Ток в нервной системе человека
Постоянный ток распространяется в тканях по пути наименьшего сопротивления, по межклеточным пространствам, кровеносным и лимфатическим сосудам.
В действии постоянного тока на организм большое значение имеет электропроводность тканей, зависящая от их влажности. Сухая кожа обладает сопротивлением в десятки тысяч ом; тонкая, нежная, особенно влажная, а также поврежденная кожа лучше проводит постоянный ток. Электропроводность других сред и тканей организма гораздо больше.
Наибольшей электропроводностью обладают спинномозговая жидкость, меньшей - мышцы и цельная кровь. Значительная величина сопротивления кожи приводит к тому, что во время действия постоянного тока на организм почти все напряжение, подводимое к электродам, приходится на кожу, на внутренние же ткани приходится относительно малый потенциал.
Электропроводность тела - величина непостоянная; она может меняться в широких пределах. Усиление кожного кровообращения и потливость усиливают электропроводность. Функциональное состояние организма влияет на электропроводность; она увеличивается при переутомлении, переживаниях, опьянении. У одного и того же человека электропроводность в течение дня и в различные сезоны года колеблется; на разных участках кожи она неодинакова. Силовые линии тока, пройдя через поверхностные слои кожи, встречают дальше меньшее сопротивление и направляются вглубь в основном по кровеносным и лимфатическим сосудам, мышцам и , что важно отметить , по оболочкам нервных стволов.
Постоянный ток оказывает раздражающее действие на организм не только при его замыкании и размыкании, но и во время прохождения тока. При раздражении кожи силой тока, превышающей пороговую величину, человек ощущает боль в виде покалывания. Если электрод расположен на коже вблизи нервного ствола, ощущение раздражения сильнее. В момент замыкания тока раздражение происходит на катоде, в момент размыкания - на аноде. Установлено, что на катоде во время замыкания возбудимость и проводимость повышаются, а на аноде, наоборот, понижаются. Эти изменения на катоде называют катэлектротоном, на аноде - анэлектротоном. Функциональные изменения происходят не только на месте локализации электродов, но и на расстоянии от них. В момент размыкания возбудимость и проводимость на каждом полюсе меняются в обратном направлении.
Напомним, что каждая клетка является генератором электричества. Между клеткой и окружающей ее средой существует разность потенциалов из-за неравномерного распределения ионов между клеточными мембранами. В покое внутренняя поверхность оболочки клетки заряжена отрицательно, наружная – положительно.
Мембраны клеток имеют большое сопротивление, поэтому через них постоянный ток не проходит. Свободные заряды (в основном ионы K+, Na+) могут перемещаться только от мембраны к мембране.
При воздействии на ткани постоянного электрического тока распределение ионов изменяется. Наружная поверхность мембраны клетки заряжается отрицательно, что согласно ионной теории возбуждения П.П. Лазарева приводит к возбуждению данного участка клетки. Между возбуждёнными и невозбуждёнными участками мембраны возникают локальные токи, что ведёт к изменению концентрации ионов, а это, в свою очередь, - к возбуждению всей клетки. Такое возбуждение клетки вызывает раздражение нервных рецепторов и возникновение рефлекторных реакций местного и общего характера.
Местные реакции заключаются в улучшении проницаемости клеточных мембран, расширении кровеносных сосудов, ускорении кровотока, улучшении обмена веществ между клеткой и межклеточным пространством. В месте воздействия тока образуются биологически активные вещества.
Нервные импульсы, возникающие при раздражении рецепторов, передаются в центральную нервную систему и вызывают сложные ответные реакции органов и систем организма.
Дата публикации: 28 ноября 2019
- Историческая справка
- Потенциал клеточной мембраны
- Электричество в организме человека
Биоэлектричество относится к электрическим потенциалам и токам, которые возникают внутри живых организмов или производятся ими. Это результат преобразования химической энергии в электрическую. Такие потенциалы генерируются рядом различных биологических процессов и используются клетками для управления метаболизмом, проведения импульсов по нервным волокнам, для регулирования мышечного сокращения.
У большинства организмов биоэлектрические потенциалы различаются по силе: от одного до нескольких сотен милливольт. Наиболее важное различие между электричеством в живых организмах и типом электрического тока, используемого для производства света, тепла или энергии, заключается в том, что биоэлектрический ток представляет собой поток ионов (атомов или молекул, несущих электрический заряд), а стандартное электричество — это движение электронов.
Историческая справка
Биоэлектрические эффекты были известны с древних времён по активности таких электрических рыб, как нильский сом, электрический угорь. Сейчас измерение биоэлектрических потенциалов стало обычной практикой в клинической медицине. Но до XVII века европейские врачи и философы считали, что нервные импульсы передаются мозгу через какую-то органическую жидкость. Эксперименты двух итальянцев, врача Луиджи Гальвани и физика Алессандро Вольта, показали, что истинное объяснение нервной проводимости — это биоэлектричество.
В XIX веке Эмиль Дюбуа-Реймон, изобрёл и усовершенствовал приборы, способные измерять очень малые электрические потенциалы и токи, генерируемые живой тканью. Один из его учеников, немецкий учёный по имени Юлиус Бернштейн, полагался на гипотезу, что нервные и мышечные волокна поляризованы, с положительными ионами снаружи и отрицательными внутри, поэтому ток, который может быть измерен, — результат изменения этой поляризации. В начале XX столетья несколько британских исследователей определили химические вещества, участвующие в передаче информации между нервами и мышцами.
Потенциал клеточной мембраны
Все клетки животных обладают электрическими свойствами, обусловленными способностью клеточной мембраны поддерживать неравные заряды внутри и снаружи клетки. Клеточная оболочка полупроницаемая, это означает, что она образует селективный барьер для ионов, являющихся электрически заряженными атомами.
Таким образом, через мембрану накапливается две формы энергии:
- химическая (разница концентрации ионов);
- электрическая.
Эти токи, возникающие внутри активной мембраны, функционально значимы близко к месту их происхождения, но некоторые живые существа, такие как рыбы и медузы, эволюционно адаптировали этот случайный ток для фактического использования. Вырабатывающие электричество организмы обзавелись специальными органами, способными генерировать значительные разряды до 1 тыс. вольт, например, электрический скат. Кто-то из них пользуется своими способностями для самообороны, а для кого-то это способ добывать еду.
Электричество в организме человека
Все клетки используют свои биоэлектрические потенциалы, чтобы контролировать метаболические процессы, но некоторые специально используют токи для отличительных физиологических функций: нервные и мышечные клетки. Информация переносится импульсами (называемыми потенциалами действия), проходящими по нервным волокнам. Подобные импульсы в мышцах сопровождают мышечные сокращения. Среди других клеток, где специализированные функции зависят от поддержания биоэлектрических потенциалов, есть:
- рецепторы, чувствительные к свету, звуку, прикосновению;
- клетки, которые выделяют гормоны или другие вещества, участвующие в общем метаболизме.
Как дополнение к потенциалам, возникающим в нервных или мышечных клетках, науке известны относительно устойчивые или медленно меняющиеся потенциалы. Они возникают:
- там, где клетки были повреждены;
- когда большой орган непарный (полушария мозга, разные участки кожи);
- при активной работе железы (фолликулы щитовидки);
- специальных структурах во внутреннем ухе.
В организме человека накапливается и статическое электричество. Когда электронам некуда деваться, заряд накапливается на поверхностях до тех пор, пока он не достигнет критического максимума и не разрядится крошечной молнией. Хотя возникающая внезапная мышечная реакция неприятна, обычно она безвредна.
Биоэлектричество — одна из основных форм энергии в организме человека. Движущиеся потенциалы действия — это основа для центральных функций организма, от которых зависит:
- проводимость двигательных, вегетативных или сенсорных сообщений по нервам;
- сокращение мышц;
- функция мозга.
В частности, двигательные нервные сигналы приводят к сокращению мышц, вегетативные — контролируют дыхание и сердцебиение, сенсорные — собирают всю информацию из внешнего мира, включая предупреждения о повреждениях организма (боль). Измеряя биоэлектрические потенциалы в органах и тканях, люди сейчас могут диагностировать такие заболевания, как инфаркт миокарда, а также создавать беспроводные биоэлектрические записывающие устройства, которые используются в кибермедицине.
Вам нужно войти, чтобы оставить комментарий.
Поражение нервной системы электрическим током / Рыбалкин Р.В., Кудянов Е.Г. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2007. — №81. — С. 106-109.
библиографическое описание:
Поражение нервной системы электрическим током / Рыбалкин Р.В., Кудянов Е.Г. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2007. — №81. — С. 106-109.
код для вставки на форум:
Электротравмы составляют 2-2,5 % среди всех травматических повреждений, однако большой процент смертности и инвалидности при поражении электрическим током ставит их на одно из первых мест по значимости. Электротравма это почти всегда следствие нарушений правил техники безопасности на производстве или неумения пользоваться электроприборами в быту. Поражение атмосферным электричеством наблюдается в связи с нахождением во время грозы вблизи от металлических конструкций, под деревьями, т. е. около высоких предметов, которые как бы ориентируют путь тока молнии. Производственные и бытовые поражения электричеством происходят, главным образом, под действием токов напряжения от 127 до 380 В.
Эти поражения током дают чаще смертельные исходы в связи с тем, что вызывают фибрилляцию желудочков сердца, в то время как токи высокого напряжения вызывают большие ожоги. Ввиду хорошей электропроводимости нервной ткани сильнее всего в человеческом организме поражается нервная система.
Тяжесть поражения зависит от силы и напряжения тока, продолжительности его воздействия и состояния организма во время электротравмы. Утомление, опьянение, повышенная влажность кожи усиливают действие электрического тока.
Клиника. В зависимости от характера клинических симптомов и интенсивности их проявления выделяют четыре степени электротравмы.
- Первая степень характеризуется развитием судорожных сокращений мышц без потери сознания. Все больные в таких случаях отмечают ощущение напряжения и скованности мышц, затруднение дыхания из-за сокращения дыхательной мускулатуры.
- Вторая степень характеризуется судорожным сокращением мышц и потерей сознания.
- Третья степень проявляется потерей сознания, нарушением сердечнососудистой деятельности и дыхания.
- Четвертая степень — клиническая смерть.
Поражение нервной системы, как правило, обнаруживается непосредственно после электротравмы, но иногда признаки поражения нервной системы появляются спустя некоторое время.
Обычно человек, подвергшийся электротравме, теряет сознание, наступает полное выключение двигательной, чувствительной и рефлекторной функции, т. е. развивается состояние шока. Во время падения возможен ушиб головы. Поэтому картина часто усугубляется коммоционно-контузионными признаками. Если пострадавших удается вывести из шокового состояния, то со стороны нервной системы у них обнаруживаются самые разнообразные поражения — электротравматиче- ский энцефаломиелоз, для которого характерна диффузность, множественность симптоматики - нарушения психики, мозжечковые симптомы, параличи конечностей, нарушение черепно-мозговой иннервации, расстройства чувствительности, функций тазовых органов и др.
В некоторых случаях патологический процесс бывает более ограниченным и характеризуется моносимптомами — гемиплегией, поражением зрительных нервов и др. Нередко после электротравмы развиваются эпилептиформные припадки, протекающие по типу общих или локальных приступов. Наряду с поражением центральной нервной системы отмечается поражение периферических нервов. Нередки функциональные нарушения со стороны вегетативной нервной системы: лабильность вазомоторов лица, приливы крови к лицу, акроцианоз, гипергидроз, местные отеки, сердцебиение, головокружение, головная боль. Эти явления обычно сопровождаются жалобами на повышенную раздражительность, эмоциональную возбудимость, утомляемость и т. п.
Функциональные нарушения центральной нервной системы у лиц, перенесших электротравму, остаются на длительное время, что приводит к полной или частичной утрате работоспособности. У пострадавших снижаются память, внимание, появляется рассеянность. Как показали клинические наблюдения, электрический ток способствует обострению хронического патологического процесса или развитию нового заболевания. Электрический ток больше, чем другие травмирующие факторы, обладает способностью вызывать нарушения во всех системах организма в момент его воздействия. Поэтому в первые часы и даже ближайшие дни после электротравмы трудно определить дальнейшее течение и исход болезни.
Нередко тяжелая элекгротравма заканчивается смертью, механизм которой сводится к трем моментам: угнетение функций продолговатого мозга; фибрилляция желудочков сердца, вызванная непосредственным прохождением электрического тока через сердце; тетанический спазм дыхательных мышц.
Патоморфология. При гистологическом исследовании нервной системы погибших после электротравмы обнаруживаются отек мягкой оболочки головного мозга, сужение сосудов, вазопарезы, точечные геморрагии, выпотевание плазмы, разрывы сосудистых стенок, набухание, тигролиз, деформация и сморщивание ядер, разрушение отростков нервных клеток, местами нейронофагия и гибель клеток.
В зависимости от длительности воздействия и силы электрического тока, в нервной ткани происходят вначале функционально-динамические сдвиги, которые могут приводить к стойким структурным изменениям.
Патогенез электротравмы в настоящее время представляют следующим образом. В первую очередь, электрический ток поражает вегетативную нервную систему. Вследствие этого развиваются вазомоторные расстройства, приводящие к вторичным изменениям нервной ткани, - ишемии, некрозу. Кроме того, электрический ток оказывает и прямое влияние на нервную ткань, вызывая ультрамолекулярное сотрясение цитоплазмы, смещение ионов. В результате возникают биопотенциалы повреждения, которые являются причиной дальнейшего повреждения нервной ткани и формирования различных патофизиологических изменений. Электрический ток оказывает на нервную систему свое патологическое действие и рефлекторным путем.
Человек, пораженный током ниже 380 В, почти всегда фиксируется к токоведущей части и сам не может от нее освободиться вследствие тетанического сокращения мышц кистей и потери сознания. В связи с этим, при осмотре трупа на месте его обнаружения следует проявлять известную осторожность и внимательность и не начинать осмотр трупа, не убедившись в безопасности данного действия, а именно осмотр следует начинать только после отключения токонесущих конструкций от питания либо после перемещения трупа в безопасное для осмотра место.
Актуальность изучения повреждений одежды и тела человека, сформированных электрошоковыми устройствами / Журихина С.И., Макаров И.Ю., Ширяева Ю.Н. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 81-82.
Морфологические особенности теплового повреждающего действия технического электричества / Пиголкин Ю.И., Сковородников С.В., Ремизова А.С., Дубровин И.А. // Вестник судебной медицины. — Новосибирск, 2015. — №2. — С. 14-16.
Смертельное поражение постоянным электрическим током низкого напряжения / Исаков В.Д., Назаров Ю.В., Теплов К.В., Лисянский А.М. // Судебно-медицинская экспертиза. — М., 2013. — №4. — С. 41-43.
Всё и ничто
Киборги - они заполонили всю планету.
Генератор электричества создает избыток электронов в одном месте, а потребители электричества играют роль непрерывных поглотителей электронов. Если бы потребители электричества не поглощали электроны, а постепенно их накапливали, то с течением времени их потенциал сравнялся бы с электрическим потенциалом генератора, и тогда движение электричества в цепи прекратилось бы. Поэтому первый закон электрофизики можно сформулировать следующим образом: для движения электрических токов в цепи обязательно необходимо присутствие трёх составных частей
- в виде генератора (электрического плюса), который вырабатывает электроны,
- проводника тока, который передает электроны с одного места в другое,
- и потребителя электричества (электрического минуса), который поглощает электроны.
2. О генераторах электричества человеческого организма. Животные организмы имеют два вида генераторов электричества: внутренние и наружные. К внутренним относятся мозг и сердце, к наружным пять органов чувств (зрения, слуха, вкуса, обоняния и осязания).
В головном мозге биотоки вырабатываются в том месте, где располагается ретикуло-эндотелиальная формация. От головного мозга биотоки поступают в спинной мозг, а оттуда по нервным сплетениям направляются ко всем органам и тканям. Далее очень мелкие нервы проникают во все органы грудной и брюшной полости, в кости, мышцы, сосуды, связки туловища и конечностей. Нервные ткани являются специфическими проводниками биотоков. В виде тончайшей сеточки они пронизывают все органы и ткани организма. В конце своего пути биотоки покидают нервные окончания и переходят в межклеточное пространство неспецифических проводников электричества внутренних органов, мышц, сосудов, кожи и т. д. Все ткани человеческого тела состоят на 95 % из воды с растворенными в ней солями. Поэтому живые ткани являются прекрасными проводниками электричества.
Внутри глаза также имеется специфический генератор биотоков в виде сетчатки. Когда свет попадает на сетчатку глаза, возникает поток электронов, который дальше распространяется по зрительному нерву и передается в кору головного мозга. Благодаря выработке биотоков сетчаткой глаза, человек получает возможность видеть окружающий мир. Зрение дает более 80 % информации для человека.
Внутреннее ухо является генератором электроимпульсов, которые возникают при воздействии звуковых волн. Чувствительные слуховые клетки кортиева органа расположены на основной мембране внутреннего уха (улитка) и приходят в возбуждение при колебаниях основной мембраны. Из улитки биотоки проходят по слуховому нерву в продолговатый мозг, а дальше в кору головного мозга.
Кожные рецепторы воспринимают прикосновение, давление, болевое раздражение, холодовое и тепловое воздействие. При гистологическом исследовании в коже обнаружено большое количество нервных окончаний в виде кисточек, корзинок, розеток, окруженных капсулой. Тактильную чувствительность воспринимают клетки Меркеля, Фатера-Пачини и тельца Мейснера. Свободные окончания осевых цилиндров в виде заострений и пуговчатых утолщений воспринимают болевую чувствительность. Колбы Краузе, тельца Мейснера и Руффини воспринимают чувство холода и тепла. На 1 квадратном сантиметре кожи находится 200 болевых рецепторов, 20 тактильных, 12 холодовых и 2 тепловых. Воздействие давления, тепла, холода, укола и других видов травмы на эти кожные рецепторы приводит к возникновению биоимпульсов, которые по мелким и крупным нервным стволам передаются в спинной мозг, далее в продолговатый мозг и кору полушарий. Кожные рецепторы относятся к самым мелким генераторам электричества в организме человека.
Рисунок 1. Полый металлический шар.
Она не дает объяснения на вопрос: почему все биотоки можно регистрировать на поверхности кожи?
Ведь по Павловской теории биотоки не должны покидать нервные волокна, имеющие прекрасные жировые изоляторы вокруг своего электропроводящего волокна. Но почему тогда электрические приборы определяют наличие электрических потенциалов на поверхности кожи, исходящих от сердца (электрокардиограмма, ЭКГ) и от мозга (электроэнцефалограмма, ЭЭГ)?
В электрической физике каждая батарейка имеет плюсовой потенциал с избытком электронов и минусовой потенциал, где электроны поглощаются. В человеческом организме избыток электронов создают биологические генераторы тока.
Человек имеет далеко не идеальную электротехническую систему, несмотря на 3 миллиарда лет ее непрерывной эволюции. Такую расточительность и несовершенство живых тканей можно объяснить (а точнее - оправдать) следующими причинами.
Во-первых, неадекватно высокий электрический потенциал вырабатывают электростанции организма с целью быстрого прохождения биотока от начального нервного волокна через десятки синаптических щелей и вторичных нервных волокон к иннервируемому органу.
Из сказанного можно сформулировать пятый закон биоэлектрофизики: в животном организме произошло разделение процесса потребления биотоков органами от процесса их уничтожения на поверхности кожи. Избыток электрической энергии возникает внутри электрических генераторов (сердца, мозга, 5 органов чувств), потребляют биотоки все органы и ткани человека, а поглощение электронов осуществляется внутри акупунктурных точек на поверхности кожных покровов.
ВЫВОД. Теперь сделаем общий вывод из сказанного. Человек является замкнутой электрической системой. Внутри него вырабатываются электрические токи различных частот в 7 биологических электростанциях: в сердце, в мозге и в пяти органах чувств. Сначала биотоки по нервным клеткам несут информацию к специфическим для них клеткам человеческого тела, к органам и тканям. Организм человека поглощает только 5 % общей энергии. На заключительном этапе судьба 95 % электричества состоит в следующем. После передачи информации клеткам соответствующих органов, электричество устремляется по межклеточному пространству к кожным покровам, где аннигилируется акупунктурными точками. Все электричество, которое вырабатывается внутри человеческого организма (и организма животного) поглощается его же тканями. Ни один электрон, произведенный внутри живого организма, не покидает человеческое тело, и не переходит в окружающую среду, а поглощается кожей. Этим и обусловлена замкнутость электрической системы человека. Организм сам поглощает все электричество, которое ранее он же и произвел, генерировал.
Всем привет, я Маша Осетрова, и сегодня я немного расскажу вам про электричество в теле человека.
Сюжет о Викторе Франкенштейне, создавшем монстра из неживой материи, идейно восходит к проведенным в XVIII веке опытам Луиджи Гальвани, который заставил мышцы лягушки сокращаться под действием электрического тока. Его эксперименты вдохновили многих исследователей на изучение функций электричества в теле живых существ. На сегодняшний день ученые сильно продвинулись в этой области: придумали обезболивающие, выяснили, что заставляет наше сердце биться, что происходит в голове у влюбленных и многое другое.
Между электричеством нашего организм, и электричеством, которое обеспечивает наши дома, есть два фундаментальных различия. Электричество из розетки представляет собой поток электронов. В отличие от этого практически все токи в живых существах являются потоками ионов — атомов, имеющих электрический заряд. Токи в нашем организме связаны с пятью типами частиц: четырьмя положительными ионами — натрия, калия, кальция и водорода — и одним отрицательным хлорид-аниона.
Второе важное различие связано с направлением движения частиц. Ток в электрической цепи течет вдоль проводника, в то время как распространению электрического импульса по нейрону способствует движение ионов в перпендикулярном направлении.
В состоянии покоя на мембране всех клеток существует разность потенциалов в 70 мВ, которую также называют потенциалом покоя. Изменение этого потенциала возможно при проходе заряженных частиц через мембрану внутрь и наружу клетки через специальные шлюзы — ионные каналы.
Для управления ионными каналами соседей нервные клетки выпускают в синаптическую щель — место контакта нейронов — специальные вещества, нейромедиаторы. Они специфично взаимодействуют с ионными каналами в мембране целевой клетки, подходя к определенному типу каналов как ключ к замку. В результате взаимодействия канал открывается, пропуская через себя ионы внутрь или наружу клетки. Направление движения частиц при этом зависит от концентрации ионов и распределения зарядов.
В состоянии покоя потенциал-зависимые натриевые и калиевые каналы клеток нервной и мышечной ткани находятся в закрытом состоянии под действием потенциала покоя. Они открываются только тогда, когда потенциал смещается в положительную сторону: когда это происходит, генерируется нервный импульс.
Хотя потенциально нервные волокна могут проводить импульсы в любую сторону, обычно они передают их только в одном направлении. Двигательные нервы передают сигнал от головного и спинного мозга к мышцам для управления их сокращением, а чувствительные нервы передают информацию в обратном направлении — от органов чувств к головному мозгу.
Поддержание клеток в поляризованном состоянии жизненно важно для организма и крайне энергозатратно. Один лишь мозг использует около 10% вдыхаемого кислорода для поддержания работы натриевого насоса и подзарядки аккумуляторов нервных клеток.
Наибольшее значение для генерации нервного импульса имеют калиевые и натриевые каналы. Это подчеркивает тот факт, что яды пауков, моллюсков, актиний, лягушек, змей, скорпионов и множества других экзотических существ воздействуют именно на них и, таким образом, нарушают функционирование нервов и мышц. Многие токсины крайне специфичны и нацелены на какой-нибудь один вид ионных каналов.
Еще один токсин, ради эффекта которого люди готовы рискнуть — ботокс, используемый в косметических целях для разглаживания морщин. Ботокс, он же ботулотоксин — яд бактерий вида Clostridium botulinum, — один из самых сильных известных природных ядов. Он препятствует сокращению мышц и постепенно приводит к смерти от удушья. В количестве, умещающемся на кончике иглы, он смертелен для взрослого человека, однако инъекции ботокса под кожу в ничтожных концентрациях способствуют избавлению от мимических морщин.
В основе нашей жизни лежит энергия и ее свойства: амплитуда, частота и скорость колебания энергии. Каждый из нас является определенным передатчиком, и источником этих колебаний. Наше тело является электрической системой и все мы вибрируем на нашей собственной уникальной частоте. Это вибрационные излучения тела \ неслышимые ухом шумовые \звуковые \ колебания до 20 Гц \1\. Это результат действия совокупности собственных физических полей человека, определяемых процессами, происходящими внутри него.
Организм человека — сложная электромагнитная система, генерирующая биотоки, а также электрические и магнитные и другие физические поля, которые называются собственными физическими полями организма человека. Это внешние физические поля человека, являющиеся отражением его внутринних физических полей. Источниками внутренних физических полей \электрических и магнитных \ являются электрические импульсы клеток организма и постоянно текущие биотоки.
Постоянно текущие в организме биотоки — ионные потоки, плотность которых в значительной степени зависит от психологического и физического состояния организма. Ионные токи — источник напряженности электромагнитных полей на поверхности кожи, в каждом органе, клетке.
Плотность тока, а соответственно и напряженность электромагнитного поля являются с одной стороны источником информации о физическом и психологическом состоянии организма, с другой — импульсом к физиологическому действию того или иного органа.
Основными движущими силами, приводящими в движение ионы, а следовательно ответственными за появление биотоков, являются ионные насосы и ритмическая работа сердца.
Основные проводники биотоков — особые каналы, обладающие низким электрическим сопротивлением человеческого тела.
Такими каналами в живом организме являются центральная нервная система и сердечно-сосудистая система.
Кровь в движении — движение электрических зарядов, электрический ток. Любой ток, в том числе и в живых тканях создает вокруг себя электромагнитное поле.
Нервная система представляет собой единую сложную электрическую цепь. Нервные импульсы — импульсы электрического тока. Они порождают электромагнитные поля, регистрируемые как на теле человека, так и на удалении от него. Эти поля отражают характер электрического тока того органа,который их породил. Поэтому сердце имеет свое электромагнитное поле, печень свое и т. д. Кроме того каждой функции любого органа присуще свое электромагнитное поле.
Величина силового магнитного поля, создаваемого вокруг живых тканей зависит от электрического потенциала биологических клеток этих тканей.
Различают потенциал покоя и потенциал действия.
Потенциал покоя — потенциал наблюдаемый в состоянии покоя мембран клеток биологических тканей.
Потенциал действия \ электрический импульс, электрический ток\ - быстрый рост мембранного потенциала во время возбуждения биологических тканей и проводящей системы импульсов.
Электрический потенциал изменяется во времени, в результате чего изменяется и силовое поле вокруг органа, обладающего данным потенциалом.
Зависимость электрического потенциала или ткани от времени называется электрограммой, а диагностический метод исследования — электрографией
Электрографический метод находит свое применение для диагностики целого ряда органов: сердца, головного мозга и др.
Эти силовые потенциалы фиксируются и на определенном расстоянии от человеческого тела. Причем их величина по мере удаления от человеческого тела постоянно уменьшается.
Силовые линии электромагнитных полей, фиксируемые вокруг тела человека, носят название биополе.
В научных трудах ученых биофизиков, биологов, неврологов уделяется значительное внимание теоретическим и практическим вопросам биоэлектрического потенциала, электромагнитного поля, торсионного поля. Однако отсутствует единое представление, единая картина, объединяющая все эти явления.
В данной работе делается попытка представить человека целостной электромагнитной системой, отражающей внутренние электрические и физиологические процессы.
Электрический ток в организме человека.
Электрический ток в организме человека — постоянный поток ионов, электрических импульсов, постоянное перемещение ионов между внутренней и внешней сторонами мембраны.
Достигается это благодаря обладанию мембраной потенции, \ электрическим потенциалом\.
Электрический потенциал — возможности мембраны по перемещению электрических зарядов. В роли зарядов выступают заряженные химические частицы — ионы натрия и калия а также кальция и хлора. Из них только ионы хлора заряжены отрицательно \ -\, а остальные — положительно \ +\.
Обладая электрическим потенциалом, мембрана перемещает в клетку и из клетки с помощью ионных насосов указанные выше ионы.
В электрическом отношении клеточная мембрана представляет собой оболочку, обладающую разной проницаемостью для разных ионов. В невозбужденной клетке мембрана более проницаема для К+,и Сl. Поэтому ионы К+ в силу концентрационного градиента стремятся выйти из клетки, перенося свой положительный заряд во внеклеточную среду. Ионы Cl, наоборот, входят внутрь клетки, увеличивая тем самым отрицательный заряд внутриклеточной жидкости. Такое перемещение приводит к поляризации клеточной мембраны невозбужденной клетки. Наружная ее поверхность становится положительной, а внутренняя — отрицательной. В этом положении микроэлектроды регистрируют так называемый трансмембранный потенциал покоя \ ТМПП\, имеющий отрицательную величину\ -90мВ \2 с.7\.
При возбуждении клетки резко увеличивается проницаемость мембраны клетки для ионов Na, которые быстро устремляются внутрь клетки. При этом меняется заряд мембраны. Внутренняя поверхность становится положительной, а наружная -отрицательной. При этом наблюдается потенциал действия, достигающий +20мВ. Т.е. потенциал изменяется от -90мВ до +20мВ.\2с.7\. Для того, чтобы каналы оказались прозрачными для ионов натрия, достаточно уменьшить напряжение на 20 мВ. С учетом электропроводности и структуры нервных тканей этому состоянию соответствует усредненное состояние электрического поля 40В\м и плотность тока
Согласно многочисленным исследованиям воздействия электромагнитных полей на человека неопасной считается плотность тока в организме человека около 10мА\м2,что соответствует при частоте 50Гц напряженности внешних полей 20кВ\м и 4кА\м \3\.
Любая клетка организма, его отдельные органы или организм в целом могут находится в двух физиологических состояниях - физиологическом покое и активном, деятельном состоянии.
В состоянии физиологического покоя между содержимым клетки и внеклеточной жидкостью существует разность потенциалов которая именуется мембранным потенциалом \ МП \ или потенциалом покоя \ ПП \.
В состоянии покоя внутри клетки регистрируется отрицательный заряд. В скелетной клетке он составляет - 90 мВ, в гладко - мышечной около -30мВ, в нервной — от -40 до -90мВ, в секреторной — 20мВ\ 25 с. 53 55\. В скелетной мышце -60 - -90мВ, сердечной мышце - -80 - -90мВ. \4\.
Активность клетки связана с возникновением потенциала действия. В результате чего заряд мембраны меняется на противоположный +30 мВ. После этого происходит возврат уровня потенциала к исходному. Учитывая что уровень МП,к примеру, в крупных нейронах — около -90мВ, размах пика ПД в них составляет 120мВ, длительность процессов характеризующих ПД — около 1мс. Т.е. электрический импульс в нейроне составляет 120мВ., а его продолжительность 1мс.
Первоисточником электрических импульсов в живом организме человека являются
- атипичные кардиомиоциты \ клетки \ синусового узла сердца,
- клетка \нейрон\ центральной нервной системы,
- нейронная активность глаза.
Мембранный потенциал покоя сердечной клетки составляет — 90мВ, а мембранный потенциал действия -+ 20 мВ \2 с. 7-8 \
Размах пика ПД сердечной мышцы — 110мВ.
Потенциал покоя нейрона головного мозга составляет -70мВ. ,а потенциал действия - + 55мВ, абсолютная амплитуда — 125мВ.\5с. 34\. Собственная частота колебаний головного мозга — 72 — 90 Гц.\6\.
На поверхности тела величина потенциала достигает 03-1В.
Если все электричество, которое вырабатывается живыми тканями человеческого организма на протяжении суток принять за 100%, то 50% этого количества вырабатывается сердцем, 40% мозгом и только 10% органами чувств.
Если человек перенес сильную травму, тогда болевые рецепторы могут вырабатывать до 90% всего количества электрических импульсов, вырабатываемых человеком за сутки.
Как показали исследования, внутренние органы и ткани человеческого организма поглощают около 5% поступающей к ним энергии биотоков. Остальные 95% электричества поступает и сосредоточивается на акупунктурных точках.
Наибольшее количество электричества усваивает сердце — 7%, поперечно полосатая мускулатура \бицепс\ - 6%, желудок — 5%, мозг — 4%, кишечник — 3%, печень и почки — 2%,легкие — 2%, гладкая мускулатура — 1%,кости — 025% \7\.
Основное назначение тока \электрических импульсов\ возникающих в организме человека:
- сокращение сердечной мышцы \импульсы клеток сердца\,
- выработка и передача нервных импульсов \нейронов\.
Перераспределение электрических зарядов на мембране и изменение электрических потенциалов лежат в основе работы нейрона с нервными импульсами\8\.
Источники сердечного импульса.
Эксперименты показывают, что сердечный импульс возникает спонтанно в сино — артериальном узле — деликатной части нервно - мускульной ткани, расположенной в мышечной стенке правого предсердия, самой маленькой камере сердца Этот крошечный островок обладает замечательным и уникальным свойством — спонтанно генерировать свои собственные врожденные электрические импульсы \ 9\.
Синусовый узел — группа специализированных клеток ,расположенных в стенке правого предсердия впереди от отверстия верхней полой вены. Мембрана этих клеток характеризуется повышенной проницаемостью для натрия и кальция. Медленный ток натрия, в результате чего потенциал покоя синусового узла составляет \ -50 - -60мВ\ и имеет три важных следствия:
- постоянную инактивацию быстрых натриевых каналов,
- потенциал действия с порогом -40мВ,обусловленный в первую очередь движением ионов через медленные каналы,
- регулярную спонтанную деполяризацию.
В диастолу поступление натрия в клетку приводит к тому, что мембрана клетки постепенно становится все менее отрицательной. Когда достигается пороговый потенциал, то открываются кальциевые каналы, уменьшается проницаемость мембраны и развивается потенциал действия. Восстановление нормальной проницаемости кальция возвращает клетки синусового узла в состояние покоя \10\.
Импульсные возбуждения, исходящие из синусового узла, называются синусовым импульсом У здорового человека синусовый импульс — электрические импульсы с частотой 60 — 90 в мин. \1 — 07в сек.\,
Проводящая система сердца.
Проводящая система сердца — комплекс анатомических образований сердца \ узлов, пучков, волокон \ состоящих из атипичных мышечных волокон \сердечные проводящие мышечные волокна \ и обеспечивающих координированную работу разных отделов сердца \ предсердий и желудочков\, направленную на обеспечение нормальной сердечной деятельности.
Эти пучки и узлы, сопровождаемые нервами и их рецепторами , служат для передачи импульсов с одного отдела сердца на другое, обеспечивая последовательность сокращения миокарда отдельных камер сердца \11\.
Импульс возбуждения, исходящий из синусового узла, выйдя за его пределы, охватывает возбуждением правое предсердие, в котором находится синусовый узел. Далее, по проводящей системе, а именно по межпредсердечному пучку Бахмана, электрический импульс переходит на левое предсердие и возбуждает его. Скорость проведения импульсов в предсердиях 1м\сек \12\.
Одновременно с возбуждением предсердий. импульс, выходящий из синусового узла направляется к нижней веточке Бахмана, к атриовентрикулярному \ предсердно - желудочковому \ соединению. В нем происходит физиологическая задержка импульса \ замедление его проведения. Проходя по атриовентрикулярному соединению, электрический импульс не вызывает возбуждение прилежащих слоев.
Импульс, возникший в синусовом узле, в нормальных условиях, быстро распространяется предсердиям к АВ-узлу. АВ-узел расположен с правой стороны межпредсердечной перегородки, впереди над перегородочной створкой трехстворчатого клапана.
В АВ-узле выделяют три отдельные области: верхнюю, среднюю и нижнюю. Средняя область АВ-узла обладает внутренней спонтанной активностью \ автоматизмом \, в то время. как верхняя и нижняя не способны вырабатывать импульсы. В физиологических условиях водителем ритма является синусовый узел, потому что частота его спонтанной диастолической деполяризации выше, чем в верхней и нижней областях АВ-узла, где она составляет 40-60 колебаний в минуту.
Любой фактор, уменьшающий частоту деполяризации синусового узла или увеличивающий автоматизм верхней и нижней областей АВ-узла способствует возникновению АВ-узлового ритма. \10\.
Импульсы из синусового узла достигают АВ-узел через 0,04 сек. и покидают его через последующие 0,11 сек. Эта задержка связана с низкой скоростью проведения возбуждения в тонких волокнах внутри АВ-узла, что в свою очередь определяется активацией медленных кальциевых каналов. Напротив, проведение импульса между примыкающими друг к другу клетками в желудочках определяется активацией и инактивацией быстрых натриевых каналов. Волокна, отходящие от нижней части АВ-узла ,образуют пучок Гисса. Эта специализированная группа волокон проходит в межжелудочковую перегородку, а затем разделяется на левую и правую ножки. Электрический заряд достигает проводящих путей желудочков , представляемых пучком Гисса, и проходит по этому пучку. Следует отметить, что желудочки сердца возбуждаются в определенной последовательности. Сначала, в течении 0,03 сек. возбуждается межжелудочковая перегородка. Затем возбуждается верхушка сердца и примыкающие к ней области. И в последнюю очередь возбуждается основание сердца. Продолжительность возбуждения основания сердца составляет 0,02 сек.
Охватив возбуждением желудочки, импульс, начавший путь из синусового узла, угасает, потому что клетки миокарда не могут долго оставаться возбужденными. В них начинаются процессы восстановления первоначального состояния, бывшего до возбуждения \13\.
Импульсу, возникшему в синусовом узле, необходимо менее 0,2сек для деполяризации всего сердца \10\.
Особенностью клеток миокарда является то, что в естественных условиях потенциал покоя сосредоточивает около -90мВ и определяется концентрационным градиентом ионов К+.
Потенциал действия миокарда предсердий, сердечных проводящих миоцитов \волокна Пуркинье\ и миокарда поджелудочков обусловлены повышением натриевой проницаемости, т.е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика потенциала действия происходит изменение знака мембранного потенциала \ с -90 до +30мВ.
В клетках рабочего миокарда \предсердия, желудочков \ мембранный потенциал \в интервалах между следующими друг за другом потенциалов действия\ поддерживается на более или менее постоянном уровне. Одновременно в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяризация. При достижении критического уровня примерно -50мВ. возникает новый потенциал действия. На этом механизме основана авторитмическая активность сердечных клеток. Биологическая активность этих клеток имеет важные особенности: 1\ малую крутизну подъема потенциала действия, 2\ медленную реполяризацию, плавно переходящую в фазу быстрой реполяризации, во время которой мембранный потенциал достигает -60мВ \вместо -90мВ в рабочем миокарде, после чего начинается фаза медленной диастолической деполяризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диастолической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла. Соответственно ритм их потенциальной активности меньше \14\. В клетках синусового узла потенциал покоя составляет \-50мВ\. В мышечных волокнах предсердий величина мембранного потенциала составляет 80-90 мВ., в волокнах желудочков и пучка Гисса \-90мВ.\,а в волокнах Пурькинье -96мВ. Для синотриального и атриовентрикулярного узла характерна меньшая величина мембранного потенциала \-50- -65мВ \15\.
Все показания потенциала покоя и потенциала действия отделов проводящей системы сердца сведены в таблицу
Потенциал покоя и потенциал действия отделов проводящей системы сердца.
Читайте также: