрического потенциала по аксону
Вдоль аксона, внутри его, движутся также везикулы с нейромедиаторами (синтезированными в цитозоле), но их скорость составляет всего 6-7 см/ч.Синапс, место контакта разветвлений аксона с мембраной других нейронов, является местом передачи и усиления сигнала. При этом определенную управляющую роль, как оказалось, играют и астроциты. Характерной чертой синаптической связи является ее односторонняя проводимость.
Рассмотрим последовательность процессов, которые происходят в синаптической щели, т. е. в промежутке между пресинагггическим нейроном и постсинаптическим нейроном. На рис. 130 щель охватывается еще и отростком астроцита. На поверхности мембран всех клеток имеются рецепторы и управляемые ионные каналы, в пресинаптическом нейроне имеется запас везикул с нейромедиатором.
Рис. 130. Процессы в синаптической щели
Когда по аксону к синаптической щели поступит сигнал (потенциал действия), он будет уловлен отростком астроцита (см. стрелку в правой части рис. 130). Под действием этого сигнала из астроцита выходят ионы двухвалентного кальция Са 2+ , проходящие через ионные каналы в прссинапти- ческое окончание. Было установлено, что четыре иона Са стимулируют выход везикулы на поверхность мембраны, где происходит экзоцитоз, т. е. выброс молекул нейромедиатора в синаптическую щель.
Следует сказать, что дофамин является предшественником норадреналина и адренолина. Эти нейромедиаторы образуются из тирозина, - аминокислоты, которая поступает в организм человека только с пищей. Это одна из так называемых незаменимых аминокислот. Названные вещества участвуют:
- • в активации бодрствования центральной нервной системы;
- • регуляции центров биологических потребностей;
- • регуляции эмоций (азарта, любопытства, удовольствия и т. д.).
Не случайно, что через них проявляется действие на человека психотропных препаратов или наркотиков. Так, например, под действием героина происходит обильный неконтролируемый выброс дофамина в синаптическую щель. Это приводит к усиленному возбуждению лимбической системы, и наблюдается кратковременная эйфория измененного сознания, причем превалирует активация биологических, подсознательных реакций, тех, что остались в человеке от животного.
Механизм влияния кокаина несколько другой: он блокирует работу обратных переносчиков дофамина, тем самым увеличивая во много раз время присутствия дофамина в синаптической щели.
В результате многократного приема психотропных веществ нейроны мозга человека погибают (рис. 131, правая часть).
Рис. 131. Нормальный нейрон (слева) и погибший (справа)
В нормальном нейроне хорошо различим аппарат синтеза необходимых нейрону белков, под действием наркотиков эти структуры в цитозоле оказываются полностью разрушенными. А ведь нервные клетки не делятся и не восстанавливаются.
Тема 7 Физиологические основы поведения
ВЗАИМОДЕЙСТВИЕ НЕРВНЫХ КЛЕТОК
Структурная организация химических и электрических синапсов
Механизм передачи сигнала в синапсах
Структурная организация химических и электрических синапсов
Определение_1
Синапс – это структура, обеспечивающая передачу возбуждающихили тормозящих влияний между двумя возбудимыми клетками
В зависимости от способа передачи нервного импульса синапсы могут быть химическими или электрическими (электротоническими). Оба способа синаптической передачи имеются в нервной системе низших и высших животных, но у высших позвоночных преобладает химический способ передачи информации. В зависимости от характера сигнала синапсы могут быть возбуждающими и тормозными. Прежде всего, рассмотрим структуру химического синапса.
Химический синапс является структурой нервного окончания аксона, его диаметр не более 1 мкм. Один нейрон получает такие контакты, как правило, от нескольких тысяч (3 – 10 тыс.) других нейронов. Каждый синапс надежно закрыт специальными клетками глии. Химические синапсы передают нервный импульс на другую клетку с помощью специальных биологически активных веществ – нейромедиаторов 1 , находящихся в синаптических пузырьках.
Обязательными структурами синапса являются:
- пресинаптическое окончание – т.е. обособленный участок мембрана нервной клетки, передающий импульс. В этой области локализованы кальциевые каналы, способствующие слиянию синаптических пузырьков с пресинаптической мембраной и выделению медиатора в синаптическую щель.
- синаптическая щель – пространство междупре- и постсинаптической мембранами имеет ширину 20-30 нм в химическом синапсе и около 2 нм в электрическом синапсе. Синаптическая щель химического синапса имеет ширину 20-50 нм, в ней содержится межклеточная жидкость и мукополисахаридное вещество в виде мостиков, которые обеспечивают пре- и постсинаптической мембранами.
- постсинаптическая мембрана – это участок плазмолеммы клетки, снабженной рецепторными зонами для восприятия соответствующего нейромедиатора.
Рисунок 1 – Строение химического синапса
Пресинаптическое окончание образуется по ходу разветвления аксона. Главным структурным элементом пресинаптического окончания являются синаптические пузырьки, рибосомы, митохондрии и нейрофиламенты. Форма и содержимое синаптических пузырьков связана с функцией синапса. Они бывают округлые прозрачные диаметром 30-50 нм и темные пузырьки диаметром 50-90 нм. Каждый пузырек содержит от 1000 до 10 000 молекул химического вещества, участвующего в передаче нервного сигнала. Мелкие пузырьки, как правило, в качестве медиатора, заполнены молекулами ацетилхолина (холинергические синапсы), крупные пузырьки содержат медиатор норадреналин (адренергические синапсы). Для синтеза медиатора нужны ферменты, которые образуются на рибосомах в теле нейрона. Энергетическое обеспечение процесса синаптической передачи обеспечивают митохондрии, а ЭПР, где накапливаются ионы кальция, вместе с нейрофиламентами участвуют во внутриклеточном передвижении пресинаптических пузырьков к мембране. Пресинаптическая мембрана обеспечивает выброс медиатора в синаптическую щель посредством экзоцитоза.
В работе химических синапсов можно выделить несколько важных особенностей проведения возбуждения:
1. Одностороннее проведение возбуждение – в направлении от пресинаптического окончания в сторону постсинаптической мембраны. Эта особенность связана с тем, что медиатор выделяется из пресинаптического окончания, а взаимодействующие с ним рецепторы находятся только на постсинаптический мембране.
2. Замедленное проведение сигнала, которое составляет 0,2-0,5 мс. Возникновение задержки сигнала можно объяснить временем, за которое происходит выделение медиатора за пределы пресинаптической мембраны и его диффузия к постсинаптической мембране.
3. Низкая лабильность, т.е. пониженная в 5-6 раз частота передачи нервных импульсов в секунду в сравнении с передачей импульса по аксону. Главной причиной низкой лабильности синапса является также можно объяснить временем, которое требуется потратить на выделение медиатора за пределы пресинаптической мембраны и его диффузия к постсинаптической мембране.
4. Проводимость химических синапсов сильно изменяется под влиянием биологически активных веществ (лекарственных препаратов, блокаторов и стимуляторов).
Электрические, или электротонические, синапсы в нервной системе млекопитающих встречаются относительно редко. В области таких синапсов цитоплазмы соседних нейронов связаны щелевидными соединениями, обеспечивающими прохождение ионов из одной клетки в другую, а, следовательно, электрическое взаимодействие этих клеток. Электрические синапсы имеют синаптическую щель, которая на порядок меньше чем у химических синапсов. Они проводят сигнал в обе стороны без синаптической задержки. Передачу сигнала в таком синапсе не блокирует недостаток кальция, они малочувствительны к фармакологическим препаратам, ядам, практически не утомляемы, как и все нервное волокно. Контактирующие мембраны нейронов связаны друг с другом полуканалами белковой природы, они называются коннексоны (connection - связь). Участки коннексонов имеют очень низкое удельное сопротивление, благодаря чему обеспечивается высокая электрическая проводимость.
Электрические синапсы представлены в ретикулярной формации головного мозга, ядре тройничного нерва, вестибулярном ядре и оливах продолговатого мозга. Функциональная роль электрических синапсов состоит в осуществлении срочной передачи сигналов, обеспечивающей синхронизацию электрической активности группы нейронов, например группы мотонейронов во время прыжковых движений лягушки или плавательных движений рыбы.
Механизм передачи сигнала в синапсах
История открытия механизма передачи сигнала в синапсах связана с открытием явления внесердечной регуляции деятельности сердца, которая осуществляется со стороны вегетативной нервной системы. В вегетативной нервной системе выделяют симпатическую и парасимпатическую часть 2 . Симпатическая часть вегетативной нервной системы оказывает возбуждающее действие на сердце. При ее раздражении мы наблюдаем учащение сердцебиения, усиление кровотока, повышение кислородного обмена в миокарде и т.д. Симпатическое влияние на сердце получило название положительный хронотропный эффект. Парасимпатическая часть вегетативной нервной системы оказывает обратное действие, вызывая урежение ЧСС, т.е. вызывает отрицательный хронотропный эффект. Явление отрицательного хронотропного эффекта было открыто в 1845 году братьями Вебер. Они установили, что длительное и непрерывное раздражение парасимпатических ветвей блуждающего нерва вызывает урежение сокращения сердца вплоть до его полной остановки. Симпатическое влияние на сердце было описано в 1867 году братьями Цион, которые показали, что раздражение нервных волокон нижнем шейном и верхних грудных сегментов спинного мозга вызывает учащение сердцебиения – положительный хромотропный эффект.
Механизм обоих явлений был раскрыт в первой трети XX века в работах австрийского физиолога Отто Леви 3 , который в 1921 году установил, что при раздражении симпатического нерва изолированного сердца лягушки выделяется вещество, которое способно стимулировать сердечную деятельность у другой лягушки. При раздражении сердечной ветви блуждающего нерва образуется вещество, тормозящее деятельность сердца. Впоследствии было показано, что вещество, вызывающее отрицательный хронотропный эффект, расщепляется ферментом ацетилхолинэстеразой и идентично ацетилхолину. Ацетилхолин оказывает свое действие на волокна проводящей системы сердца и миокард через М2-холинорецепторы, вызывая снижение частоты сердечных сокращений. Механизм реализации этих влияний основывается на том, что под действием ацетилхолина увеличивается проницаемость постсинаптической мембраны проводящих волокон для ионов калия и снижается их проницаемость для ионов кальция. Происходит усиление выхода ионов калия из клеток и снижение входа ионов кальция. Это ведет к гиперполяризации мембран и снижению их возбудимости.
В случае положительного хронотропного эффекта действует другой медиатор – норадреналин, который активирует β-адренорецепторы увеличивающие проницаемости постсинаптической мембраны для ионов натрия и кальция, а также ускоряет метаболизм и образования АТФ при возрастании расщепления гликогена сердечных волокон. Увеличение проницаемости для ионов натрия ведет к деполяризации постсинаптической мембраны и возбуждению мышечных клеток сердца.
Установленные Отто Леви факты послужили основой для создания теории химической передачи нервного возбуждения. Согласно теории, когда медиатор вступает в контакт с рецепторами постсинаптического участка синаптического аппарата, изменяется ионная проницаемость постсинаптической (принимающей) мембраны. Изменение ионной проницаемости вызывает изменение электрохимического потенциала: увеличение градиента концентрации приводит к гиперполяризации (торможению) постсинаптической мембраны, а уменьшение градиента ведет к развитию деполяризации постсинаптической мембраны и возбуждение нервной клетки.
Медиатор, освобождающийся в пресинаптических окончаниях под влиянием приходящих нервных импульсов, взаимодействует со специфическим белком-рецептором постсинаптической мембраны и образует с ним временное комплексное соединение. Например, белок, с которым взаимодействует ацетилхолин, называется холинорецептор, адреналин или норадреналин – адренорецептор.
Действие на холин- и адренорецепторы можно воспроизвести в эксперименте с фармакологическими препаратами, способными их заменять. Так, никотин вызывает эффект подобный эффекту ацетилхолина на постсинаптическую мембрану принимающего сигнал нейрона, а токсин мухомора – мускарин – действует на постсинаптическую мембрану клетки рабочего органа (т.е. участвует в передаче импульса в самом исполнительном органе).
Взаимодействуя с холинорецепторами ацетилхолин, или заменяющие его вещества изменяет проницаемость постсинаптической мембраны. При возбуждающем эффекте ацетилхолина ионы натрия проникают внутрь клетки, приводя к деполяризации постсинаптической мембраны, которая достигнув определенной величины, генерирует потенциал действия.
Вещества, оказывающие на эффекторный орган действие, аналогичное действию того или иного медиатора называются миметиками, а вещества ослабляющий действие медиатора – литики. Н-холинолитик тубакурарин представляет собой алкалоид, блокирующий нервные импульсы, управляющие мускулатурой. Такая блокировка ведет к мышечному параличу: в первую очередь перестают работать пальцы на ногах и руках и веки, затем парализуются нервные окончания, отвечающие за зрение и слух, потом паралич поражает лицо, шею, руки и ноги и, наконец, наступает смерть от паралича дыхания. Этот холинолитик блокирует взаимодействие ацетилхолина с холинорецепторами.
Одним из важных тормозных медиаторов является ГАМК. Известно два типа ГАМК-рецепторов на постсинаптической мембране: ГАМК-А (открывает каналы для ионов хлора) и ГАМК-Б (открывает в зависимости от типа клетки каналы для К + или Са ++ ). На рисунке 2 показана схема ГАМК-рецептора. Интересно, что в его состав входит бензодиазипиновый рецептор, наличием которого объясняют действие так называемых малых (дневных) транквилизаторов (седуксена, тазепама и др.).
Из антагонистов ГАМК хорошо известен бикукулин. Он хорошо проходит через гематоэнцефалический барьер, оказывает сильное воздействие на организм даже в малых дозах, вызывая конвульсии и смерть. ГАМК обнаруживается в ряде нейронов мозжечка (в клетках Пуркинье, клетках Гольджи, корзинчатых клетках), гиппокампа (в корзинчатых клетках), в обонятельной луковице и черной субстанции.
Рисунок 2 – Схема рецептора постсинаптической мембраны к ГАМК вместе с бензодиазипиновым рецептором. Активация бензодиази-пинового рецептора открывает хлорный канал.
Другим известным тормозным медиатором является глицин. Глицинергические нейроны находятся главным образом в спинном и продолговатом мозге. Считают, что эти клетки выполняют роль тормозных интернейронов.
Смирнов, В.М. Физиология сенсорных систем и высшая нервная деятельность / В.М. Смирнов, С.М. Будылина. - М.: Медицина, 2003. - 304 с.
Шульговский, В. В. Основы нейрофизиологии: Учебное пособие для студентов вузов. - М.: Аспект Пресс, 2000. - с. 277.
Батуев, А.С. Физиология поведения. Нейрофизиологические закономерности / А.С. Батуев. - Л.: Наука, 1986. - 340 с.
Александров, Ю.И. Психофизиология / Ю.И.Александров. - М.: Медицина, 2001. - 230 с.
Данилова, Н.Н. Физиология высшей нервной деятельности / Н. Н. Данилова, А.Л. Крылова. - Ростов н/Д: Феникс, 1999. – 480 с.
1 См. лекцию 5, вопрос №3
2 - вегетативной нервной системе будет посвящена отдельная лекция
3 - Нобелевская премия 1936 года по физиологии и медицине за открытие роли ацетилхолина в передаче нервных импульсов
Строение нейрона
Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.
Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.
Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.
Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.
Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.
Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.
Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.
Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.
Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.
Функции нейрона
Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:
- восприятие раздражения;
- обработка стимула;
- передача импульса;
- формирование ответной реакции.
Функционально нейроны подразделяются на три группы:
Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.
Классификация нейронов
Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:
- Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
- звездчатые;
- веретеновидные;
- пирамидные (клетки Беца).
- По количеству отростков:
- униполярные: имеют один отросток;
- биполярные: на теле располагаются два отростка;
- мультиполярные: на соме подобных клеток располагаются три или более отростков.
- Контактные особенности поверхности нейрона:
- аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
- аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
- аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.
Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.
Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.
Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.
Развитие и рост нейронов
Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.
Проводящие пути
Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.
Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.
- Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
- Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
- Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
- Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
- Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
- Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.
Взаимодействие с нейромедиаторами
Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).
Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.
Между тем выделяют разные группы этих самых нейромедиаторов, а именно:
- Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
- гамма-аминомасляную кислоту (ГАМК);
- глицин.
- Возбуждающие медиаторы:
- ацетилхолин;
- дофамин;
- серотонин;
- норадреналин;
- адреналин.
Восстанавливаются ли нервные клетки
Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.
Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.
В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.
Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.
В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.
Читайте также: