Какие виды нервных клеток выделяют по морфологическому признаку
Нервная ткань состоит из клеток двух принципиально различных типов:
нейронов (нервные клетки, нейроциты), которые осуществляют генерацию нервного импульса, его проведение и переключение на другие клетки;
нейррглиоцитов (нейроглия), не участвующих в проведении нервного импульса, а выполняющих в нервной
ткани вспомогательные функции: опорную, разграничительную, трофическую, защитную, секреторную.
Развитие нервной ткани начинается на третьей неделе эмбриогенеза с образования в дорсальной части эктодермы нервной пластинки. Далее по всей длине нервнад пластинка прогибается, образуя нервный желобок, при замыкании которого возникают два зачатка нервной системы: нервная трубка и ганглиозная пластинка. Из нервной трубки в дальнейшем формируются головной и спинной мозг, а из ганглиозной пластинки - ганглии соматической и вегетативной нервных систем.
По расположению в составе рефлекторной дуги различают три основных типа нейронов:
1) чувствительные - воспринимающие какой-либо стимул и преобразующие его в нервный импульс; большинство таких клеток находится в органах чувств, в спинно-мозговых и черепно-мозговых узлах, в нервных узлах вегетативной нервной системы;
2) ассоциативные, или вставочные, - в основном эти клетки располагаются в составе центральной нервной системы;
3) эффекторные, гни моторные, - передающие нервный импульс на рабочий орган (мышцу или железу).
Как разновидность эффекторных выделяют группу нейросекреторных клеток (в коре головного мозга, в спинном мозге, в ядрах гипоталамуса). При получении нервного импульса они выделяют вещества, регулирующие работу многих тканей организма.
По морфологическим признакам (точнее, по количеству отростков) выделяют следующие типы нейронов:
1. Униполярные - имеют один отросток - аксон. У человека их очень мало, обнаружены в ядрах гипоталамуса. Похожи на этот клеточный тип нейробласты, еще не образовавшие дендритов.
2. Биполярные - имеют два отростка - аксон и дендрит. Они встречаются в органах чувств, в гипоталамусе, могут быть чувствительными, вставочными и секреторными.
3. Мулътиполярные - имеют один аксон и несколько дендритов. Это большинство клеток центральной и периферической нервной системы. По функции они могут быть моторными, вставочными, реже - чувствительными.
Все перечисленные виды нейронов развиваются из нейробластов нервной трубки.
4. Псевдоуниполярные (ложноодноотростчатые) - от тела клетки отходит один общий вырост, который затем Т-образно делится на аксон и дендрит. Это чувствительные клетки, содержащиеся в спинно-мозговых и некоторых черепно-мозговых нервных узлах. Они развиваются из нейробластов ганглиозной пластинки. Нейроглию подразделяют на микроглию и макроглию.
Понятие дифференцировки зародышевых листков. Представление об индукции как факторе, вызывающем дифференцировку. Дифференцировка зародышевых листков. Образование зачатков тканей, органов у зародыша человека.
Нейроны (нейроциты, собственно нервные клетки) - клетки различных размеров (которые варьируют от самых мелких в организме, у нейронов с диаметром тела 4-5 мкм - до наиболее крупных с диаметром тела около 140 мкм). К рождению нейроны утрачивают способность к делению, поэтому в течение постнатальной жизни их количество не увеличивается, а, напротив, в силу естественной убыли клеток, постепенно снижается. Нейрон состоит из клеточного тела (перикариона) и отростков, обеспечивающих проведение нервных импульсов - дендритов, приносящих импульсы к телу нейрона, и аксона (нейрита), несущего импульсы от тела нейрона.
Тело нейрона (перикарион) включает ядро и окружающую его цитоплазму (за исключением входящей в состав отростков). Перикарион содержит синтетический аппарат нейрона, а его плазмолемма осуществляет реценторные функции, так как на ней находятся многочисленные нервные окончания (синапсы), несущие возбуждающие и тормозные сигналы от других нейронов. Ядро нейрона - обычно одно, крупное, округлое, светлое, с мелкодисперсным хроматином (преобладанием эухроматина), одним, иногда 2-3 крупными ядрышками. Эти особенности отражают высокую активность процессов транскрипции в ядре нейрона.
Цитоплазма нейрона богата органеллами и окружена плазмолеммой, которая обладает способностью к проведению нервного импульса вследствие локального тока Nа+ в цитоплазму и К+ из нее через потенциал-зависимые мембранные ионные каналы. Плазмолемма содержит Nа+-К+ насосы, которые поддерживают необходимые градиенты ионов.
Дендриты проводят импульсы к телу нейрона, получая сигналы от других нейронов через многочисленные межнейронные контакты (аксо-дендршпические синапсы), расположенные на них в области особых цитоплазматических выпячиваний - дендритных шипиков. Во многих шипиках имеется особый шипиковый аппарат, состоящий из 3-4 уплощенных цистерн, разделенных участками плотного вещества. Шипики представляют собой лабильные структуры, которые разрушаются и образуются вновь; их число резко падает при старении, а также при снижении функциональной активности нейронов. В большинстве случаев дендриты многочисленны, имеют относительно небольшую длину и сильно ветвятся вблизи тела нейрона. Крупные стволовые дендриты содержат все виды органелл, по мере снижения их диаметра в них исчезают элементы комплекса Гольджи, а цистерны грЭПС сохраняются. Нейротрубочки и нейрофиламеиты многочисленны и располагаются параллельными пучками; они обеспечивают дендритный транспорт, который осуществляется из тела клетки вдоль дендритов со скоростью около 3 мм/ч.
Аксон (нейрит) - длинный (у человека от 1 мм до 1.5 м) отросток, по которому нервные импульсы передаются на другие нейроны или клетки рабочих органов (мышц, желез). В крупных нейронах аксон может содержать до 99% объема цитоплазмы. Аксон отходит от утолщенного участка тела нейрона, не содержащего хроматофильной субстанции, - аксонного холмика, в котором генерируются нервные импульсы; почти на всем протяжении он покрыт глиальной оболочкой. Центральная часть цитоплазмы аксона (аксоплазмы) содержит пучки нейрофиламентов, ориентированных вдоль его длины, ближе к периферии располагаются пучки микротрубочек, цистерны ЭПС, элементы комплекса Гольджи, митохондрии, мембранные пузырьки, сложная сеть микрофиламентов. Тельца Ниссля в аксоне отсутствуют. В конечном участке аксон нередко распадается на тонкие веточки (телодендрии). Аксон заканчивается специализированными терминалами (нервными окончаниями) на других нейронах или клетках рабочих органов.
КЛАССИФИКАЦИЯ НЕЙРОНОВ
Классификация нейронов осуществляется по трем признакам: морфологическим, функциональным и биохимическим.
Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа: униполярные, биполярные и мультиполярные.
1. Униполярные нейроны имеют один отросток. По мнению большинства исследователей, в нервной системе человека и других млекопитающих они не встречаются. Некоторые авторы к таким клеткам все же относят омакринные нейроны сетчатки глаза и межклубочковые нейроны обонятельной луковицы.
2. Биполярные нейроны имеют два отростка - аксон и дендрит. обычно отходящие от противоположных полюсов клетки. В нервной системе человека встречаются редко. К ним относят биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев.
Псевдоуниполярные нейроны - разновидность биполярных, в них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится. Эти клетки встречаются в спинальных и краниальных ганглиях.
3. Мультиполярные нейроны имеют три или большее число отростков: аксон и несколько дендритов. Они наиболее распространены в нервной системе человека. Описано до 80 вариантов этих клеток: веретенообразные, звездчатые, грушевидные, пирамидные, корзинчатые и др. По длине аксона выделяют клетки Гольджи I типа (с длинным аксоном) и клетки Гольджи II типа (с коротким аксоном).
Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: чувствительные, двигательные и ассоциативные.
1. Чувствительные (афферентные) нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды.
2. Двигательные (эфферентные) нейроны передают сигналы на рабочие органы (скелетные мышцы, железы, кровеносные сосуды).
3. Ассоциативные (вставочные) нейроны (интернейроны) осуществляют связи между нейронами и количественно преобладают над нейронами других типов, составляя в нервной системе около 99.98% от общего числа этих клеток.
В соответствии с функцией нервные клетки делятся на рецепторные (афферентные или чувствительные), ассоциативные или эффекторные (эфферентные). Рецепторные нейроны под влиянием каких либо воздействий внешней или внутренней среды организма генерируют нервный импульс и передают его на эфферентный нейроцит. Последний, возбуждаясь, передает его на ткань рабочего органа, побуждая его к действию. Ассоциативные нейроциты обеспечивают многообразие связи между рецепторными и эффекторными нейронами в составе рефлекторных дуг.
По количеству отростков нервные клетки делят на униполярные - с одним отростком, биполярные – с двумя отростками и мультиполярне – клетки, имеющие з и более отростков.
33.Строение нервной клетки и ее функции.
Состоит из тела и 2х отростков (одного аксона и различного числа ветвящихся дендритов).
Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.
Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.
Аксон — обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.
Си́напс место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.
Выполняют специфическую для нервной ткани функцию нервного возбуждения и проведения нервного импульса.
34. Классификация и функции нейроглии. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.
Клетки глии центральной нервной системы делятся на макроглию и микроглию.
Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.
Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор).
Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе.
Олигодендроциты – имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы – нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.
В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты – филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.
Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы.
Рассмотренные выше глиальные элементы относились к центральной нервной системе.
Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты (или шванновские клетки) и глиоциты ганглиев (или мантийные глиоциты).
Нейролеммоциты Шванна формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.
1. Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
2. Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.
3. Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.
4. Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.
5. Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.
I. По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов.
II. По количеству отростков выделяют следующие морфологические типы нейронов:
1. Униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
2. Псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
3. Биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
4. Мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.
Функциональная классификация[править | править вики-текст]
По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).
1. Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.
2. Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.
3. Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.
4. Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.
Основные типы нервных (А) и глиальных (Б) клеток:
А: 1 – униполярный нейрон в среднемозговом ядре тройничного нерва; 2 – псевдоуниполярный нейрон спинального ганглия: 3 – грушевидная клетка коры мозжечка; 4 – биполярный нейрон вестибулярного ганглия; 5 – мультиполярный вегетативный нейрон с перпендикулярным расположением аксона и дендритов; 6 – звездчатая клетка; 7 – пирамидная клетка; Б; 1 – перинейрональный и интерфасцикулярный олигодендроциты; 2 – протоплазматический астроцит; 3 – волокнистый астроцит; 4 – эпендимные клетки; 5 – микроглиальная клетка
Лекция 4
ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА НЕРВОВ И НЕРВНЫХ ВОЛОКОН
План:
1. Морфологические особенности нейрона и нервных волокон. 1
2. Физиология нейрона. 3
3. Физиология нервных волокон. 9
4. Объединения нейронов. 12
Морфологические особенности нейрона и нервных волокон
Центральная нервная система координирует деятельность всех органов и систем, обеспечивает эффективное приспособление организма к изменениям окружающей среды, формирует целенаправленное поведение. Она представлена спинным, продолговатым, средним, промежуточным мозгом, варолиевым мостом, мозжечком, базальными ганглиями и корой полушарий головного мозга. Каждая из этих структур имеет морфологическую и функциональную специфику. Но у всех структур, наряду с этим, есть ряд общих свойств и функций, к которым относятся: нейронное строение; синаптическая связь между нейронами; образование локальных сетей из нейронов, реализующих специфическую функцию; способность нейронов всех структур к восприятию, обработке, хранению и передаче информации и т.д.
Структурно-функциональной единицей нервной системы является нейрон – специализированная клетка, способная принимать, обрабатывать, кодировать, передавать и хранить информацию, реагировать на раздражения, устанавливать контакты с другими нейронами и клетками органов. Уникальными особенностями нейронов является способность генерировать электрические разряды и наличие специализированных окончаний – синапсов, служащих для передачи информации.
Нейрон(нервная клетка, нейроцит) состоит из клеточного тела (перикарион, сомы) и отростков, обеспечивающих проведение нервных импульсов – дендритов, приносящих импульсы к телу нейрона, и аксона (нейрита), несущего импульсы от тела нейрона. Функционально в нейроне выделяют три части – воспринимающую, интегративную и передающую. К воспринимающей части относят дендриты и перикарион, к интегративной –перикарион (сому) и аксонный холмик, а к передающей – аксонный холмик и аксон.
Аксон, заключенный в глиальную оболочку, называется нервным волокном. Совокупность нервных волокон образует нервные пучки, совокупность которых, в свою очередь, формирует нервный ствол или нерв. Дендрит, одетый в глиальную оболочку, также называется нервным волокном.
Все аксоны покрыты глиальной оболочкой, однако эта оболочка устроена по-разному – в одних случаях она содержит миелин, а в других – нет. В связи с этим все нервные волокна подразделяются на два вида – миелиновые (миелинизированные, или мякотные волокна) и безмиелиновые (немиелизинированные, безмякотные волокна). Диаметр миелиновых волокон колеблется от 1 до 25 мкм, а безмиелиновых – от 0,5 до 2 мкм.Оба вида нервных волокон состоят из центрально лежащего отростка нейрона – аксона. В составе нервного волокна он получает название осевого цилиндра. Цилиндр окружен оболочкой, которая образована совокупностью клеток олигодендроглии. В периферической нервной системе эти клетки называются леммоцитами, или швановскими клетками.
Безмиелиновые нервные волокна у взрослого располагаются преимущественно в составе вегетативной нервной системы и характеризуются сравнительно низкой скоростью проведения нервных импульсов (0,5-2 м/с). Они образуются путем погружения осевого цилиндра (аксона) в цитоплазму леммоцитов, располагающихся в виде тяжей. При этом плазмолемма леммоцита прогибается, окружая аксон, и образует дубликатуру – мезаксон. Нередко в цитоплазме одного леммоцита могут находиться до 10-20 осевых цилиндров. Такое волокно напоминает электрический кабель и поэтому называется волокном кабельного типа. Поверхность волокна покрыта базальной мембраной.
Миелиновые нервные волокна –это большая часть всех нервных волокон. Онивстречаются в ЦНС и в периферической нервной системе и характеризуются высокой скоростью проведения нервных импульсов (5-120 м/с). Миелиновые волокна содержат осевые цилиндры большего диаметра.
Образование миелиновой оболочкив периферической нервной системепроисходит следующим образом. Погружение осевого цилиндра в леммоцит сопровождается формированием длинного мезаксона, который начинает вращаться вокруг аксона, образуя первые рыхло расположенные витки миелиновой оболочки. По мере увеличения числа витков (пластин) в процессе созревания миелина они располагаются все более плотно и частично сливаются. По длине волокна миелиновая оболочка имеет прерывистый ход, благодаря чему формируются узловые перехваты, или перехваты Равнье.
Узловые перехваты (Ранвье)расположены на границе соседних леммоцитов. В этих участках миелиновая оболочка отсутствует, а аксон прикрыт лишь отростками соседних леммоцитов. Узловые перехваты повторяются по ходу миелинового волокна с определенными интервалами. В области узлового перехвата аксон часто расширяется, а в его плазмолемме присутствуют многочисленные натриевые каналы (которые отсутствуют вне перехватов под миелиновой оболочкой). Перехваты Ранвье играют важную роль в процессе проведения возбуждения по нервному волокну как в ЦНС, так и в периферической нервной системе.
Физиология нейрона
Функции нейрона как целого образования – это обеспечение информационных процессов в ЦНС, в том числе с помощью нейромедиаторов. Нейроны как специализированные клетки осуществляют прием, кодирование, обработку, хранение и передачу информации. Нейроны формируют управляющие команды для различных внутренних органов и для скелетных мышц, а также обеспечивают реализацию всех форм психической деятельности. Все это обеспечивается за счет уникальной способности нейрона генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов. Однако реализация всех функций нейрона возможна лишь при совместной работе нейронов. Поэтому решающим моментом в деятельности нейрона является его способность к генерации потенциалов действия, а также его способность воспринимать потенциалы действия и медиаторы от других нейронов и передавать необходимую информацию другим нейронам. Все это особенно наглядно проявляется в том случае, когда нейрон является компонентом нейронных объединений, в частности – составной частью рефлекторной дуги. Реализация информационной функции происходит с участием всех отделов нейрона – дендритов, перикариона и аксона. При этом дендриты вместе с перикарионом специализируются на восприятии информации, аксоны (вместе с аксонным холмиком перикариона) – на передаче информации, а перикарион на принятии решения. Кроме того, тело нейрона выполняет трофическую функцию относительно своих отростков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальнее перерезки, а, следовательно, и синапсов этих отростков. Сома обеспечивает также рост дендритов и аксона.
У большинства нейронов величина мембранного потенциала достигает 50-70 мВ. У фоновоактивных нейронов, т.е. обладающих спонтанной активностью, величина мембранного потенциала периодически уменьшается. Однако большинство нейронов генерируют потенциалы действия лишь в ответ на воздействие сенсорного стимула. Пороговый потенциал в среднем для перикариона составляет примерно 20-35 мВ, для дендритов – он еще выше, в области аксонного холмика он составляет всего 5-10 мВ. Таким образом, наиболее возбудимым участком перикариона является аксонный холмик. Потенциал действия по своей форме является пикообразным. Для него характерна кратковременность спайка (1-3 мс), выраженность следовой гиперполяризации, в результате чего нередко возбудимость нейрона понижается. Длительность абсолютной рефрактерной фазы для нейронов – сравнительно небольшая (в пределах 2-3 мс), что обеспечивает сравнительно высокий уровень лабильности нейронов. Вместе с тем, для нейронов характерна высокая утомляемость, что указывает на относительно ограниченные возможности нейронов к восстановлению. В то же время следует помнить, что большая продолжительность жизни нейрона, связанная с отсроченным наступлением апоптоза, в определенной степени и обеспечивается способностью нейронов заблаговременно прекращать свою деятельность, не допуская активацию апоптоза.
Нейроны имеют кальциевые каналы, которые в большей степени сконцентрированы в области пресинаптической мембраны аксонных терминалей. Здесь же содержится и Са-насос, обеспечивающий удаление кальция из пресинаптического окончания во внеклеточную среду. Концентрация ионов Са 2+ во внеклеточной среде является важнейшим механизмом регуляции возбудимости нейрона. Повышение уровня Са 2+ в крови снижает ее, а уменьшение – приводит к чрезмерному повышению возбудимости, что нередко сопровождается появлением спонтанной генерации потенциалов действия и возникновением судорожного состояния. Такая зависимость возбудимости от ионов Са 2+ связана с наличием в мембране перикариона кальциевых каналов, а также Са-зависимых калиевых каналов. Когда в нейроне возрастает внутриклеточная концентрация ионов Са 2+ , то это вызывает активацию Са-зависимых калиевых каналов, что повышает проницаемость для ионов К + . Следствием этого является развитие выраженной следовой гиперполяризации, которая развивается в период фазы реполяризации. Важно отметить, что сама по себе следовая гиперполяризация играет важную роль в деятельности нейрона. Это связано с тем, что в ответ на длительную деполяризацию, которая может возникнуть под влиянием серии приходящих к нейронам импульсов, нейрон обычно генерирует не одиночный потенциал, а серию потенциалов действия. Частота следования импульсов в этой серии определяется величиной следовой гиперполяризации – чем она выше, тем больше интервал между соседними потенциалами действия, т.е. тем реже они генерируются. Вот почему, например, максимальный ритм возбуждения в мотонейронах спинного мозга, у которых фаза гиперполяризации достигает 100-150 мс, составляет всего 40-50 Гц. В тоже время нейроны, у которых длительность фазы гиперполяризации небольшая (например, некоторые вставочные нейроны), могут выдавать вспышки разрядов с частотой до 1000 Гц.
Важным для физиологии нейрона является механизм поддержания концентрации ионов К + в межклеточной среде. Это связано с тем, что в ЦНС нейроны и их отростки окружены узкими щелеподобными внеклеточными пространствами. Поэтому во время генерации потенциала действия концентрация ионов К + в этих пространствах может существенно повыситься, что приведет к нарушению деятельности нейрона, вплоть до генерации судорожных разрядов. Для того, чтобы предотвратить этот процесс клетки нейроглии, в частности, астроциты, берут на себя функцию по регуляции содержания ионов во внеклеточном пространстве. В частности, при избыточном содержании ионов К + во внеклеточном пространстве глиальные клетки поглощают их, а при недостаточном их содержании – выделяют эти ионы. Таким образом, астроциты выполняют функции буферной системы по отношению ионов К + , Са 2+ и, вероятно, других ионов.
Относительно такого свойства нейрона как проводимость следует подчеркнуть, что все его компоненты – перикарион, дендриты и аксон способны к проведению импульса. При этом для дендрита и, особенно, для аксона – проведение возбуждения является основной функцией. Как правило, нейрон динамически поляризован, т.е. способен проводить нервный импульс только в одном направлении – от дендрита через тело клетки к аксону. Это явление называется ортодромным распространением возбуждения. В отдельных случаях возможно антидромное распространение возбуждения, т.е. от аксона к перикариону и дендритам.
С функциональной точки зрения нейрон может находиться в трех основных состояниях: в состоянии покоя, в состоянии активности или возбуждения и в состоянии торможения.
В состоянии покоянейрон имеет стабильный уровень мембранного потенциала. В любой момент нейрон готов возбудиться, т.е. генерировать потенциал действия, либо перейти в состояние торможения.
В состоянии активности,т.е. при возбуждении нейрон генерирует потенциал действия или чаще – группу потенциалов действия (серия ПД, пачка ПД). Частота следования потенциалов действия внутри данной серии ПД, длительность этой серии, а также интервалы между последовательными сериями – все эти показатели широко варьируют.
Для некоторых нейронов активное состояние возникает спонтанно, т.е. автоматически, причем, чаще всего автоматия нейрона проявляется периодической генерацией серии импульсов. Примером таких нейронов-пейсмекеров, т.е. водителей ритма являются нейроны дыхательного центра продолговатого мозга. Нередко такие нейроны называют фоновоактивными нейронами. По характеру реакции на приходящие импульсы они делятся на тормозные и возбуждающие. Тормозные нейроны урежают свою фоновую частоту разрядов в ответ на внешний сигнал, а возбуждающие – увеличивают частоту фоновой активности.
Существует как минимум три вида фоновой активности нейронов – непрерывно-аритмичный, пачечный и групповой.
Непрерывно-аритмичный видактивности проявляется в том, что фоновоактивные нейроны генерируют импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обычно обеспечивают тонус нервных центров. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.
Пачечный тип активностизаключается в том, что нейроны выдают группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания, а затем вновь возникает пачка импульсов. Обычно межимпульсные интервалы в пачке равны приблизительно 1-3 мс, а интервал между пачками ПД составляет 15-120 мс. Считается, что такой тип активности создает условия для проведения сигналов при снижении функциональных возможностей проводящих или воспринимающих структур мозга.
Групповая формаактивности характеризуется апериодическим появлением в фоне группы импульсов (межимпульсные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.
Состояние торможенияпроявляется в том, что фоновоактивный нейрон или нейрон, получающий возбуждающее воздействие извне, прекращает свою импульсную активность. В состояние торможения нейрон может переходить и из состояния покоя. Во всех случаях в основе торможения лежит явление гиперполяризации нейрона или активное прекращение поступающей импульсации от других нейронов.
Читайте также: