Обмен веществ в нервных клетках является
1. Строение и функции элементов нервной клетки……………. ……..… 4
2. Обмен веществ в нейроне……………………. ………………………… 6
4. Основные функции нервной клетки……………………………….……. 8
4.1. Воспринимающая функция нейрона …………………………………. 8
4.2. Интегративная функция нейрона …………………………………….. 11
4.3. Эффекторная функция нейрона ………………………………. ……. 13
Основным структурным элементом нервной системы являются нервные клетки, или нейроны. Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения. Нейроны разделяются на три основных типа: афферентные, эфферентные, промежуточные нейроны.
Афферентные нейроны (чувствительные, или центростремительные) передают информацию от рецепторов в центральную нервную систему. Тела этих нейронов расположены вне центральной нервной системы - в спинномозговых ганглиях и в ганглиях черепно-мозговых нервов.
Эфферентные нейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из центральной нервной системы к рабочим органам. Для эфферентных нейронов характерна разветвленная сеть дендритов и один длинный отросток - аксон.
Промежуточные нейроны (интернейроны, или вставочные) - это, как правило, более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.
1. Строение и функции элементов нервной клетки
Различные структурные элементы нейрона имеют свои функциональные особенности и разное физиологическое значение. Нервная клетка состоит из тела, или сомы, и различных отростков. Многочисленные древовидно разветвленные отростки дендриты (от греч. dendron - дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток аксон (от греч. axis - ось), который передает нервные импульсы дальше - другой нервной клетке или рабочему органу (мышце, железе).
Форма нервной клетки, длина и расположение отростков чрезвычайно разнообразны и зависят от функционального назначения нейрона.
Среди нейронов встречаются самые крупные клеточные элементы организма. Размеры их поперечника колеблются от 6-7 мк (мелкие зернистые клетки мозжечка) до 70 мк (моторные нейроны головного и спинного мозга). Плотность их расположения в некоторых отделах центральной нервной системы очень велика. Например, в коре больших полушарий человека на 1мм 3 приходится почти 40 тыс. нейронов. Тела и дендриты нейронов коры занимают в целом примерно половину объема коры.
Внутренняя часть клетки заполнена цитоплазмой, в которой расположены ядро и различные органоиды. Цитоплазма очень богата ферментными системами (в частности, обеспечивающими гликолиз) и белком. Ее пронизывает сеть трубочек и пузырьков - эндоплазматический ретикулум. В цитоплазме имеются также отдельные зернышки - рибосомы и скопления этих зернышек - тельца Ниссля, представляющие собой белковые образования, содержащие до 50% РНК. Это белковые депо нейронов, где также происходит синтез белков и РНК.
В специальных аппаратах нервных клеток - митохондриях совершаются окислительные процессы с образованием богатых энергией соединений (макроэргических связей АТФ). Это энергетические станции нейрона. В них происходит трансформация энергии химических связей в такую форму, которая может быть использована нервной клеткой. Митохондрии концентрируются в наиболее активных частях клетки.
2. Обмен веществ в нейроне
Основной особенностью обмена веществ в нейроне является высокая скорость обмена и преобладание аэробных процессов. Потребность мозга в кислороде очень велика. Хотя вес мозга по отношению к весу тела составляет всего 2%, потребление кислорода мозгом достигает в состоянии покоя у взрослых людей 25% от общего его потребления организмом, а у маленьких детей - 50%. Даже кратковременное нарушение доставки кислорода кровью может вызвать необратимые изменения в деятельности нервных клеток: в спинном мозгу - через 20 - 30 мин., в стволе головного мозга - через 15 - 20 мин., а в коре больших полушарий - уже через 5 - 6 мин.
Энергетические траты мозга составляют 1 /6 - 1 /8 суточных затрат организма человека. Основным источником энергии для мозговой ткани является глюкоза. Мозг человека требует для обмена около 115г. глюкозы в сутки. Содержание ее в клетках мозга очень мало, и она постоянно черпается из крови.
Деятельное состояние нейронов сопровождается трофическими процессами - усилением в них синтеза белков. При различных воздействиях, вызывающих возбуждение нервных клеток, в том числе при мышечной тренировке, в их ткани значительно возрастает количество белка и РНК, при тормозных же состояниях и утомлении нейронов содержание этих веществ уменьшается. В процессе восстановления оно возвращается к исходному уровню или превышает его.
3. Глиальные клетки
В процессах питания нервных клеток и их обмене веществ участвуют также окружающие нейрон клетки глии (глиальные клетки, или нейроглия). Эти клетки заполняют в мозгу все пространство между нейронами. В коре больших полушарий их примерно в 5 раз больше, чем нервных клеток. Тела нейронов, как и их аксоны, окружены глиальными клетками. Глиальные клетки выполняют несколько функций: опорную, защитную, изолирующую, обменную (снабжение нейронов питательными веществами). Показано, что при длительном возбуждении в нейроне высокое содержание белка и нуклеиновых кислот поддерживается за счет клеток глии, в которых их количество соответственно уменьшается. В процессе восстановления после работы запасы белка и нуклеиновых кислот сначала нарастают в клетках глии, а затем и в цитоплазме нейрона.
Глиальные клетки обладают способностью перемещаться в пространстве по направлению к наиболее активным нейронам. Это наблюдается при различных афферентных раздражениях и при мышечной нагрузке. Например, уже через 20 мин. плавания у крыс было обнаружено увеличение числа глиальных клеток вокруг мотонейронов переднего рога спинного мозга.
Возможно, клетки глии участвуют в условно-рефлекторной деятельности мозга и в процессах памяти.
4. Основные функции нервной клетки
Основными функциями нервной клетки являются восприятие внешних раздражений (рецепторная функция), их переработка (интегративная функция) и передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция).
Особенности осуществления этих функций позволяют разделить все нейроны центральной нервной системы на 2 большие группы:
1) клетки, передающие информацию на большие расстояния (из одного отдела центральной нервной системы в другой, от периферии к центру, от центров к исполнительному органу). Это крупные, афферентные и эфферентные нейроны, имеющие на своем теле и отростках большое количество синапсов, как возбуждающих, так и тормозящих, и способные к сложным процессам переработки поступающих через них влиянии;
2) клетки, обеспечивающие межнейроальные связи в пределах ограниченных нервных структур (промежуточные нейроны спинного мозга, коры больших полушарий и др.). Это мелкие клетки, воспринимающие нервные влияния только через возбуждающие синапсы. Эти клетки не способны к сложным процессам интеграции локальных синаптических влияний потенциалов, они служат передатчиками возбуждающих или тормозящих влияний на другие нервные клетки.
4.1. Воспринимающая функция нейрона
Все раздражения, поступающие в нервную систему, передаются на нейрон через определенные участки его мембраны, находящиеся в области синаптических контактов. В большинстве нервных клеток эта передача осуществляется химическим путем с помощью медиаторов. Ответом нейронов на внешнее раздражение является изменение величины, мембранного потенциала.
Основной особенностью обмена веществ в нейроне является высокая скорость обмена и преобладание аэробных процессов. Потребность мозга в кислороде очень велика (в состоянии покоя поглощается около 46мл/мин кислорода). Хотя вес мозга по отношению к весу тела составляет всего 2%, потребление кислорода мозгом достигает в состоянии покоя у взрослых людей 25% от общего его потребления организмом, а у маленьких детей - 50%.Даже кратковременное нарушение доставки кислорода кровью может вызвать необратимые изменения в деятельности нервных клеток: в спинном мозге - через 20-30 мин., в стволе головного мозга - через 15-20 мин., а в коре больших полушарий - уже через 5-6-минут. Основным источником энергии для мозговой ткани является глюкоза. Содержание её в клетках мозга очень мало, и она постоянно черпается из крови. Деятельное состояние нейронов сопровождается трофическими процессами - усилением в них синтеза белков. При различных воздействиях, вызывающих возбуждение нервных клеток, в том числе при мышечной тренировке, в их ткани значительно возрастает количества белка и РНК, при тормозных же состояниях и утомлении нейронов содержание этих веществ уменьшается. В процессе восстановления оно возвращается к исходному уровню или превышает его. Часть синтезированного в нейроне белка компенсирует его расходы в теле клетки во время Деятельности, а другая часть перемещается вдоль по аксону (со скоростью около1-3 мм в сутки) и, вероятно участвует в биологических процессах в синапсах.
Высокая потребность нейронов в кислороде и глюкозе обеспечивается интенсивным кровотоком. Кровь протекает через мозг в 5-7 раз скорее, чем через покоящиеся мышцы. Мозговая ткань обильно снабжена кровеносными сосудами. Наиболее густая сеть их находится в коре больших полушарий (занимает около 10% объёма коры). Каждый крупный нейрон имеет несколько собственных капилляров у основания тела клетки, а группы мелких клеток окутаны общей капиллярной сетью. При активном состоянии нервной клетки, она нуждается в усиленном поступлении через кровь кислорода и питательных веществ. Вместе с тем жёсткий каркас черепа и малая сжимаемость нервной ткани препятствует резкому увеличению кровоснабжения мозга при работе. Однако это компенсируется выраженными в мозгу процессами перераспределения крови, в результате которых активный участок нервной ткани получает значительно больше крови, чем находящийся в покое. Возможность перераспределения крови в мозгу обеспечена наличием в основаниях артериальных ветвей крупных пучков гладких мышечных волокон - сфинктерных валиков. Эти валики могут уменьшать или увеличивать диметр сосудов и тем самым производить раздельную регуляцию кровоснабжения разных участков мозга. Мышечная работа вызывает снижение тонуса стенок мозговых артерий. При развитии физического и умственного утомления тонус артериальных сосудов повышается, что ведёт к уменьшению кровотока через нервную ткань. В головном мозгу имеется богато развитая система анастомозов между различными артериями, между венозными сосудами и между артериями и венами. Эта система уменьшает пульсацию внутричерепного кровотока, обусловленную ритмическими сокращениями сердца и дыхательными движениями грудной клетки. Уменьшение пульсовых колебаний способствует улучшению тканевого кровотока. Благодаря наличию артериовенозных анастомозов пульсовые колебания кровотока передаются с артерии мозга на вены, минуя капилляры. Анастомоз между системами сонных и позвоночных артерий гарантирует постоянство кровотока в различных отделах головного мозга при любом положении головы по отношению к туловищу и направлении силы тяжести, связанном с изменением положения тела в пространстве.
Строение нейрона
Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.
Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.
Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.
Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.
Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.
Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.
Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.
Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.
Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.
Функции нейрона
Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:
- восприятие раздражения;
- обработка стимула;
- передача импульса;
- формирование ответной реакции.
Функционально нейроны подразделяются на три группы:
Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.
Классификация нейронов
Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:
- Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
- звездчатые;
- веретеновидные;
- пирамидные (клетки Беца).
- По количеству отростков:
- униполярные: имеют один отросток;
- биполярные: на теле располагаются два отростка;
- мультиполярные: на соме подобных клеток располагаются три или более отростков.
- Контактные особенности поверхности нейрона:
- аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
- аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
- аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.
Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.
Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.
Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.
Развитие и рост нейронов
Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.
Проводящие пути
Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.
Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.
- Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
- Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
- Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
- Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
- Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
- Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.
Взаимодействие с нейромедиаторами
Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).
Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.
Между тем выделяют разные группы этих самых нейромедиаторов, а именно:
- Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
- гамма-аминомасляную кислоту (ГАМК);
- глицин.
- Возбуждающие медиаторы:
- ацетилхолин;
- дофамин;
- серотонин;
- норадреналин;
- адреналин.
Восстанавливаются ли нервные клетки
Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.
Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.
В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.
Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.
В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.
Человеческий мозг – это самая сложная из всех известных живых структур. Нервной системе и, в первую очередь, головному мозгу принадлежит важнейшая роль в координации поведенческих, биохимических, физиологических процессов в организме. С помощью нервной системы организм воспринимает изменения внешней среды и на них реагирует. Головной мозг является орудием познавательной деятельности человека и вопрос, как же работает человеческий мозг – остается одним из центральных в науке.
Нервная ткань состоит из нескольких типов клеток. Нейрон – это нервная клетка со всеми ее отростками.
Для поддержания нормального функционирования нейрона существуют два механизма:
1. Трансверзальный транспорт веществ – обмен веществ из внеклеточного пространства.
2. Лонгитудинальный транспорт – непрерывный обмен веществ между телом и отростками нейрона, касается, главным образом, репродукции нейроплазмы.
Функции аксонального плазматического тока
1. Непрерывное возмещение составных частей нейрона в норме и при патологии.
2. Освобождение веществ из нейрона в связи с синаптическим переносом, его трофическими и другими функциями.
3. Транспорт трофических веществ из целевого органа в тело нейрона.
4. Передача метаболической информации между отдельными участками нейрона.
В аксональном транспорте участвуют как внутриклеточные органоиды (митохондрии, лизосомы, синаптические пузырьки, нейрофиламенты), так и отдельные метаболиты (липиды, нуклеотиды, гликопротеины, свободные аминокислоты и др.).
Вторым типом клеток нервной ткани является глия. Нейроглия – система клеток, непосредственно окружающих нервные клетки головного и спинного мозга и прямо не участвующих в специфической функции нервной ткани. Популяция клеток глии в ЦНС более чем в 10 раз превышает количество нейронов. Нейроглия специлизируется на выполнении вспомогательных, в отношении нейронов, функций: опорной, трофической, изоляционной, секреторной, защитной, поглощения химических медиаторов, участия в восстановлении и регенерации (глиальные клетки сохраняют способность к делению в течение всей жизни организма).
Методы раздельного биохимического анализа нейронов и глии:
1. Метод микроманипуляций (1950–1960гг. – Хиден и Эндстрем в Швеции, Лоури в США).
2. Метод количественной цитохимии – Касперсон, 30-е годы XX века.
3. Метод обогащения фракций – Rose, 1965 г.
Общие особенности метаболизма нервной ткани
1. Высокая интенсивность в сравнении с другими тканями.
2. Поразительно высокий уровень обмена сохраняется при отсутствии большой функциональной активности – во время сна.
3. Метаболизм в периферических нервных волокнах отличается от обмена самих нервных клеток.
4. Общая интенсивность метаболизма в нервных волокнах низкая.
Аминокислоты играют важную роль в метаболизме и функционировании ЦНС. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого числа биологически важных соединений, таких как белки, пептиды, некоторые липиды, ряд гормонов, витаминов, биологически активных аминов. Аминокислоты и их дериваты участвуют в синаптической передаче, в осуществлении межнейрональных связей в качестве нейротрансмитеров и нейромодуляторов. Существенной является также их энергетическая значимость ибо аминокислоты глутаминовой группы непосредственно связаны с циклом трикарбоновых кислот.
Обобщая данные об обмене свободных аминокислот в головном мозге, можно сделать следующие выводы:
1. Большая способность нервной ткани поддерживать относительное постоянство уровней аминокислот.
2. Содержание свободных аминокислот в головном мозге в 8 – 10 раз выше, чем в плазме крови.
3. Существование высокого концентрационного градиента аминокислот между кровью и мозгом за счет избирательного активного переноса через ГЭБ.
4. Высокое содержание глутамата, глутамина, аспарагиновой, N-ацетиласпарагиновой кислот и ГАМК. Они составляют 75 % пула свободных аминокислот головного мозга.
5. Выраженная региональность содержания аминокислот в различных отделах мозга.
6. Существование компартментализированных фондов аминокислот в различных субклеточных структурах нервных клеток.
7. Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.
В последнее время значительно увеличился интерес к управлению важнейшими функциями мозга с помощью пептидов. Открыто достаточно большое количество пептидов, способных в очень низких концентрациях воздействовать на нервную ткань, выступая в качестве модуляторов ряда функций, а также действия нейромедиаторов, гормонов, фармакологических средств. С учетом преимущественной локализации этих пептидов в ЦНС они получили название нейропептидов. По сравнению с другими системами межклеточной сигнализации, пептидная система оказалась наиболее многочисленной (сейчас открыто свыше 600 природных нейропептидов) и полифункциональной.
Нейропептиды представляют собой малые и средние по размеру пептиды, как правило, линейные, содержащие от 2 до 40–50 аминокислотных остатков. Часть нейропептидов модифицирована по концевым аминокислотам. Нейропептиды – это межклеточные передатчики информации. Они выполняют, нередко одновременно, функции нейромедиаторов, нейромодуляторов и дистантных регуляторов. Нейропептиды (вместе с другими регуляторными соединениями) образуют функционально непрерывную систему, функциональной континуум. Каждый нейропептид обладает своеобразным комплексом биологических активностей. Нейропептиды синтезируются путем протеолиза больших пептидов- предшественников в нейронах и сосредотачиваются в везикулах нервных окончаний. Срок полураспада большинства нейропептидов варьирует от минут (для олигопептидов) до часов (для пептидов среднего размера). Существует сложная иерархическая система, в которой одни нейропептиды индуцируют или подавляют выход других нейропептидов. При этом сами нейропептиды-индукторы обладают, кроме того, способностью непосредственно вызывать ряд биохимических и физиологических эффектов.
Характерными чертами энергетического обмена в ткани головного мозга являются:
1. Высокая его интенсивность в сравнении с другими тканями.
2. Большая скорость потребления кислорода и глюкозы из крови. Головной мозг человека, на долю которого приходится 2% от массы тела, потребляет до 20% всего кислорода, используемого организмом в покое.
3. Потребление кислорода серым веществом на 30–50% выше, чем белым. Периферические нервы используют в 30 раз меньше кислорода, чем эквивалентное по массе количество ткани из ЦНС.
4. Различная скорость потребления кислорода отдельными регионами ЦНС: кора больших полушарий > мозжечок > промежуточный мозг > средний и продолговатый мозг > спинной мозг.
5. Нейроны отличаются более интенсивным дыханием, чем глиальные клетки. В коре больших полушарий 70% от общего поглощения кислорода приходится на нейроны и 30% на глиальные клетки.
6. Невозможность замены основного энергетического субстрата, глюкозы, другими соединениями, интенсивно окисляющимися в других тканях.
7. Приблизительно 70% всей производимой в мозге АТФ расходуется на поддержание ионных градиентов между содержимым нервных клеток и окружающей средой.
Особенности углеводного обмена в ткани головного мозга
1. Функциональная активность мозга в наибольшей степени зависит от обмена углеводов.
2. Головной мозг в качестве энергетического материала использует почти исключительно глюкозу.
3. Доминирующим путем метаболизма глюкозы в нервной ткани является аэробный гликолиз.
4. Важная роль для метаболизма мозга гексокиназы, как основного механизма вовлечения глюкозы в гликолиз.
5. Существование единого функционального комплекса из двух ферментов гликолиза – гексокиназы и фосфофруктокиназы, синхронно однонаправленно регулируемых пулом адениловых нуклеотидов.
Липидный состав головного мозга уникален не только по высокой концентрации общих липидов, но и по содержанию здесь их отдельных фракций. Почти все липиды головного мозга представлены тремя главными фракциями: глицерофосфолипидами, сфинголипидами и холестеролом, который всегда обнаруживается в свободном, а не эстерифицированном состоянии, характерном для большинства других тканей.
Обмен липидов в нервной ткани имеет следующие особенности
1. мозг обладает высокий способностью синтезировать жирные кислоты;
2. в мозге практически не происходит β-окисления жирных кислот;
3. скорость липогенеза в головном мозге неодинакова в различные сроки постнатального периода;
4. постоянство состава липидов в зрелом мозге подтверждает низкую скорость их обновления в целом;
5. фосфатидилхолин и фосфатидилинозит обновляются в ткани мозга быстро;
6. скорость синтеза холестерола в мозге высока в период его формирования. С возрастом активность этого процесса уменьшается;
7. синтез цереброзидов и сульфатидов протекает наиболее активно в период миелинизации.
В зрелом мозге 90 % всех цереброзидов находятся в миелиновых оболочках, тогда как ганглиозиды – типичные компоненты нейронов.
Большинство синапсов в нервной системе млекопитающих является химическими. Процесс передачи сигнала в химическом синапсе осуществляется посредством освобождения нейромедиаторов из пресинаптических нервных окончаний. К нейромедиаторам относятся в настоящее время 4 группы веществ: моноамины, аминокислоты, пуриновые нуклеотиды, пептиды. В индивидуальном нейроне синтезируется, как правило, несколько нейромедиаторов различной химической природы. Кроме нейромедиаторов существует обширный класс соединений – нейромодуляторов, регулирующих уровень синаптической передачи.
Память – сложный и еще не достаточно изученный процесс, включающий фазы запечатления, хранения и извлечения поступающей информации. Все эти фазы тесно связаны между собой, и нередко их очень трудно разграничить при анализе функций памяти.
Виды биологической памяти:
4. Нейрологическая (ее иногда называют психической или индивидуальной).
В настоящее время нейрологическую память делят на три этапа:
1. Кратковременная память (длительность от нескольких миллисекунд до нескольких минут).
2. Промежуточный (от нескольких секунд до нескольких часов).
3. Долговременная память (годы, десятилетия и в течение всей жизни).
Нейрологическая память обладает сложной системной организацией и не имеет строгой локализации в определенных участках мозга. По современным представлениям, следы памяти (энграммы) фиксируются в мозге в виде изменений состояния синаптического аппарата, в результате которых возникает предпочтительное проведение возбуждения по определенным нервным путям.
Общее количество ликвора у взрослого человека составляет 100–150 мл, у детей 80 – 90 мл. Скорость образования ликвора колеблется в пределах 350–750 мл/сутки. Обновляется ликвор 3 – 7 раз в сутки, чаще всего 3,5 раза.
Распределение ликвора в ликворной системе:
1. боковые желудочки – 20–30 мл
2. 3 и 4 желудочки – 3–5 мл
3. подпаутинное пространство головного мозга – 20–30 мл
4. подпаутинное пространство спинного мозга – 50–70 мл
Функции спинномозговой жидкости:
1. Механическая защита мозга.
2. Экскреторная функция – выведение метаболитов из мозга.
3. Транспорт различных биологически активных веществ.
4. Контроль окружающей среды мозга:
• буферная роль при быстрых изменениях состава крови;
• регуляция оптимальной концентрации ионов и рН для обеспечения нормальной возбудимости ЦНС;
• является специальным защитным иммунобиологическим барьером.
Читайте также: