Нервные клетки не обнаружены у
Ученые из Швеции наконец-то поставили точку в одном из традиционных нейрофизиологических споров — они убедительно доказали, что нервные клетки взрослого человека могут восстанавливаться. Впрочем, это совсем не говорит о том, что нейроны не следует беречь, поскольку, согласно полученным ими данным, регенерируют далеко не все нервные клетки.
Многие люди до сих пор считают утверждение о том, что "нервные клетки не восстанавливаются" весьма и весьма справедливым. Хотя на самом деле оно является презумпцией в чистом виде, то есть верно до тех пор, пока не доказано обратное. Дело в том, что ученые пришли у этому выводу следующим образом: изучив сам сформировавшийся нейрон, они поняли, что он не способен к делению (как и некоторые другие клетки нашего организма, например те, что составляют сердечную мышцу).
Однако это еще ничего не значит — ведь новые нейроны могут появляться из клеток-предшественников (как это происходит у эмбриона при развитии нервной системы). Тем не менее во взрослом организме млекопитающего эти предшественники обнаружены не были — хотя искали их очень тщательно. Именно это и побудило ученых принять утверждение о том, что нервные клетки не восстанавливаются — но, еще раз повторюсь, как презумпцию. Которую можно опровергнуть, доказав либо способность нейронов к размножению, либо — найдя предшественники нервных клеток во взрослом организме.
Следует заметить, что поиском таких доказательств ученые занимаются уже достаточно давно — еще в 1956 году отечественный нейробиолог И. Рампан, работавший в Институте мозга, заметил одну удивительную вещь — после сильного повреждения мозга у крыс, собак и некоторых других видов млекопитающих сохранившиеся нервные клетки светлеют, внутри них формируются два ядра, далее разделяется пополам цитоплазма, и в результате этого разделения получается два нейрона. То есть нейроны в некоторых случаях могут делиться. Правда, на подобное были способны лишь молодые нервные клетки — у старых животных деление не происходило.
К сожалению, из-за "железного занавеса", который тогда отгораживал от всего мира не только жителей СССР, но и отечественную науку, работа Рампана не попала в ведущие мировые журналы и осталась незамеченной для большинства ученых. Однако всего через шесть лет нейрофизиолог Жозеф Олтман из Университета Пердью (США) проделал похожие исследования — он с помощью электрического тока разрушил одну из структур таламуса крысы и ввел туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны не только там, где он произвел разрушения, но и в другом отделе — коре головного мозга. В течение последующих семи лет Олтман опубликовал еще несколько работ, доказывающих существование нейрогенеза в мозге взрослых млекопитающих. Однако тогда на них так же не обратили внимания — слишком уж фантастической казалась подобная идея.
К теме нейрогенеза в мозгу у взрослых позвоночных вернулись только через 20 лет. На этот раз объектом исследования были птицы. Профессор Фернандо Ноттебуму из Рокфеллеровского университета (США) убедительно доказал, что у взрослых самцов канареек процесс образования новых нейронов постоянно происходит в вокальном центре мозга, хотя их количество подвержено сезонным колебаниям (наиболее активно нейрогенез протекает весной). Примерно тогда же, в середине 80-х годов прошлого века отечественный физиолог А. Поленов открыл нейрогенез в мозгу тритонов и лягушек.
В начале 1990-х годов ученым удалось доказать, что этот процесс идет и у млекопитающих. Группа ученых, которыми руководил профессор Гейдж из Университета Салка (США), построили миниатюрный город, куда запустили обычных мышей, которые играли там, занимались своеобразной "физкультурой", а также отыскивали выходы из лабиринтов. В итоге оказалось, что у таких "городских" мышей новые нейроны возникали в гораздо большем количестве, чем у их пассивных сородичей, погрязших в рутинной жизни в виварии.
Ученые, заинтересовавшись, решили выяснить, каким образом это происходит. Через некоторое время они нашли в мозгу взрослых грызунов клетки, которые, по их предположению, могли являться стволовыми. После этого был проведен следующий эксперимент — мозговую ткань, содержащую "кандидатов" в стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. И что вы думаете, они действительно превратились в нейроны, а ослепленная крыса вновь стала видеть!
Получается, что Рампан был не прав, и на самом деле новые нейроны возникают не в результате деления старых, а из своих предшественников? В реальности все обстоит намного сложнее, в 2003 году группа профессора Гейджа опубликовала работу, в которой показала, что новые нейроны могут образовываться и из стволовых клеток крови! Оказалось, что они могут проникать в мозг при травмах, а дальше происходит следующее: эти клетки сливаются с нейронами, образуя двуядерные конгломераты. Затем "старое" ядро нейрона разрушается, а его замещает "новое" ядро стволовой клетки крови. Видимо, именно этот процесс и наблюдал Рампан, однако он не смог его правильно интерпретировать.
Итак, многочисленные эксперименты основательно пошатнули презумпцию о том, что нервные клетки не восстанавливаются. Однако у скептиков осталось последнее прибежище — хорошо, говорили они, у животных этот процесс возможен, однако у человека подобное никогда не происходит. Впрочем, в 1998 году эксперименты американских ученых показали, что нейрогенез продолжается даже у взрослого человека, а происходит он в гиппокампе — отделе переднего мозга, который лежит под большими полушариями и принимает участие в формирования эмоций, консолидации памяти (то есть переходе кратковременной памяти в долговременную), а так же в "создании" сновидений.
Эта работа произвела сенсацию, однако из-за того, что подобные эксперименты признали опасными для здоровья человека, долгое время никто не решался их повторить. То есть полученные ранее результаты так и не перепроверились в других, независимых исследованиях, поэтому данная работа была поставлена под сомнение. И только недавно группа ученых из Каролинского института (Швеция), которой руководила доктор Кирсти Сполдинг, выяснили, что новые клетки в гиппокампе взрослого человека все-таки образуются. При этом исследователи использовали весьма нестандартную методику — вычисление соотношения изотопов углерода С 14 и С 12 .
Как мы знаем, радиоактивный углерод С 14 весьма нестабилен и быстро разрушается. Поэтому, по соотношению С 14 и С 12 в молекулах клетки можно понять, сколько минуло времени со дня смерти объекта — то есть с момента, когда клетки перестали поглощать радиоактивный углерод. Однако откуда он взялся в мозге человека? Дело в том, что в 50-60-е годы прошлого века все развитые страны мира интенсивно испытывали разнообразные атомные заряды, а во время таких испытаний в окружающую среду в изобилии поступал радиоактивный изотоп углерода С 14 . Потом, после 1963 года (когда был принят Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой) эти испытания сошли на нет и радиоактивного углерода в природе стало на порядки меньше.
Но вернемся к работе шведских ученых — они взяли образцы мозговой ткани из гиппокампа у 55 людей после их смерти, а потом ДНК из клеток данных тканей была отправлена на изотопный анализ. Его результаты оценивали с помощью математической модели, созданной как раз для того, чтобы описывать динамику соотношения С 14 и С 12 в зависимости от возраста клетки.
В результате исследователи выяснили, что образование новых нейронов в гиппокампе происходит, причем достаточно интенсивно — каждый день в участке этого отдела мозга, который называется зубчатая извилина, появляется 1 440 новых клеток! Эти данные ученым сообщило сравнение результатов теоретического и экспериментального расчетов — углерода С14 в нейронах умерших оказалось значительно меньше, чем должно было быть И хотя нейрогенез способствует замещению далеко не всех погибших клеток гиппокампа, однако все-таки частично нейроны в этой области действительно могут восстанавливаться.
Как видите, утверждение о невозможности восстановления нервных клеток у взрослого человека все-таки оказалось ложным. И хотя скептики считают, что подобное следует рассматривать как некий атавизм, сохранившийся исключительно в гиппокампе (это весьма древний отдел мозга), однако факт остается фактом — нервная система тоже способна к регенерации…
Читайте самое интересное в рубрике "Наука и техника"
Встройте "Правду.Ру" в свой информационный поток, если хотите получать оперативные комментарии и новости:
Подпишитесь на наш канал в Яндекс.Дзен или в Яндекс.Чат
Добавьте "Правду.Ру" в свои источники в Яндекс.Новости или News.Google
Также будем рады вам в наших сообществах во ВКонтакте, Фейсбуке, Твиттере, Одноклассниках.
О чем шумим?
Полученные срезы нервной ткани окрасили флуоресцирующими (светящимися) антителами, выявляющими наличие двух веществ — даблкортина (DCX) и нейральных молекул клеточной адгезии (PSA-NCAM) — маркеров незрелых нейронов. Клетка считалась вновь образованной только в том случае, если после такой окраски она флуоресцировала смесью двух цветов — от антител к обоим соединениям. Те нейроны, которые вырабатывали только один из названных маркеров, не учитывали.
Такие данные резко расходятся с результатами, полученными другими исследовательскими коллективами ранее. Но иными методами: либо с помощью радиоактивного углерода, который может встроиться только в делящиеся молекулы ДНК, либо с использованием бромдезоксиуридина (BrdU), вещества, обладающего сходными свойствами. И хотя сравнивать результаты, полученные с помощью различных методик, нелегко, некоторые ученые, работающие в области взрослого нейрогенеза, уже высказали ряд претензий к новой статье.
Нападение и защита
Первая претензия к калифорнийцам: не надо было использовать образцы мозга от умерших людей. Наверняка за то время, пока их мозг был внутри уже безжизненного тела, маркеры делящихся клеток в нем успели повредиться или даже разложиться. Потому-то ни у одного взрослого новых нейронов в гиппокампе не нашли. Более того, в ряде случаев смерть наступила из-за инсульта или отказа мотонейронов, а следовательно, нервная ткань была повреждена.
Авторы статьи в Nature возражают: да, в случае с погибшими взрослыми отсутствие делящихся предшественников нейронов в гиппокампе можно списать на посмертные биохимические процессы. Но к результатам, полученным для эпилептиков, такое объяснение не годится. Выходит, что независимо от источника происхождения биоматериала в гиппокампе людей старше 13 лет новых нейронов так мало, что найти их не получается. С другой стороны, остается довольно спорным, насколько данные по срезам мозга людей, страдающих эпилепсией, можно перенести на вполне здоровых испытуемых.
На это авторы статьи об отсутствующем нейрогенезе отвечают, что в других исследованиях взрослого нейрогенеза у людей тоже ничего не сказано про психическое состояние участников экспериментов. Поэтому такие претензии попахивают двойными стандартами.
Ищем ключи под фонарем
Гиппокамп — это, безусловно, важная часть головного мозга. Он нужен и для запоминания нового, и для ориентации в пространстве. Кроме того, именно в этой структуре впервые обнаружили долговременную потенциацию — усиление и облегчение передачи сигналов между нейронами, длящееся несколько часов или даже суток — основу памяти. Гиппокамп человека хорошо изучен, потому что его нередко приходится вырезать у больных височной эпилепсией, которым лекарства уже не помогают снизить частоту и интенсивность припадков. После такой процедуры врачам волей-неволей приходится наблюдать, как удаление этой области мозга влияет на интеллект и характер пациентов.
К тому же с гиппокампом очень удобно экспериментировать на грызунах. Он у них весьма крупный, к нему легко дотянуться электродами и другими приспособлениями. Вероятно, это одна из причин, почему новые нейроны у взрослых животных ищут именно там, — это проще всего.
Однако люди далеко не грызуны, кроме гиппокампа у нас в мозге есть еще кое-что поважнее — кора больших полушарий. Она у нас развита хорошо, пожалуй лучше, чем у всех остальных млекопитающих. Именно кора обеспечивает способность говорить, думать, планировать, мастерить и творить. Кора больших полушарий относится к неокортексу, или новой коре. У примитивных млекопитающих ее, считай, и нет, а у множества грызунов, в том числе мышей и крыс, она развита слабо: косвенно об этом можно судить по числу извилин, которые у этих животных почти отсутствуют. А гиппокамп — это и вовсе древняя кора, самая старая и самая примитивная из существующих. Он есть и у рептилий.
Логично предположить, что чем более продвинуто в плане строения нервной системы животное, тем меньшую роль в его деятельности играет гиппокамп и тем большую — новая кора. Раз так, то смысла обновлять клетки древней коры становится меньше, а добавлять нейроны к коре больших полушарий, наоборот, выгоднее (и у людей это, кстати, происходит). Зачем менять ручку двери ванной, если в квартире обваливается потолок?
Мозги различных видов млекопитающих вполне следуют этой логике. У кошек, кроликов и морских свинок незрелые нейроны находят далеко не только в гиппокампе, но и в новой коре, а вот у крыс и мышей большие полушария не обновляются: видимо, размер этих животных маловат. А у дельфинов — животных еще более крупных, дольше живущих, а главное, умных — ко всему прочему скорость взрослого нейрогенеза в гиппокампе с возрастом падает практически до нуля. Люди, как можно заметить, во многом умнее дельфинов, да и не всегда сильно мельче. Так что сильно удивляться отсутствию нейрогенеза в гиппокампе взрослых Homo sapiens нелогично.
Но эксперименты на людях ставить нельзя. Им можно только делать операции, в ходе которых часть тканей головного мозга удаляется. Значит, для детального изучения нейрогенеза у взрослых нужны какие-то другие крупные млекопитающие. Дельфины подошли бы, но есть две проблемы. Во-первых, они живут в воде и в неволе содержать их трудно. Во-вторых, комитеты по биоэтике постоянно сужают круг допустимых манипуляций над ними: обижать умных считается делом нехорошим. С обезьянами та же беда: они слишком похожи на нас, и каждый год приматологи находят новые черты их интеллектуального сходства с нами, так что эксперименты на приматах тоже постепенно сворачивают. Поэтому авторы статьи, вышедшей в конце января в The Journal of Neuroscience, на роль объекта изучения выбрали овец. Они и крупные, и живут долго (в неволе до 30 лет, как и макаки), и извилин у них гораздо больше, чем у грызунов (то есть площадь новой коры настолько велика, что она умещается в череп, лишь если ее несколько раз сложить). А значит, овцы по строению и ходу развития головного мозга почти наверняка ближе к человеку, чем мыши и крысы. Ученые сделали срезы головного мозга новорожденных и подросших ягнят, а также половозрелых особей. Проверив их на содержание все того же даблкортина, биологи выяснили, где какие клетки появляются у животных этого вида.
И что же оказалось? У мелкого рогатого скота в коре больших полушарий, а также в подкорковых структурах делящихся предшественников нервных клеток нет. Повод расстраиваться? Отнюдь. Ведь зато там есть нейроны, появившиеся еще в ходе эмбрионального развития и сохранившие множество структурных и биохимических признаков незрелых нервных клеток. Что самое интересное, их число с возрастом не падает!
Научные войны
Подобные заявления, как правило, в момент их написания имеют крайне незначительное отношение к реальности. До сих пор введение предшественников нервных клеток в мозг больных инсультом, паркинсонизмом и другими неврологическими заболеваниями ни разу не дало статистически значимых результатов. Да, испытуемым не становилось хуже, но и улучшений заметно не было, а ведь исследования ведутся уже не одно десятилетие.
Так что не важно, кто прав, а кто ошибся в вопросе реальности нейрогенеза у взрослых людей — авторы новой статьи или их коллеги (взгляните на число публикаций об исследованиях нейрогенеза у человека, составленном канадским нейробиологом Джейсоном Снайдером, который еще и написал синопсис обсуждаемой статьи в Nature). На нашем веку в медицине от этого ничего не изменится. Однако если для вас важнее получение нового знания как такового, а его практическая польза или светлое будущее человечества вас волнуют куда слабее, то такой расклад смущать не должен. Наличие двух противоположных точек зрения, подкрепленных эмпирическими свидетельствами, говорит о крайне плодотворной ситуации, которая неизбежно в скором времени создаст прорыв в нашем понимании развития и функционирования нервной системы.
Светлана Ястребова
Нейроны и стресс
Принято считать, что нервные клетки умирают, когда человек испытывает бытовой стресс и эмоциональные переживания. Картина, которая рисуется неграмотным маркетингом (пока ты нервничаешь, миллионы твоих нервных клеток умирают), так не работает. Стресс, переживания — это один из режимов работы нервной системы. Да, может, он и не самый комфортный, но точно не катастрофа. Одна из функций нервной системы — обслуживать организм, который нужно спасать от неприятных ситуаций. Такой режим для человека субъективно неприятен, но клеткам, по сути, всё равно. Если стресс не прекращается и тянется неделями и месяцами, это может истощить запас прочности организма, но всё же довести нервные клетки до гибели довольно сложно, скорее мы получим другие проблемы со здоровьем.
Нарушения нервной системы
Кроме того, существуют такие заболевания, как болезнь Альцгеймера и болезнь Паркинсона. Они как раз связаны со смертью определённых групп нейронов. Это очень тяжёлые состояния, которые человек получает в результате совокупности многих факторов. К сожалению, эти заболевания нельзя предвидеть на ранних этапах или обратить вспять (хотя наука не оставляет попыток). Например, болезнь Паркинсона обнаруживают, когда у человека трясутся руки, ему сложно контролировать движения. Это значит, что 90% нейронов в области, которая всё это контролировала, уже умерли. До этого остававшиеся в живых клетки брали на себя работу погибших. В дальнейшем нарушаются умственные функции и появляются проблемы с движением.
Синдром Альцгеймера — это сложнейшее заболевание, при котором по всему мозгу начинают отмирать определённые нейроны. Человек теряет себя, теряет память. Таких людей поддерживают медикаментозно, но восстановить миллионы погибших клеток медицина пока не может.
Есть и другие, не такие известные и распространённые, заболевания, связанные с отмиранием нервных клеток. Многие из них развиваются в пожилом возрасте. Огромное количество институтов по всему миру изучают их и пытаются найти способ диагностики и лечения, ведь население земли стареет.
Нейроны потихоньку начинают отмирать и с возрастом. Это часть естественного процесса старения человека.
Восстановление нервных клеток и действие успокоительных
Здесь стоит понимать: погибшие нейроны уже не возобновляют свою работу. Что погибло, то утеряно безвозвратно. Никаких новых клеток не образуется, мозг перестраивается, чтобы те задачи, которые выполнял поражённый участок, снова решались. Таким образом, совершенно точно можно сделать вывод, что нервные клетки однозначно не восстанавливаются, но и не умирают от событий, происходящих в повседневной жизни человека. Это случается только при тяжелейших травмах и болезнях, которые имеют непосредственное отношение к сбою в работе нервной системы.
Доктор медицинских наук В. ГРИНЕВИЧ.
Крылатое выражение "Нервные клетки не восстанавливаются" все с детства воспринимают как непреложную истину. Однако эта аксиома - не более чем миф, и новые научные данные его опровергают.
Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Почти 70% из них гибнут еще до рождения ребенка. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Конечно же погибают не только нейроны, но и другие клетки организма. Только все остальные ткани обладают высокой регенерационной способностью, то есть их клетки делятся, замещая погибшие. Наиболее активно процесс регенерации идет в клетках эпителия и кроветворных органах (красный костный мозг). Но есть клетки, в которых гены, отвечающие за размножение делением, заблокированы. Помимо нейронов к таким клеткам относятся клетки сердечной мышцы. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются?
Одно из возможных объяснений: в нервной системе одновременно "работают" не все, а только 10% нейронов. Этот факт часто приводится в популярной и даже научной литературе. Мне неоднократно приходилось обсуждать данное утверждение со своими отечественными и зарубежными коллегами. И никто из них не понимает, откуда взялась такая цифра. Любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому, оставив гипотезу об "отдыхающих" нейронах, обратимся к одному из свойств нервной системы, а именно - к ее исключительной пластичности.
Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых "коллеги", которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, ограничение подвижности, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Значит, одна живая нервная клетка может заменить девять погибших.
Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих, или нейрогенез.
Первое сообщение о нейрогенезе появилось в 1962 году в престижном научном журнале "Science". Статья называлась "Формируются ли новые нейроны в мозге взрослых млекопитающих?". Ее автор, профессор Жозеф Олтман из Университета Пердью (США) с помощью электрического тока разрушил одну из структур мозга крысы (латеральное коленчатое тело) и ввел туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе (участок переднего мозга) и коре головного мозга. В течение последующих семи лет Олтман опубликовал еще несколько работ, доказывающих существование нейрогенеза в мозге взрослых млекопитающих. Однако тогда, в 1960-е годы, его работы вызывали у нейробиологов лишь скепсис, их развития не последовало.
И только спустя двадцать лет нейрогенез был вновь "открыт", но уже в головном мозге птиц. Многие исследователи певчих птиц обращали внимание на то, что в течение каждого брачного сезона самец канарейки Serinus canaria исполняет песню с новыми "коленами". Причем новые трели он не перенимает у собратьев, поскольку песни обновлялись и в условиях изоляции. Ученые стали детально изучать главный вокальный центр птиц, расположенный в специальном отделе головного мозга, и обнаружили, что в конце брачного сезона (у канареек он приходится на август и январь) значительная часть нейронов вокального центра погибала, - вероятно, из-за избыточной функциональной нагрузки. В середине 1980-х годов профессору Фернандо Ноттебуму из Рокфеллеровского университета (США) удалось показать, что у взрослых самцов канареек процесс нейрогенеза происходит в вокальном центре постоянно, но количество образующихся нейронов подвержено сезонным колебаниям. Пик нейрогенеза у канареек приходится на октябрь и март, то есть через два месяца после брачных сезонов. Вот почему "фонотека" песен самца канарейки регулярно обновляется.
В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Л. Поленова.
Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа.
Как было показано, новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Однако потребовалось почти пятнадцать лет, чтобы доказать, что аналогичный процесс происходит и в нервной системе млекопитающих.
Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих.
Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. У взрослых крыс за месяц из стволовых клеток образуется около 250 000 нейронов, замещая 3% всех нейронов гиппокампа. Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь (около 2 см). Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны.
Обонятельные луковицы головного мозга млекопитающих отвечают за восприятие и первичную обработку различных запахов, включая и распознавание феромонов - веществ, которые по своему химическому составу близки к половым гормонам. Сексуальное поведение у грызунов регулируется в первую очередь выработкой феромонов. Гиппокамп же расположен под полушариями мозга. Функции этой сложноорганизованной структуры связаны с формированием краткосрочной памяти, реализацией некоторых эмоций и участием в формировании полового поведения. Наличие у крыс постоянного нейрогенеза в обонятельной луковице и гиппокампе объясняется тем, что у грызунов эти структуры несут основную функциональную нагрузку. Поэтому нервные клетки в них часто гибнут, а значит, их необходимо обновлять.
Для того чтобы понять, какие условия влияют на нейрогенез в гиппокампе и обонятельной луковице, профессор Гейдж из Университета Салка (США) построил миниатюрный город. Мыши там играли, занимались физкультурой, отыскивали выходы из лабиринтов. Оказалось, что у "городских" мышей новые нейроны возникали в гораздо большем количестве, чем у их пассивных сородичей, погрязших в рутинной жизни в виварии.
Cтволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. (Светочувствительная внутренняя стенка глаза имеет "нервное" происхождение: состоит из видоизмененных нейронов - палочек и колбочек. Когда светочувствительный слой разрушается, наступает слепота.) Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Причем при пересадке стволовых клеток мозга в неповрежденный глаз никаких превращений с ними не происходило . Вероятно, при повреждении сетчатки глаза вырабатываются какие-то вещества (например, так называемые факторы роста), которые стимулируют нейрогенез. Однако точный механизм этого явления до сих пор не ясен.
Перед учеными встала задача показать, что нейрогенез идет не только у грызунов, но и у человека. Для этого исследователи под руководством профессора Гейджа недавно выполнили сенсационную работу. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей. Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Недавно проведенные исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых, но из стволовых клеток крови. Открытие этого феномена вызвало в научном мире эйфорию. Однако публикация в журнале "Nature" за октябрь 2003 года во многом остудила восторженные умы. Оказалось, что стволовые клетки крови действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образуя двуядерные клетки. Затем "старое" ядро нейрона разрушается, а его замещает "новое" ядро стволовой клетки крови. В организме крысы стволовые клетки крови в основном сливаются с гигантскими клетками мозжечка - клетками Пуркинье, правда, происходит это довольно редко: во всем мозжечке можно обнаружить лишь несколько слившихся клеток. Более интенсивное слияние нейронов происходит в печени и сердечной мышце. Пока совершенно непонятно, какой в этом физиологический смысл. Одна из гипотез заключается в том, что стволовые клетки крови несут с собой новый генетический материал, который, попадая в "старую" клетку мозжечка, продлевает ей жизнь.
Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний (заболеваний, сопровождающихся гибелью нейронов головного мозга). Препараты стволовых клеток для трансплантации получают двумя способами. Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками - заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это.
В некоторых лечебных учреждениях в США уже сформированы "библиотеки" нейрональных стволовых клеток, полученных из зародышевой ткани, и проводятся их пересадки пациентам. Первые попытки трансплантации дают положительные результаты, хотя на сегодняшний день врачи не могут разрешить основную проблему подобных пересадок: безудержное размножение стволовых клеток в 30-40% случаев приводит к образованию злокачественных опухолей. Пока не найдено подхода к предотвращению подобного побочного эффекта. Но, несмотря на это, трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона, ставших бичом развитых стран.
"Наука и жизнь" о стволовых клетках:
Белоконева О., канд. хим. наук. Запрет для нервных клеток. - 2001, № 8.
Белоконева О., канд. хим. наук. Праматерь всех клеток. - 2001, № 10.
Смирнов В., акад. РАМН, член-корр. РАН. Восстановительная терапия будущего. - 2001, № 8.
Читайте также: