Слуховой нерв височная зона коры
Преддверно-улитковый нерв (п. vestibulocochlearis), состоит из двух нервов - собственно слухового нерва (п. cochlearis) и вестибулярного нерва (n. vestibularis).
Слуховой нерв - чувствительный, его первые нейроны заложены в спиральном узле (gangl. spirale), расположенном в спиральном канале стержня улитки. Дендриты первых нейронов подходят к волосковым клеткам кортиева органа, воспринимающим звуковое раздражение. Звуковая волна через наружный слуховой проход передается на барабанную перепонку. Барабанная перепонка отделяет наружное ухо от среднего. В среднем ухе заложены слуховые косточки - молоточек, наковальня и стремечко, связанные с одной стороны с барабанной перепонкой, с другой - с внутренним ухом. Именно через них звуковая волна извне передается на звуковоспринимающий аппарат. Аксоны клеток спирального узла, соединяясь, образуют слуховой нерв, который вначале лежит во внутреннем слуховом проходе и выходит из него через отверстие внутреннего слухового прохода. Здесь он располагается рядом с вестибулярным, лицевым и промежуточным нервами.
Входит в вещество мозга в области мосто-мозжечкового угла (угол, образованный продолговатым мозгом и мостом). Аксоны первого слухового нерва оканчиваются в дорзальном (nucl. dorsalis seu tuberculum acusticum) и вентральном (nucl. ventralis) ядрах. Оба ядра занимают латеральный угол дна четвертого желудочка. Часть аксонов от дорзального ядра огибают веревчатое тело и направляются к дну четвертого желудочка, формируя так называемые слуховые полоски (striae acusticae), которые как бы разделяют дно четвертого желудочка на два треугольника - передний и задний. Дойдя до средней линии IV желудочка, слуховые полоски погружаются вглубь и переходят на противоположную сторону, присоединяясь к латеральной петле, и в ее составе поднимаются до первичных слуховых центров, где и заканчиваются. Часть же аксонов от дорзального ядра идут в составе латеральной петли своей стороны.
Первичные слуховые центры располагаются в заднем двухолмии и во внутреннем коленчатом теле. Аксоны от nucl. dorsalis основной массой оканчиваются на клетках заднего двухолмия. Аксоны вентрального ядра слухового нерва погружаются в вещество мозга и направляются на противоположную сторону, располагаясь на границе покрышки и основания моста, формируя трапециевидное тело. Часть волокон от вентрального ядра мканчивается на ядрах трапециевидного тела, верхней оливе своей и противоположной стороны. Аксоны клеток вентрального ядра, от верхних олив, ядер трапециевидного тела принимают участие в формировании латеральной петли и заканчиваются в первичных слуховых центрах своей и противоположной стороны.
Таким образом, латеральная петля содержит волокна как своей, так и противоположной стороны. Клетки нижнего двухолмия также имеют обоюдные связи, с помощью которых осуществляются рефлекторные действия -поворот головы, туловища на звук, определение пространственной локализации звука. Эффекторной частью этой рефлекторной дуги являются покрышечно-спинномозговой и покрышечно-бульбарный пути. От собственно слуховых подкорковых первичных центров (медиальных коленчатых тел) начинается центральный слуховой путь, который проходит через задние отделы заднего бедра внутренней капсулы, белое вещество больших полушарий и заканчивается в извилинах Гешля (первичная слуховая кора), полях 41,42 и вторичных слуховых полях 21,22 (верхняя и средняя височные извилины).
Слуховая кора обоих полушарий между собой имеет ассоциативные связи.
Гипакузия - снижение слуха (akusis - слух).
Анакузия - глухота.
Гиперакузия - усиленное восприятие звука с неприятным ощущением.
Введение
Для познания окружающей среды у живых организмов в процессе эволюции получили развитие органы чувств, тесно связанные с головным мозгом.
Органы чувств- это анатомические образования, которые воспринимают внешнее и внутреннее раздражение (звук, свет, запах, вкус, артериальное давление), трансформируют его в нервный импульс, который передают в головной мозг.
У человека выделяют шесть основных органов чувств:
- глаза (зрение)
- уши (слух)
- язык (вкус)
- нос (обоняние)
- кожа (осязание, ощущение боли, температуры)
- вестибулярный аппарат (чувство равновесия и положения в пространстве, ускорение, ощущение веса)
Органы чувств являются начальным звеном восприятия, а специфические зоны коры головного мозга (корковый конец анализатора)- пунктом анализа полученной информации.
Без аналитической работы коры головного мозга мы не смогли бы почувствовать запах цветов, услышать пение птиц, разглядеть все цвета радуги и т.д.
Получается, что видят и слышат не глаза и уши, а мозг. Благодаря совместной и слаженной работе органов чувств и головного мозга мы можем понимать и воспринимать окружающий мир.
Органы чувств и определенные отделы коры головного мозга образуют тот или иной анализатор.
Общая характеристика анализаторов
Анализаторы- система анатомических структур, которые воспринимают внешние и внутренние раздражения (звук, свет, запах, вкус, артериальное давление др.), преобразуют их в нервный импульс и передают его в головной мозг, где происходит высший анализ и синтез полученной информации.
При помощи органов чувств человек получает информацию об окружающем мире, изучает ее, формирует соответствующий ответ на раздражения.
Все анализаторы делятся на три типа:
1. интерорецептивные (внутренние) анализаторы - осуществляют анализ явлений, которые происходят внутри организма.
Они дают информацию о состоянии сердечно-сосудистой, пищеварительной систем, органов дыхания и др.
Одним из главных внутренних анализаторов является двигательный (мышечный) анализатор, который передает информацию в мозг о состоянии мышечно- суставного аппарата.
Его рецепторы имеют сложное строение и расположены в мышцах, сухожилиях и суставах.
2. проприорецептивные анализаторы -осуществляют анализ положения частей собственного тела относительно друг друга и в пространстве.
3. экстерорецептивные (внешние) анализаторы - отвечают за анализ и синтез информации из окружающей среды.
Каждый анализатор является сложным комплексным механизмом, который включает следующие звенья:
1. периферический отдел - состоит из органа чувств с рецепторами, которые воспринимают внешнее и внутреннее воздействие (свет, запах, вкус, звук, прикосновение, давление) и преобразует его в нервный импульс.
2. проводниковый отдел - нервы, которые проводят импульсы от периферии к мозгу (афферентные нейроны), вставочные нейроны, по которым нервный импульс поступает в соответствующий отдел коры головного мозга.
3. центральный отдел (нервный центр) - определенная зона коры больших полушарий.
Таким образом, в состав каждого анализатора входит:
- орган, который помогает улавливать и фиксировать сигналы, а также защищает рецепторы от механических повреждений (примеры органов чувств: глаз для зрительного анализатора, ухо для слухового анализатора)
- нервы, которые проводят нервные импульсы в кору головного мозга
- кора головного мозга
Пройти тест и получить оценку можно после входа или регистрации
Зрительный анализатор
Более 90% информации об окружающем мире человек получает с помощью зрения.
Зрительный анализатор - один из главных органов чувств, который обеспечивает восприятие, проведение и расшифровку зрительных сигналов.
Состав зрительного анализатора:
- периферический отдел: орган зрения (глаз) и рецепторы сетчатки глаза
- проводниковый отдел: зрительный нерв
- центральный отдел: затылочная доля коры больших полушарий
Строение глаза
Глаз состоит из:
- глазного яблока - расположено в углублении лицевого черепа, которое называется глазница, имеет шарообразную форму с диаметром около 2,5 см и массой 6-8 г.
- зрительного нерва с его оболочками.
- вспомогательного аппарата (брови, ресницы, веки, слезные железы).
Глазное яблоко имеет следующие оболочки:
- белочная (склера) - наружная, очень плотная оболочка глаза, переходит в прозрачную роговицу;
- сосудистая - пронизана кровеносными сосудами, обеспечивает питание глаза, переходит в радужную;
- радужная - является продолжением сосудистой оболочки и определяет цвет глаз благодаря пигменту, выделяемому клетками меланоцитами. В центре радужной оболочки находится отверстие - зрачок, через него в глаз проникают световые лучи. При помощи гладких мышц радужной оболочки диаметр зрачка непроизвольно меняется в зависимости от уровня освещенности (в темноте расширяется, при ярком свете сужается), таким образом регулируется количество света, попадающего на сетчатку;
- сетчатая (сетчатка)- внутренняя оболочка глазного яблока, окружена сосудистой оболочкой. В сетчатке располагаются фоторецепторные клекти - рецепторы зрительного анализатора.
Кроме этого, в глазном яблоке есть следующие структуры:
- хрусталик - двояковыпуклая линза, которая расположена позади радужки и обладает светопреломляющей способностью. Хрусталик окружает ресничная мышца.
- ресничная мышца - имеет форму кольца, состоит из гладких мышечных волокон, расположенных кольцевидно и радиально, которые при сокращении изменяют кривизну хрусталика. Процесс изменения кривизны хрусталика называется аккомодацией.
- цилиарная (циннова) связка - соединяет хрусталик с ресничным телом.
- ресничное (цилиарное) тело - место соединения роговицы и склеры. Содержит сосуды и ресничную мышцу.
- ресничная мышца - состоит из гладких мышечных волокон, расположенных кольцевидно и радиально, которые при сокращении изменяют кривизну хрусталика.
- передняя и задняя камеры- пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью.
- стекловидное тело- желеобразная прозрачная масса, которая не имеет сосудов и нервов, находится между хрусталиком и глазным дном. Оно создает внутриглазное давление (3,3 кПа) и поддерживает форму глаза.
Строение сетчатки
Сетчатая оболочка по своему развитию и функциям представляет собой часть нервной системы. Остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.
Сетчатка плотно прилегает к сосудистой оболочке и имеет большую заднюю зрительную часть, которая воспринимает световые лучи.
Состоит из множества слоев клеток, которые как бы образуют плотную сеточку.
В сетчатке находятся фоторецепторы (зрительные рецепторы):
- палочки- воспринимают яркость. Их количество около 120 млн
- колбочки- воспринимают цвет, их насчитывается около 6 млн
Куринная слепота- нарушение функции зрения, при котором человек внезапно перестает хорошо видеть в недостаточно освещенных помещениях или на улице вечером.
При низкой освещенности только палочки обеспечивают сумеречное зрение, при этом глаз не различает цвета, а зрение оказывается ахроматическим (бесцветным).
Колбочки обеспечивают цветное зрение и содержат зрительный пигмент йодопсин. В свою очередь йодопсин имеет несколько модификаций пигментов, которые могут воспринимать разную длину волны света, соответствующую красному, зеленому и синему цвету, причем в одной колбочке содержится только один зрительный пигмент. Соответственно выделяют "красные", "зеленые" и "синие" колбочки. Сочетание импульсов от разных типов колбочек обеспечивает цветное зрение в дневное время. Доказано, что с помощью именно этих трех цветов можно получить любые оттенки и цвета.
В отличие от палочек, которые воспринимают даже самый слабый цвет, колбочки могут функционировать только при достаточно сильной освещенности. Этим объясняется возможность различать цвета только в светлое время суток.
Место наибольшей остроты зрения в сетчатке называется желтое пятно (центральная ямка), в этой области есть только палочки, а колбочек нет, именно здесь глаз обладает наилучшим видением и восприятием цвета.
От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв.
Место выхода из сетчатки зрительного нерва называется слепым пятном, так как там отсутствуют фоторецепторы.
Проводниковый отдел зрительного анализатора
Зрительный нерв является проводником нервных импульсов от сетчатки глаза к зрительному центру коры головного мозга.
Под гипоталамусом зрительные нервы образуют перекрест (хиазму).
После перекреста зрительные нервы идут в зрительных трактах, затем, проходят через промежуточный мозг, и связываются с затылочной долей коры головного мозга.
Центральный отдел
Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.
Механизм работы зрительного анализатора
Пройдя через хрусталик и стекловидное тело лучи света попадают на внутреннюю оболочку глазного яблока – сетчатку, которая содержит фоторецепторы.
Под действием квантов света зрительные пигменты колбочек и палочек разрушаются, создавая электрические сигналы, которые передаются к зрительному нерву, по волокнам которого импульсы поступают в кору головного мозга.
Оптическая система глаза формирует на сетчатке не только уменьшенное, но и перевёрнутое изображение предмета.
Обработка сигналов в центральной нервной системе происходит таким образом, что предметы воспринимаются в естественном положении.
Оптическая система необходима для преломления и проведения световых лучей на сетчатку, к ней относится - роговица, хрусталик, стекловидное тело.
У меня есть дополнительная информация к этой части урока!
Ученые проводили опыты, используя инвертоскоп- очки, которые переворачивают изображение.
Несколько дней испытуемые видели все в перевернутом виде. Затем зрительная система приспосабливавалась к инвертированному миру и человек видел все, как раньше.
После снятия очков наблюдалась обратная картина: человек опять несколько дней все видел в перевернутом виде, мозгу требовалось несколько дней, чтобы прийти в норму.
Нарушения зрения
Наиболее частыми расстройствами зрения у человека считаются близорукость и дальнозоркость. Также выделяют косоглазие, астигматизм, катаракту.
Близорукость- фокусировка изображение перед сетчаткой.
- увеличенное в длину глазное яблоко (наиболее распространённая причина)
- увеличение кривизны хрусталика, которое может возникнуть при неправильном обмене веществ
- нарушении гигиены зрения
Близорукие люди плохо видят удалённые предметы, хорошо различая всё, что расположено рядом.
Исправляют нарушение очками с вогнутыми линзами или хирургическим путем.
Дальнозоркость- фокусировка изображения позади сетчатки.
- уменьшения выпуклости хрусталика
- уменьшенный размер глазного яблока
Дальнозоркие люди хорошо видят вдали, и плохо вблизи.
Вы, наверное, замечали, как пожилые люди при чтении отодвигают газету подальше от глаз. Таким образом они как бы пытаются сформировать четкое изображение на сетчатке глаза.
Исправляют дальнозоркость очками с выпуклыми линзами.
Астигматизм - нарушение зрения, которое происходит из-за изменения формы хрусталика, роговицы или глаза, в результате чего человек теряет способность к чёткому видению.
Косоглазие
При косоглазии глаза как будто пытаются сойтись вместе (сходящееся косоглазие) или, наоборот, разойтись (расходящееся косоглазие). Косоглазие может быть врождённым, или возникнуть из-за травмы.
Лечат это заболевание специальными упражнениями, ношением особых очков, но иногда приходится прибегать к операции.
Помутнение хрусталика (катаракта) довольно часто встречается у пожилых людей и как осложнение сахарного диабета.
Иногда катаракта бывает врождённой, чаще всего в том случае, если мама больного ребенка переболела краснухой на ранней стадии беременности.
Непрозрачный хрусталик можно удалить и имплантировать искуственный.
Пройти тест и получить оценку можно после входа или регистрации
Состоит из трех отделов:
- Периферического - слуховые рецепторы внутреннего уха
- Проводникового - слухового нерва
- Центрального - височной доли коры больших полушарий
Ухо человека состоит из 3 отделов: наружного, среднего и внутреннего. Давайте поговорим о каждом более подробно.
К наружному уху относится ушная (слуховая) раковина и наружный слуховой проход. Ушная раковина помогает улавливать звук - колебания воздуха, и направлять их в наружный слуховой проход, служащий резонатором, который усиливает звуковую волну.
В просвет наружного слухового прохода открываются протоки серных желез, вырабатывающих особый секрет - серу. Она необходима для защиты слухового прохода от грибов, бактерий и мелких насекомых. Схожую функцию выполняют волоски, покрывающие слуховой проход и препятствующие попаданию в него пыли.
На границе наружного и среднего отделов уха располагается барабанная перепонка, анатомически относящаяся к среднему уху.
Средний отдел уха представлен барабанной перепонкой, барабанной полостью, продолжающейся в евстахиеву трубу, которая соединяет барабанную полость и носоглотку. В барабанной полости находятся три самые маленькие косточки нашего организма: молоточек, наковальня и стремечко.
Слуховые косточки соединяются друг с другом подвижными суставами. Молоточек соединен с барабанной перепонкой, вследствие чего колебания барабанной перепонки передаются последовательно на молоточек, наковальню и стремечко. Стремечко соединяется с овальным окном (часть внутреннего уха), колебания которого предаются жидкости внутреннего уха.
Евстахиева труба соединяет барабанную полость и полость носоглотки, уравнивая в них давление: в результате давление становится одинаковым по обе стороны барабанной перепонки.
Открытие глоточного отверстия евстахиевой трубы происходит в момент глотания (попробуйте глотнуть с усилием, и, возможно, услышите треск/щелчок - это открылось глоточное отверстие евстахиевой трубы, давление по обе стороны уравнялось).
Во время взлета давление в салоне и кабине самолета уменьшается, уши может "заложить" как раз из-за несоответствия давления в носоглотке и барабанной полости. Глотательные движения способствуют открытию отверстия евстахиевой трубы, и давление выравнивается: вот зачем на борту самолета перед взлетом раздают леденцы :)
Мы добрались с вами до самого древнего отдела (который возник еще у рыб), расположенного в глубине височной кости - внутреннего уха. Оно представляет собой костный лабиринт, внутри которого располагается перепончатый лабиринт. Пространство между костным и перепончатым лабиринтом заполнено перилимфой, а полость внутри перепончатого лабиринта - эндолимфой.
Костный лабиринт включает в себя три отдела:
- Преддверие - орган равновесия
- Улитку - орган слуха
- Трех полукружных канальцев - орган равновесия
Органы слуха и равновесия тесно связаны между собой, поэтому, как только мы закончим изучение внутреннего уха, мы приступим к органу равновесия, анатомически находящемуся очень близко.
Вернемся к органу слуха. Улитка представляет собой спирально закрученный костный канал, делающий 2.5 оборота вокруг своей оси. Именно здесь внутри перепончатого лабиринта, заполненного эндолимфой, находится орган слуха - кортиев орган.
Изучая среднее ухо, вы усвоили, что колебания стремечка передаются на овальное окно. С него колебания передаются перелимфе, а затем - эндолимфе, которая своим движением раздражает чувствительные волосковые клетки кортиева органа. Именно так, колебания, которые начались в барабанной перепонке, в конечном итоге достигают чувствительных волосковых клеток.
Ухо человека может слышать звук частотой от 16 до 20 000 Гц, верхняя граница с возрастом меняется, вследствие снижения эластичности барабанной перепонки.
Звук - колебания воздуха, которые орган слуха преобразует в нервные импульсы, поступающие в височную долю коры больших полушарий. Давайте еще раз разберем весь путь, который проходит звуковая волна:
- Звуковые колебания улавливаются наружным ухом, проходят по наружному слуховому проходу и вызывают колебания барабанной перепонки
- Колебания барабанной перепонки передаются слуховым косточкам, которые усиливают их и передают на овальное окно, колебания которого приводят в движение перилимфу
- Через стенки перепончатого лабиринта колебания перилимфы вызывают колебания эндолимфы
- Колебания эндолимфы вызывают раздражение рецепторных клеток кортиева органа - волосковых, которые генерируют нервные импульсы, идущие по слуховому нерву в височную долю кору больших полушарий (центральный отдел слухового анализатора)
Попытайтесь сами, пользуясь схемой ниже, описать путь звуковой волны, вводите в лексикон новые термины. Также ответьте на мой вопрос: "Зачем нам нужна евстахиева труба"?
Нельзя извлекать серу из уха острыми предметами - это может привести к повреждению барабанной перепонки. При заболеваниях носа не следует усердствовать с высмаркиванием: при резком, сильном движении воздуха микробы могут попасть в евстахиеву трубу, и затем - в полость среднего уха, приведя к отиту - воспалению уха (греч. ὠτός — ухо).
Следует избегать прослушивания громкой музыки в наушниках, особенно вакуумных - сильные раздражения переутомляют барабанную перепонку, ее эластичность снижается - слух притупляется.
Состоит из преддверия и трех полукружных канальцев, лежащих во взаимно перпендикулярных плоскостях. Полукружные канальцы внутри заполнены эндолимфой, снаружи них находится перилимфа.
Конец каждого из полукружных канальцев образует расширение - ампулу, все канальцы открываются в преддверие. В каждом расширении - ампуле - расположены чувствительные волосковые клетки, реагирующие на угловое ускорение, которое связано с изменением равновесия.
Преддверие содержит части перепончатого лабиринта - мешочки, которые заполнены эндолимфой. В мешочках находятся чувствительные волосковые клетки, волоски которых погружены в желеобразную мембрану с отолитами - кристаллами CaCO3.
За счет ускорения или замедления отолиты с мембраной смещаются соответственно кпереди или кзади. Перемещение отолитов с мембраной раздражает волосковые клетки, в которых генерируется нервный импульс. Таким образом, эти рецепторы реагируют на прямолинейное ускорение или замедление.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
26. Физиология анализаторов. Физиология слухового анализатора.
Слуховая сенсорная система – второй по значению дистантный анализатор человека, играет важную роль именно у человека в связи с возникновением членораздельной речи.
Орган слуха включает наружное, среднее и внутреннее ухо.
- в состав наружного уха входят ушная раковина, наружный слуховой проход. Наружное ухо от среднего отделяется барабанной перепонкой. С внутренней стороны барабанная перепонка соединена с рукояткой молоточка. Барабанная перепонка колеблется при всяком звуке соответственно длине его волны.
- в состав среднего уха входит система слуховых косточек — молоточек, наковальня, стремечко, слуховая (евстахиева) труба. Одна из косточек — молоточек — вплетена своей рукояткой в барабанную переронку, другая сторона молоточка сочленена с наковальней. Наковальня соединена со стремечком, которое прилегает к мембране окна преддверия (овального окна) внутренней стенки среднего уха.
Слуховые косточки участвуют в передаче колебаний барабанной перепонки, вызванных звуковыми волнами, окну преддверия, а затем эндолимфе улитки внутреннего уха.
Внутреннее ухо представлено улиткой – спирально закрученным костным каналом (2,5 завитка у человека). Этот канал разделен по всей его длине на три узкие части (лестницы) двумя мембранами: основной мембраной и вестибулярной мембраной (Рейснера).
На основной мембране расположен спиральный орган – орган корти (кортиев орган) – это собственно звуковоспринимающий аппарат с рецепторными клетками – это и есть периферический отдел слухового анализатора. Геликотрема (отверстие) соединяет верхний и нижний канал на вершине улитки. Средний канал является обособленным.
Над кортиевым органом расположена текториальная мембрана, один конец которой закреплен, а другой остается свободным. Волоски наружных и внутренних волосковых клеток кортиевого органа соприкасаются с текториальной мембраной, что сопровождается их возбуждением, т.е. энергия звуковых колебаний трансформируется в энергию процесса возбуждения.
Процесс трансформации начинается с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебания перилимфы вестибулярной лестницы. Эти колебания через геликотрему передаются на перилимфу барабанной лестницы и достигают круглого окна, выпячивая его в сторону среднего уха (это не дает затухнуть звуковой волне при прохождении по вестибулярному и барабанному каналу улитки). Колебания перилимфы передаются на эндолимфу, что вызывает колебания основной мембраны. Волокна основной мембраны приходят в колебательные движения вместе с рецепторными клетками (наружными и внутренними волосковыми клетками) кортиевого органа. При этом волоски фонорецепторов контактируют с текториальной мембраной. Реснички волосковых клеток деформируются, это вызывает формирование рецепторного потенциала, а на его основе – потенциала действия (нервный импульс), который проводится по слуховому нерву и передается в следующий отдел слухового анализатора.
Проводниковый отдел слухового анализатора представлен слуховым нервом. Он образован аксонами нейронов спирального ганглия (1-й нейрон проводящего пути). Дендриты этих нейронов иннервируют волосковые клетки кортиевого органа (афферентное звено), аксоны образуют волокна слухового нерва. Волокна слухового нерва заканчиваются на нейронах ядер кохлеарного тела (VIII пара ч.м.н.) (второй нейрон). Затем, после частичного перекреста, волокна слухового пути идут в медиальные коленчатые тела таламуса, где опять происходит переключение (третий нейрон). Отсюда возбуждение поступает в кору (височная доля, верхняя височная извилина, поперечные извилины Гешля) – это проекционная слуховая зона коры.
1. Основные электрические явления в улитке
В улитке можно зарегистрировать пять различных электрических потенциалов:
- Мембранный потенциал слуховой рецепторной клетки – это потенциал покоя (регистрируется в отсутствие звуковых раздражителей).
- Потенциал эндолимфы (в перепончатой лестнице – средний канал улитки) – регистрируется в отсутствие звуковых раздражителей; обусловлен уровнем окислительно-восстановительных процессов в каналах улитки. Следующие три потенциала связаны с действием звука на слуховой анализатор.
- Микрофонный потенциал улитки – генерируется на мембране волосковой клетки кортиева органа в результате деформации волосков при соприкосновении с текториальной (покровной) мембраной. Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда микрофонных потенциалов соответствует силе звука.
-Суммационный потенциал возникает в результате наложения микрофонного потенциала на потенциал эндолимфы (эндокохлеарный потенциал).
Микрофонный потенциал и суммационный потенциал являются рецепторным потенциалом (РП) фонорецепторов улитки. ПД слухового нерва возникает через синаптическую передачу возбуждения (рецепторного потенциала) с волосковой клетки на волокна слухового нерва. При этом частота генерируемых ПД равна частоте звуковых волн, если она не превышает 1000 Гц. При увеличении частоты звуковых волн выше 1000 Гц увеличения ПД нервных волокон слухового нерва не происходит, т.к. для слухового нерва лабильность равно 1000 ПД/сек. Поэтому при действии на ухо более высоких тонов частота ПД в слуховом нерве много ниже частоты звуковых волн. При этом, при низких тонах импульсация наблюдается в большом числе, а при высоких тонах – в небольшом числе нервных волокон слухового нерва.
- Телефонная теория Резерфорда (1880 г.) Согласно этой теории, при восприятии звуков разной частоты (высота тона) в слуховом нерве формируются ПД, частота которых соответствует частоте звуковых волн, действующих на ухо. Обе теории не полностью объясняют механизм восприятия звуковых волн. Однако некоторые представления их легли в основу современной теории звуковосприятия – теории места. Согласно этой теории, при действии звука в состояние колебания вступает вся основная мембрана, но максимальное отклонение основной мембраны происходит только в определенном месте, т.е. происходит пространственное кодирование действующего звука. При этом резонирующим субстратом является не определенное волокно основной мембраны, а следовательно, и индивидуальный фонорецептор, а столб эндолимфы определенной длины: чем больше частота воспринимаемых ухом звуковых волн, тем меньше длина колеблющегося столба эндолимфы и тем ближе к основанию улитки и овальному окну расположено место максимальной амплитуды колебания. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается и место максимальной амплитуды колебаний отодвигается в сторону вершины улитки.
При колебаниях эндолимфы колеблется и основная мембрана, причем не отдельные ее волокна, а большие или меньшие ее участки. При этом будет возбуждаться разное количество рецепторных клеток, расположенных на этой мембране: при действии звуков низкой частоты возбуждаются рецепторные клетки вдоль всей основной мембраны, при действии высоких тонов будет возбуждаться меньшее число клеток – только те, которые расположены на основной мембране у основания улитки (овальное окно). Т.о. существует два механизма различения высоты тонов (частоты звуковых волн). При низких тонах (малая частота звуковых волн) информация о них передается по волокнам слухового нерва в виде ПД, частота которых равна частоте воспринимаемых звуковых волн. При высоких частотах (тонах) происходит пространственное кодирование звуковых раздражителей согласно теории места.
Читайте также: