Клетка крови нервная клетка половая клетка
Что известно о человеческом организме? Сколько клеток в организме взрослого человека? Как они растут и развиваются, для чего предназначены? Во всем мире ученые пытаются разгадать эти загадки.
Что такое клетка?
Ученые изучают организмы растений, животных, людей. Клетка - это самая малая часть любого организма. В теле человека их очень много, более 100 триллионов. Точное число неизвестно. Сколько клеток в организме человека умирает ежедневно? Количество зависит от предназначения. Так, например, у кишечного эпителия - 70 миллиардов в сутки, кровяных - 2 миллиарда, а клетки нервной системы не восстанавливаются после отмирания.
Впервые о клетках узнал в 1665 году Роберт Гук. Он понял, что чем взрослее человек, тем больше этих структурных элементов в его организме. Нельзя точно посчитать, сколько клеток в организме человека , потому что они отмирают и рождаются ежеминутно.
Строение и функции
Нельзя сказать, сколько примерно клеток в организме человека, но ученые точно знают, что они имеют сложное строение.
- ядра, его называют сердцем клетки;
- цитоплазмы;
- ядрышка;
- митохондрий;
- оболочки ядра;
- эндоплазматического сетчатого образования;
- рибосом;
- лизосом;
- ямок и пор;
- оболочки клетки, которая обеспечивает целостность, регулирует внутриклеточный баланс.
Функции связаны с синтезом веществ. Железистые клетки вырабатывают гормоны или ферменты. Молочные железы производят молоко, поджелудочная - инсулин. Некоторые ничего не синтезируют, например клетки мышц.
Вне зависимости от того, сколько клеток в организме человека, без него они не выживут. Клетки, как элементы мозаики, составляют единый организм.
Клетки крови
Из чего же состоит жидкость, которая течет по венам людей? Она содержит плазму и клеточные элементы:
- красные кровяные тельца - эритроциты;
- тромбоциты;
- белые кровяные тела - лейкоциты.
От их содержания зависит плотность и цвет крови. Она осуществляет перенос химических веществ по организму. В организме взрослого человека около 50 млрд кровяных клеток. Это примерно 5,5 литра.
Пигментные клетки
Меланоциты в организме человека отвечают за цвет кожи, волос, глаз и некоторых внутренних органов. Такие клетки содержат в цитоплазме пигменты, обуславливающие их действие. Меланоциты выполняют еще и защитную функцию от ультрафиолетовых лучей, отвечают за загар. Клетки по виду древообразные.
Клетки нервной системы
Это одни из тех, что не восстанавливаются после отмирания. Их научное название - нейроны. Их задача - обрабатывать и передавать информацию с помощью производимых ими электрических импульсов. Нейроны делятся на несколько видов:
- сенсорные (отвечают за реакцию на свет, звук);
- двигательные;
- интернейроны.
В состав входит тело клетки, дендрит, аксон. По своему строению они также разделены на несколько групп. Нервная система человека содержит около 10 миллиардов нейронов. Ежегодно около 10 тысяч отмирают и уже не восстанавливаются. Чем старше человек, тем меньше их остается.
Половые клетки
Сколько клеток в организме человека отвечают за размножение? Их два вида, они делятся на мужские - сперматозоиды - и женские - яйцеклетки. Мужская половая клетка по размеру значительно крупнее женской, так как содержит большее количество цитоплазмы. Впервые их открыли в 1677 году, а сами термины появились в начале 19-го века.
Несмотря на то что нельзя точно сказать, сколько клеток в организме человека, ученые изучили практически все их виды. Их участие напрямую связано с существованием всего живого на планете Земля. Ученые пытаются научиться самостоятельно выращивать человеческие клетки в условиях исследовательских лабораторий. Возможно, у них это получится.
Триллионы клеток в человеческом теле встречаются во всех формах и размерах. Эти крошечные структуры являются основной единицей живых организмов. Клетки формируют ткани органов, которые образуют системы органов, работающих вместе для поддерживания жизнедеятельности организма.
В теле есть сотни различных типов клеток, и каждый тип клетки подходит для той роли, которую он выполняет. Клетки пищеварительной системы, к примеру, отличаются по структуре и функции от клеток костной системы. Независимо от различий, клетки тела зависят друг от друга, прямо или косвенно, чтобы организм функционировал как единое целое. Ниже приведены примеры различных типов клеток в организме человека.
Стволовые клетки
Стволовые клетки являются уникальными клетками организма, поскольку они неспециализированы и обладают способностью развиваться в специализированные клетки для определенных органов или тканей. Стволовые клетки способны к многоразовому делению, чтобы пополнить и восстановить ткань. В области исследований стволовых клеток ученые пытаются использовать преимущества возобновляемых свойств, применяя их в создании клеток для восстановления тканей, трансплантации органов и лечения болезней.
Костные клетки
Кости являются типом минерализованной соединительной ткани и основным компонентом скелетной системы. Костные клетки образуют кость, которая состоит из матрицы минералов коллагена и фосфата кальция. В организме есть три основных типа костных клеток. Остеокласты представляют собой крупные клетки, которые разлагают кости для резорбции и ассимиляции. Остеобласты регулируют минерализацию кости и производят остеоид (органическое вещество костной матрицы). Остеобласты созревают для образования остеоцитов. Остеоциты помогают в формировании кости и поддерживают баланс кальция.
Клетки крови
От транспортировки кислорода по всему телу до борьбы с инфекцией, клетки крови жизненно важны для жизни. Есть три основных типа клеток в крови - это эритроциты, лейкоциты и тромбоциты. Эритроциты определяют тип крови и также ответственны за транспортировку кислорода в клетки. Лейкоциты являются клетками иммунной системы, которые разрушают патогены и обеспечивают иммунитет. Тромбоциты помогают сгущать кровь и предотвращают чрезмерную потерю крови из поврежденных кровеносных сосудов. Клетки крови продуцируются костным мозгом.
Мышечные клетки
Мышечные клетки образуют мышечную ткань, что важно для телесного движения. Скелетная мышечная ткань прикрепляется к костям, способствуя движению. Скелетные мышечные клетки покрыты соединительной тканью, которая защищает и поддерживает пучки мышечных волокон. Сердечные мышечные клетки образуют непроизвольную сердечную мышцу. Эти клетки помогают в сокращении сердца и соединяются друг с другом посредством интеркалированных дисков, позволяющих синхронизировать сердечный ритм. Гладкая мышечная ткань не стратифицирована как сердечная или скелетная мышцы. Гладкая мышца - непроизвольная мышца, которая образует полости тела и стенки многих органов (почек, кишечника, кровеносных сосудов, дыхательных путей легких и т.д.).
Жировые клетки
Жировые клетки, также называемые адипоцитами, являются основным клеточным компонентом жировой ткани. Адипоциты содержат триглицериды, которые могут быть использованы для получения энергии. Во время хранения жира, жировые клетки набухают и приобретают круглую форму. Когда жир используется, эти клетки уменьшаются в размерах. Жировые клетки также обладают эндокринной функцией, поскольку они продуцируют гормоны, влияющие на метаболизм половых гормонов, регуляцию кровяного давления, чувствительность к инсулину, хранение или использование жиров, свертывание крови и сигнализацию клеток.
Клетки кожи
Кожа состоит из слоя эпителиальной ткани (эпидермиса), который поддерживается слоем соединительной ткани (дермы) и подкожным слоем. Самый внешний слой кожи состоит из плоских эпителиальных клеток, которые плотно укомплектованы вместе. Кожа защищает внутренние структуры организма от повреждений, предотвращает обезвоживание, действует как барьер против микробов, сохраняет жир, вырабатывает витамины и гормоны.
Нервные клетки (нейроны)
Эндотелиальные клетки
Эндотелиальные клетки образуют внутреннюю оболочку сердечно-сосудистой системы и структур лимфатических систем. Эти клетки составляют внутренний слой кровеносных сосудов, лимфатических сосудов и органов, включая мозг, легкие, кожу и сердце. Эндотелиальные клетки ответственны за ангиогенез или создание новых кровеносных сосудов. Они также регулируют движение макромолекул, газов и жидкости между кровью и окружающими тканями, а также помогают регулировать кровяное давление.
Половые клетки
Половые клетки или гаметы представляют собой репродуктивные клетки, продуцируемые в мужских и женских половых органах. Мужские половые клетки или сперматозоиды являются подвижными и имеют длинное хвостообразное формирование, называемое жгутиком. Женские половые клетки или яйцеклетки являются не подвижными и относительно большими по сравнению с мужской гаметой. При половом размножении половые клетки объединяются во время оплодотворения, образовывая зиготу. В то время как другие клетки организма реплицируются митозом, гаметы размножаются мейозом.
Раковые клетки
Рак является результатом развития аномальных свойств в нормальных клетках, что позволяет им неконтролируемо делиться и распространяться в других местах организма. Развитие раковых клеток может быть вызвано мутациями, которые происходят от таких факторов, как химикаты, радиация, ультрафиолетовое излучение, ошибки репликации хромосом или вирусная инфекция. Раковые клетки теряют чувствительность к сигналам против роста, быстро размножаются и утрачивают способность проходить апоптоз или запрограммированную гибель клеток.
Кандидат химических наук О. БЕЛОКОНЕВА.
Клетки "без имени-отчества"
Миллионы людей до нас и миллионы после нас задумывались и будут задумываться над простым вопросом: как вся информация о живом организме может "упаковаться" в одну микроскопическую живую капельку, а затем разнестись по миллионам самых разных клеток? Еще 20 лет назад все рассуждения на эту тему не имели никакого экспериментального обоснования: в руках у исследователей не было той самой клетки-"праматери", клетки - предшественницы всех клеток организма, так называемой эмбриональной стволовой клетки. Правда, у растений рост зародыша из неполовых клеток-предшественников хорошо известен. Так, из кусочка зародышевой ткани моркови или женьшеня можно вырастить полноценное растение с половыми клетками.
Только в 1981 году американскому ученому Мартину Эвансу впервые удалось выделить животную стволовую эмбриональную клетку из зародыша мыши. Все последующие годы усилия ученых были направлены на получение эмбриональной стволовой клетки из человеческого зародыша. И в 1998 году удача улыбнулась американским исследователям Джеймсу Томпсону и Джону Беккеру. Сейчас каждый из них имеет в своей лаборатории до 10 бессмертных саморазмножающихся клеточных линий человеческих эмбриональных стволовых клеток.
В нашей стране одним из признанных лидеров исследований в области эмбриональных стволовых клеток является профессор В. Репин. Данная статья представляет собой запись его доклада, сделанного в мае этого года на заседании президиума Российской академии медицинских наук.
Самое главное свойство эмбриональной стволовой клетки состоит в том, что генетическая информация, заключенная в ее ядре, находится как бы в "нулевой точке" отсчета. Дело в том, что все неполовые клетки живых организмов (соматические клетки) специализированы, то есть выполняют какие-либо функции: клетки костной ткани формируют скелет, клетки крови отвечают за иммунитет и разносят кислород, нервные клетки проводят электрический импульс и так далее. А эмбриональная стволовая клетка еще не "включила" механизмы, определяющие ее специализацию. В "нулевой точке" ее геном еще не "запустил" ни одной программы и, что особенно важно, не начал выполнять программу размножения и формирования многоклеточного зародыша. Таких "нулевых" клеток в зародыше очень мало - всего сотые доли процента, вот почему исследователям так трудно было получить их в "чистом виде".
Эмбриональные стволовые клетки не работают в автоматическом режиме, как, например, тромбоциты или лимфоциты, они могут принять любую программу и превратиться в один из 150 возможных типов зародышевых клеток. Эмбриональная клетка лишь ждет специального "сигнала", чтобы начать одно из своих превращений. Это означает, что она не имеет никаких функций, кроме переноса мРНК в следующее клеточное поколение. Все клетки имеют, а она - нет. Эмбриональная клетка - кассета с информацией, клетка-аноним, клетка "без имени-отчества".
Еще один важный момент. Из эмбриональных стволовых клеток формируются островки в различных органах и тканях. По сути, наши органы являются смесью взрослых специализированных клеток с вкраплениями зародышевой ткани в виде эмбриональных стволовых клеток. Эти клетки растут, рождаются и умирают. И лишь их "праматерь" бессмертна. Сейчас уже научились выделять из головного мозга зародышей не просто отдельные эмбриональные стволовые клетки, а зародышевую ткань, из которой, как из куска глины, природа "лепит" все живое. При хранении зародыша в холодильнике при +4 о С через 4-5 часов все клетки погибают, остаются лишь эмбриональные стволовые клетки-предшественники.
Эмбриональная стволовая клетка расскажет ученым о том, как "работают" гены
Томпсон и Беккер сделали для биологиче ской науки ХХI века то же самое, что Уотсон и Крик для молекулярной биологии ХХ века. Уотсон и Крик нашли научный плацдарм для работы в области генетики, а Томпсон и Беккер - в области функциональной геномики. И действитель но, их авторитет и количество публикаций по изучению эмбриональной стволовой клетки растут лавинообразно, несмотря на то, что они опубликовали всего лишь по одной работе в международных научных журналах "Science" и "Proceedings of National Academy of Sciences USA" (Труды американской национальной Академии наук) в 1998 году, а уже в 1999 году журнал "Science" признал выделение эмбриональных стволовых клеток человека третьим по важности событием в биологии ХХ века.
С открытием в 1953 году Уотсоном и Криком двойной спирали ДНК ученые поняли, где в живой клетке хранится и как передается наследственная информация. Уотсон и Крик помогли понять, как законы наследственности "работают" в масштабе одной клетки. В 2001 году ученые полностью расшифровали молекулярную структуру ДНК человека, но не поняли, как "работают" составляющие ее гены. И вот эмбриональная стволовая клетка оказалась прекрасной моделью для понимания того, как 5000 генов эмбриогенеза тиражируют генетическую информацию, чтобы из одной клетки вырос человеческий организм, состоящий из 10 14 клеток.
Вся "работа" генома контролируется определенным набором генов, которые сначала формируют "костяк" клетки, потом ее внутреннюю структуру (органеллы) и, наконец, целиком клетку с полным набором генов. Говоря языком компьютерщиков, устройство клетки - это hardware - аппаратное обеспечение компьютера. И в последний момент в клетку "встраивается" software - генетическая программа, определяющая ее специализацию, ее место в организме. Проще говоря, это инструкция к тому, будет ли данная клетка, к примеру, частью соединительной ткани или она станет элементом крови.
Итак, все клетки одного организма имеют одинаковый набор генов, но у каждого из нас есть по меньшей мере 350 типов клеток, "работающих" по различным генетическим программам.
Перед одной-единственной клеткой стоит задача превратиться в организм, состоящий из миллиардов клеток. Для этого в ней имеются 5000 так называемых генов эмбриогенеза, регулирующих этот процесс на начальной стадии развития зародыша. Сначала оплодотворенная яйцеклетка размножается, превращаясь в клетки, которым не суждено стать зачатками будущих органов или тканей, они просто переносчики генетической информации в виде молекул РНК.
И только когда накопится уже достаточное количество информации, в работу включаются гены, ответственные за специализацию, после чего начинают формироваться семейства различных стволовых клеток и происходит сегментация зародыша (структурно выделяются участки будущих органов). Причем количество клеток в том или ином сегменте (будущем органе) генетически запрограммировано, а значит - конечно. Поэтому ученым при выращивании семейства эмбриональных стволовых клеток чрезвычайно важно брать клетку-"праматерь" на стадии, когда еще "молчат" гены сегментации. Томпсону и Беккеру это удалось, и потому они на сегодняшний день имеют практически неограниченное количество бессмертных эмбриональных стволовых клеток.
Эмбриональная стволовая клетка, клонирование и клеточная терапия
Удивительная способность эмбриональной стволовой клетки стать любой клеткой организма продиктована наличием в ней избытка РНК всех генов, отвечающих за рост зародыша на ранней стадии развития эмбриона. Факторы, делающие эмбриональную клетку уникальной, находятся в ее клеточной жидкости - цитоплазме. Именно поэтому возможно клонирование живых существ. Можно "вынуть" ядро с генетическим материалом из клетки любого организма, "вставить" его в оболочку яйцеклетки, и система начнет "работать" - копировать содержащуюся в ДНК информацию, а затем формировать новое живое существо, идентичное донору.
Изучение путей превращения эмбриональной стволовой клетки особенно важно для медицины, ведь, зная их, можно вырастить из клеток-предшественников огромный массив ткани и, в принципе, любой человеческий орган. Но для того, чтобы клонировать орган, одних эмбриональных стволовых клеток недостаточно. Нужны еще специальные стволовые клетки, из которых выращивается межклеточное вещество, формируется кровеносная система. Работы по выращиванию органов уже ведутся. Ведь стоит только направить эмбриональные клетки по "нужному пути" - и успех обеспечен. Во многих случаях ученые уже знают, как это сделать.
Хочу отметить, что в статье затронут исключительно научный аспект изучения эмбриональных стволовых клеток и ничего не сказано о терапии с использованием эмбриональных стволовых клеток, о том, что происходит с эмбриональными клетками при их пересадке в различные органы и ткани животных и человека. А между тем это огромная и очень важная тема. При пересадке эмбриональных стволовых клеток в какой-либо орган из них всегда образуются только клетки этого органа, что позволяет использовать эмбриональные стволовые клетки для восстановления поврежденных органов и тканей, лечения множества тяжелых заболеваний.
Эмбриональная стволовая клетка и мозг человека
Программа "Геном человека" показала, что мы отличаемся от обезьян и других млекопитающих очень немногим - так называемыми генами эмбриогенеза, то есть теми генами, которые отвечают за раннее развитие зародыша из эмбриональной стволовой клетки. Причем это относится не ко всем клеткам, а только к тем, которые управляют развитием мозга. Интересно, что, в отличие от всех живых существ, передняя доля мозга человека уже на ранних стадиях перестает контролироваться генами, которые определяют, сколько клеток будет в том или ином органе. Вот поэтому мозг человека может расти. То есть только "наши" (только человеческие) гены позволяют будущим клеткам мозга совершить такую экспансию. Более того, формирующиеся в процессе развития мозга новые нейроны не стоят на месте - они мигрируют, создавая новые и новые клеточные образования. Такого нет ни у кого из живых существ, кроме человека.
Благодаря новым генам мозг зародыша человека и других млекопитающих приобрел и новый орган - нервный гребень. Его клетки - "марафонцы", они способны пройти расстояние в несколько метров. Из мигрирующих клеток гребня образуются вся костно-мышечная система лица, тимус, все элементы внутреннего уха, проводящая система сердца, периферическая нервная система, надпочечники.
Изучение превращений стволовых клеток выявило множество удивительных взаимосвязей в системе органов и тканей человека. Можно привести один яркий пример.
Президент Клинтон за год до президентских выборов в США выступил по телевидению. Он обещал пяти миллионам имеющих право голоса диабетиков решить проблему инсулина раз и навсегда за два года. Дело в том, что за два года до этого известный американский ученый Ро Маккей, выращивая нервные клетки из их предшественников - нейрональных стволовых клеток, неожиданно обнаружил в межклеточной среде появление инсулина. В это было трудно поверить, но ученый решил идти до конца, сумел убедить в своей правоте многих и получил под научный проект огромное финансирование. И весной 2001 года в своей публикации в журнале "Science" он сообщил о том, что при определенных условиях нейрональные стволовые клетки способны превращаться в бета-клетки поджелудочной железы, то есть в клетки, вырабатывающие инсулин. Но самое интересное, что бета-клетки состоят "в очень близком родстве" с клетками стриатума - важной части головного мозга, управляющей многими процессами. Конечно, это неспроста, и здесь ученых ждут удивительные открытия.
Эмбриональные стволовые клетки и биоэтика
Несмотря на то, что исследования в области эмбриональных клеток сулят ученым грандиозный прорыв во всех отраслях биологии и медицины, в США и Германии они сейчас "заморожены", но продолжают проводиться в Англии, Японии, Австралии и многих других развитых странах. Основная причина запрещения научных исследований - этическая. Ведь пока основной источник эмбриональных клеток - материал, остающийся от искусственного оплодотворения, и фетальная ткань от медицинских абортов. Католическая церковь, религиозные общины, различные общественные организации, которые борются за запрещение абортов, оказывают колоссальное давление на правительства и президентов, призывая вместе с абортами запретить и исследование эмбриональных стволовых клеток, и лечение с их применением.
В ответ на это совсем недавно 80 нобелевских лауреатов отправили письмо президенту США Дж. Бушу о необходимости продолжения научных работ с эмбриональными стволовыми клетками. В нем утверждается, что, несмотря на религиозные и этические проблемы, достижения в этой области принесут пользу человечеству, несоизмеримую с моральными издержками на пути продвижения к истине. Кто прав - покажет время.
Изучением строения клетки занимается цитология (от латинского cytos – клетка и logos – учение).
Клетка – это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих цитоплазму и ядро, участвующих в единой совокупности метаболических, энергетических и информационных процессов и осуществляющих поддержание и воспроизведение всей системы в целом (строение клетки изображено на рисунке 1.3.5). Это длинное и емкое определение требует дальнейших разъяснений.
Размер клеток может быть различным. Некоторые шаровидные бактерии имеют ничтожные размеры: от 0,2 до 0,5 мкм в диаметре (напомним, что 1 мкм в тысячу раз меньше 1 мм). В то же время существуют клетки, которые видны невооруженным глазом. Например, яйцо птицы – это, в сущности, одна клетка. Яйцо страуса достигает в длину 17,5 см, и это самая крупная клетка. Однако, как правило, размеры клеток колеблются в значительно более узких пределах – от 3 до 30 мкм.
Формы клеток также очень разнообразны. Некоторые из них приведены на рисунке 1.3.4. Клетки живых организмов могут иметь вид шара, многогранника, звезды, цилиндра и других фигур.
Рисунок 1.3.4. Формы клеток:
1 - клетка крови - лимфоцит; 2 - клетка печени - гепатоцит; 3 - клетка костной ткани - остеобласт; 4 - клетка мерцательного эпителия; 5 - бокаловидная клетка слизистой оболочки толстой кишки; 6 - мужская половая клетка (сперматозоид); 7 - клетка нервной ткани - нейрон
Несмотря на то, что клетки имеют разные формы и размеры, выполняют различные и часто весьма специфические функции, они, в принципе, имеют одинаковое строение, то есть у них можно выделить общие структурные единицы. Клетки животных и растений состоят из трех основных компонентов, представленных на рисунке 1.3.5: оболочки – клеточной мембраны (5), отделяющей содержимое клетки от внешней среды или от соседних клеток, цитоплазмы (4) и ядра (1).
Возможны, тем не менее, и исключения. Например, мышечные волокна ограничены мембраной и состоят из цитоплазмы с множеством ядер (рисунок 1.3.1). Иногда после деления дочерние клетки остаются связанными друг с другом с помощью тонких цитоплазматических перемычек. Есть примеры безъядерных клеток (эритроциты), имеющих в своем составе только клеточную мембрану и цитоплазму, они обладают ограниченными функциональными возможностями, так как лишены способности к самообновлению и воспроизводству, в связи с отсутствием ядра.
Ядро и цитоплазма составляют протоплазму.
Клеточная мембрана (рисунок 1.3.6) представляет собой оболочку, отделяющую содержимое клетки от внешней среды или соседних клеток. Основу клеточной мембраны составляет двойной слой липидов (1), в который погружены белковые молекулы (2), некоторые из них выполняют функцию рецепторов (3). Снаружи мембрана покрыта слоем гликопротеинов – гликокаликсом (4). Одна из основных функций клеточной мембраны – барьерная, поскольку она ограничивает свободное перемещение веществ между цитоплазмой и внешней средой. Выросты (реснички мерцательного эпителия дыхательных путей, микроворсинки клеток кишечного эпителия) на клеточной мембране могут участвовать в процессах всасывания веществ внутрь клетки. Они значительно увеличивают площадь клеточной мембраны и наиболее характерны для эпителиальных клеток. Например, клетка кишечного эпителия имеет до 3000 микроворсинок, что увеличивает общую поверхность тонкой кишки до 200-300 м 2 и способствует интенсивному всасыванию питательных веществ.
Клеточная мембрана также осуществляет связь с внеклеточной средой и распознает вещества и стимулы, воздействующие на клетку. Эта способность обеспечивается специальными структурами клеточной мембраны, названными рецепторами.
Клеточные рецепторы – это белковые макромолекулы, расположенные внутри клеточной мембраны (трансмембранно) или в самой клетке, специфически (избирательно) реагирующие на определенные химические вещества. Особую роль играют рецепторы, распознающие биологически активные вещества – гормоны, медиаторы, специфические антигены других клеток или определенные белки. Различают рецепторы разных видов. Любой вид рецепторов способен связываться с ограниченным числом медиаторов или гормонов. Чем с меньшим числом медиаторов или гормонов может взаимодействовать данный рецептор, тем выше его специфичность. Это явление получило название принципа структурной комплементарности (соответствия). Этот принцип можно сравнить с правилом “ключ-замок”.
К выпускаемому замку (рецептору) прилагается ограниченный набор ключей (медиаторов или гормонов). Замок тем лучше, чем меньшее число “посторонних” ключей к нему подходит.
Клеточные рецепторы обеспечивают такие важные процессы, как взаимное распознавание клеток и регуляцию их функций. Эффекты лекарств также в большинстве случаев являются результатом взаимодействия молекул лекарственных веществ с рецепторами определенного вида. Подробнее об этом мы расскажем в главе 3.2, посвященной средствам, влияющим на вегетативную нервную систему, в третьей части книги.
На изменение физических факторов (температуру, давление, болевое раздражение и другие) реагируют рецепторы другого вида, представляющие собой окончания чувствительных нервных волокон. Они более подробно рассмотрены в главе 1.5, посвященной тканям, их строению и функциям, а также в разделах по местным анестетикам (обезболивающим средствам) и местнораздражающим средствам главы 3.1.
Важной функцией клеточной мембраны является обеспечение взаимодействия между соседними клетками. При этом образуются особые объединяющие структуры – межклеточные соединения, различные по своей структуре. Это могут быть выросты мембран соприкасающихся клеток, сцепленные между собой по правилу “ключ – замок” или переплетенные наподобие скрещенных пальцев рук (этот тип так и называется – пальцевидное соединение). Более сложные соединения – десмосомы (рисунок 1.3.7): два участка мембран соседних клеток (1) “прошиваются” насквозь особыми биологическими нитями – микрофиламентами и микротрубочками (2), участвующими в образовании каркаса клетки (цитоскелет, фрагмент 14 рисунка 1.3.5). Примером межклеточного контакта также являются синапсы, которые встречаются в местах соединения нервных клеток (нейронов) между собой или с клеткой какой-либо ткани (мышечной, эпителиальной). В них осуществляется односторонняя передача сигналов возбуждения или торможения. Более подробно о строении и работе синапсов вы также сможете узнать из последующих глав.
Цитоплазма заполняет внутриклеточное пространство между ядром и клеточной мембраной и под микроскопом напоминает желеобразную массу. Она состоит из гиалоплазмы (матрикса), в которую погружены обязательные клеточные компоненты – органеллы и различные непостоянные структуры (включения).
Гиалоплазма (матрикс цитоплазмы) является коллоидным раствором главным образом белка, в ней находится 20-25% общего количества белков клетки.
Органеллы – специализированные микроструктуры, которые постоянно присутствуют в клетке и выполняют ряд жизненно важных функций, обеспечивая внутриклеточный обмен веществ (метаболизм), а также энергетический и информационный обмен. Основными органеллами клетки являются эндоплазматическая сеть, митохондрии, аппарат Гольджи и лизосомы.
Эндоплазматическая сеть (рисунок 1.3.8) состоит из множества замкнутых зон в виде пузырьков (вакуолей) (5), плоских мешков или трубчатых образований (2), отделенных от гиалоплазмы мембраной (3) и имеющих внутренние полости с собственным содержимым (4).
Со стороны гиалоплазмы она покрыта мелкими округлыми тельцами, названными рибосомами (1) (содержат большое количество РНК) и придающими ей под микроскопом “шероховатый” или гранулярный вид. Рибосома (рисунок 1.3.9) состоит из большой и малой субъединиц, в которых имеется желобок. Он образует канал при сборке рибосомы, по которому проходит матричная (информационная) РНК. На рибосомах синтезируются белки, например, служащие строительным материалом для клеточных органелл. Такие белки в дальнейшем расходуются на нужды самой клетки, а другие – синтезированные “на экспорт” – покидают клетку, участвуя в межклеточном обмене информацией или выполнении клеткой специфических функций.
Накапливающиеся в полостях эндоплазматической сети белки, в том числе ферментные, необходимы для внутриклеточного обмена веществ и пищеварения. Они транспортируются в аппарат Гольджи, после чего входят в состав лизосом или секреторных гранул, отделенных от гиалоплазмы мембраной.
Часть эндоплазматической сети не содержит рибосом, ее называют гладкой эндоплазматической сетью. Эта сеть участвует в метаболизме липидов и некоторых внутриклеточных полисахаридов. Она играет важную роль в разрушении вредных для организма веществ (особенно в клетках печени).
Митохондрии (рисунок 1.3.10) являются также очень важными компонентами клетки. В них происходит превращение веществ, поступающих с пищей, в богатые энергией соединения. Эти соединения впоследствии расходуются во всех процессах, требующих затраты энергии. Они имеют гладкую наружную мембрану (1), а внутренняя мембрана (2) образует множество выростов, перегородок (3). Митохондрии называют еще органеллами клеточного дыхания или силовыми станциями клетки, так как основной источник энергии в живых организмах – аденозинтрифосфат (АТФ) – синтезируется именно в них.
Аппарат Гольджи (рисунок 1.3.11) назван по имени итальянского гистолога К. Гольджи. Он представляет собой комплекс уплощенных мешков (цистерн) (2), сложенных наподобие стопки блинов, и трубочек (3), от которых отщепляются пузырьки (1) с собственным содержимым – так образуются, в частности, первичные лизосомы (4). В аппарате Гольджи происходит накопление продуктов, синтезированных в эндоплазматической сети, их химическая модификация, синтез полисахаридов и образование их комплексов с белками (мукопротеидов), а также “упаковка” и выведение вырабатываемых продуктов (секрета) за пределы клетки.
Лизосомы (фрагмент 11 рисунка 1.3.5 и фрагмент 4 рисунка 1.3.11) – сферические тельца, размером 0,2-0,4 мкм, ограниченные одиночной мембраной. В клетке можно обнаружить различные виды лизосом, но все они объединены общим признаком – наличием в них ферментов, расщепляющих биополимеры. Ферменты лизосом синтезируются в эндоплазматической сети, а затем “упаковываются” в мембранную оболочку в аппарате Гольджи (первичные лизосомы). При слиянии первичных лизосом с вакуолями, содержащими поглощенные клеткой питательные вещества, или с измененными органеллами самой клетки образуются вторичные лизосомы. В них, под действием ферментов, происходит расщепление сложных веществ. Продукты расщепления проходят через мембрану лизосомы в гиалоплазму и включаются в различные процессы внутриклеточного обмена. Однако переваривание сложных веществ в лизосоме не всегда идет до конца. В этом случае внутри нее накапливаются непереваренные продукты. Такие лизосомы называют остаточными тельцами. В этих тельцах происходит уплотнение содержимого, его вторичная структуризация и отложение пигментных веществ. Так, у человека при старении организма в остаточных тельцах клеток мозга, печени и мышечных волокон происходит накопление “пигмента старения” – липофусцина.
Лизосомы, соединившиеся с измененными органеллами самой клетки, играют роль внутриклеточных “чистильщиков”, убирающих дефектные структуры. Увеличение числа таких лизосом является обычным явлением при процессах, обусловленных болезнью. В нормальных условиях число лизосом-"чистильщиков" увеличивается при так называемых метаболических стрессах, когда повышается активность клеток в органах, участвующих в обмене веществ, например клеток печени.
Особой разновидностью лизосом являются пероксисомы (рисунок 1.3.5, фрагмент 13). В своем составе они имеют пероксидазу – фермент, нейтрализующий многие токсические вещества, в том числе этиловый спирт.
Помимо вышеописанных (эндоплазматическая сеть, митохондрии, аппарат Гольджи, лизосомы), в клетке встречается большое число самостоятельных образований в форме нитей, трубочек или даже мелких плотных телец (включений). Они выполняют разнообразные функции: образуют каркас (цитоскелет, фрагмент 14 рисунка 1.3.5), необходимый для сохранения формы клетки, участвуют в транспорте веществ внутри клетки и в процессах деления.
В некоторых клетках встречаются специальные органеллы движения – реснички и жгутики, которые выглядят как выросты клетки, ограниченные внешней клеточной мембраной. Свободные клетки, имеющие реснички или жгутики, обладают способностью передвигаться (сперматозоиды) или перемещать жидкость и различные частицы. Например, внутренняя поверхность бронхов выстлана так называемыми реснитчатыми клетками, которые постоянным колебанием (мерцанием) ресничек продвигают бронхиальный секрет (мокроту) в сторону гортани, удаляя микроорганизмы и мельчайшие частицы пыли, попавшие в дыхательные пути.
Ядро клетки (рисунок 1.3.12) имеет округлую форму и окружено ядерной оболочкой (1), которая отличается большей пористостью (2), чем наружная клеточная мембрана. Через нее могут проходить целые молекулы белка. Ядро заполнено прозрачной нуклеоплазмой, в которую погружены тонкие длинные нити хроматина (3). В период деления клетки хроматин уплотняется, образуя хромосомы, хорошо различимые даже в световом микроскопе. Хроматин и хромосомы – это уровни упаковки генетического материала (рисунок 1.3.13). Цепи дезоксирибонуклеиновой кислоты (ДНК) (3) накручиваются на особые белки – гистоны (4).
ДНК – основной носитель генетической информации. Нити ДНК образуют двойную спираль, закрученную вокруг общей оси.
Ген – это участок ДНК, содержащий программу построения только одного определенного белка, например, хорошо всем известного гормона – инсулина. Афористическая формула “Один ген – один белок” была открыта еще полвека назад.
Информация, содержащаяся в гене, передается в цитоплазму посредством матричной, или информационной РНК (мРНК), подробнее о которой мы расскажем, разбирая биосинтез белка. Если контакт ядра с цитоплазмой прекращается, то скорость всех реакций в клетке постепенно замедляется, и она в результате погибает.
Помните правило “ключ – замок”? Как раз на основе этого механизма (принципа структурной комплементарности) расположенные напротив азотистые основания (в составе нуклеотидов) нитей ДНК соединяются в пары путем образования водородных связей: аденин (А) только с тимином (Т), а гуанин (G) только с цитозином (С) (рисунок 1.3.13, фрагменты 1 и 2). Таким же образом к одной из цепей ДНК достраивается мРНК.
В период деления происходит “ремонт”, воспроизведение и удвоение (редупликация) молекул ДНК, что позволяет передать дочерним клеткам одинаковый в количественном и качественном отношении объем генетической информации.
Самая большая из хромосом человека содержит ДНК длиной около 7 см. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет приблизительно 170 см.
Помимо хромосом, в ядре находится также одно или несколько относительно больших круглых ядрышек (4), размером 1-5 мкм, которые богаты рибонуклеиновой кислотой (РНК). Она активно расходуется при делении клеток, а также на образование рибосом (рисунок 1.3.9). Эти ядрышки представляют собой петли из нитей хроматина, которые участвуют в синтезе белка.
- Лекарства и субстанции
- Указатель лекарств и субстанций
- Указатель действующих веществ
- Производители
- Фармакологические группы
- Классификация фармакологических групп
- Указатель фармакологических групп
- АТХ классификация
- Классификация лекарственных форм
- Справочник болезней
- Международная классификация болезней (МКБ-10)
- Указатель болезней и состояний
- Взаимодействие лекарств (действующих веществ)
- Указатель фармакологических действий
- Проверка подлинности упаковок по 3D
- Поиск регистрационных удостоверений
- БАДы и другие ТАА
- БАДы
- Указатель БАДов
- Классификация БАДов
- Другие ТАА
- Указатель других ТАА
- Классификация других ТАА
- БАДы
- Цены
- Цены на ЖНВЛП
- Цены на лекарства и другие ТАА в Москве
- Цены на лекарства и другие ТАА в Санкт-Петербурге
- Цены на лекарства и другие ТАА в регионах
- Новости и события
- Новости
- События
- Пресс-релизы фармкомпаний
- Архив мероприятий
- Продукты и сервисы
- Цены на ЖНВЛП
- 3D-упаковки
- Гармонизация
- Забраковка
- Взаимодействие
- Фармэквивалентность
- Электронные версии справочников для врачей
- Мобильные приложения
- Поиск лечебных учреждений в РФ
- Библиотека
- Книги
- Cтатьи
- Нормативные акты
- О компании
- Аптечка
- Интернет-магазин
Все права защищены. Не разрешается коммерческое использование материалов. Информация предназначена для медицинских специалистов.
Читайте также: