Участие ретикулярной формации в интегративной деятельности цнс
Центральная нервная система координирует деятельность всех органов и систем, обеспечивает эффективное приспособление организма к изменениям окружающей среды, формирует целенаправленное поведение. Эти жизненно важные задачи решаются благодаря интегративной деятельности ЦНС.
Интегративная деятельность ЦНС – это ее способность объединять, обобщать все поступающие сигналы, отрабатывать их в связи с прошлым опытом. В результате формируется определенная реакция организма биологически или социально наиболее важная в данной ситуации.
В интегративной деятельности условно выделяют 4 основных уровня:
1. Интеграция на уровне рецептора. Рецептор, воспринимая информацию, осуществляет ее первичный отбор по интенсивности, продолжительности, модальности и формирует нервные импульсы.
2. Интегративная деятельность нейрона – это способность нейрона воспринимать возбуждение и торможение, обрабатывать их с учетом генетической и приобретенной памяти нейрона и вырабатывать временную последовательность потенциалов действия. Интегративная деятельность нейрона базируется на конвергентных свойствах нейрона и его структурных изменениях, лежащих в основе обучения и памяти.
3. Интеграция на уровне центра. Нервный центр – это совокупность нервных клеток, расположенных на различных уровнях ЦНС и обеспечивающих определенную физиологическую реакцию организма. Иерархический принцип строения нервных центров создает возможность тонко дифференцировать ответные реакции.
Свойства нервных центров обусловлены свойствами нейронов, центральных синапсов и типами связей между нейронами. Для нервных центров характерны:
· высокий аэробный обмен веществ и высокая чувствительность к гипоксии;
· чувствительность к фармакологическим препаратам;
· меньшая возбудимость, чем у нервных волокон;
· односторонняя передача возбуждения;
· последействие (продолжение рефлекса после прекращения действия раздражителя);
· суммация (способность центральных синапсов к суммации допороговых импульсов и явлениями облегчения и конвергенции).
4. Межцентральная интеграция обеспечивает согласование деятельности различных нервных центров и формирование сложных поведенческих, эмоциональных и адаптивных реакций, организовывая деятельность организма как единого целого.
В естественных условиях любой рефлекторный акт является результатом интегративной деятельности. В основе интегративной деятельности ЦНС лежат механизмы координации.
Координация – это согласованное взаимодействие процессов возбуждения и торможения в ЦНС. Координация процессов в нервных центрах происходит при осуществлении любого рефлекторного акта. Этот процесс базируется на принципах конвергенции, дивергенции и обратной связи (рисунок 13).
Конвергенция – схождение различных путей (тормозящих, возбуждающих) проведения нервных импульсов на одной нервной клетке. Это обуславливает интегративную функцию нейрона. Принцип конвергенции лежит в основе таких процессов, как общий конечный путь, пространственная суммация и окклюзия (см. ниже).
Дивергенция – это способность нейрона устанавливать многочисленные синаптические связи с другими нервными клетками. Благодаря процессу дивергенции один нейрон может участвовать в различных нервных реакциях и контролировать большое число других нейронов, а также каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.
Рис. 13. Схема дивергенции (А) и конвергенции (Б) сигналов в ЦНС. Схематически изображены нервные клетки, их аксоны и образуемые ими синапсы. Стрелки отмечают направление передачи сенсорной информации
Обратные связи – поступление нервных импульсов в ЦНС с иннервируемого органа или клетки. Обратные связи разделяют на центральные (кольцевой тип связи между нейронами) и рефлекторные (импульсы возвращаются в нервный центр с рецепторов иннервируемого органа). По эффекту обратные связи могут быть положительными и отрицательными.
В нервные центры от рецепторов обычно поступает ритмическая импульсация. При этом ответная реакция ЦНС не всегда линейно зависит от силы и частоты раздражителя. В нервных центрах можно наблюдать явление суммации допороговых стимулов и окклюзии сверхпороговых.
Суммация. Различают пространственную и последовательную суммацию. Последовательная суммация возникает при ритмической стимуляции одного рецептивного поля. В основе ее лежит механизм облегчения. Пространственная суммация допороговых стимулов происходит при одновременной стимуляции различных рецептивных полей. Она базируется на принципах облегчения и конвергенции.
Окклюзия- это процесс, при котором общая ответная реакция нервных центров на сверхпороговые стимулы меньше, чем алгебраическая сумма раздельных эффекторов каждого. Последовательная окклюзия происходит при быстрой повторной стимуляции нейрона. При этом нейрон не воспроизводит все поступающие к нему сигналы, в результате чего происходит уменьшение сильных сигналов.
В основе пространственной окклюзии лежит процесс конвергенции, который приводит к уменьшению количества суммарнореагирующих нейронов.
Различные рефлекторные реакции могут взаимодействовать между собой. Примером такого взаимодействия являются феномены иррадиации возбуждения, доминанта и принцип общего конечного пути.
Общий конечный путь. Данный принцип введен в физиологию Ч. Шеррингтоном и основан на способности различных проводящих путей создавать синаптические контакты на одной и той же эффекторной клетке. В основе этого лежит принцип конвергенции. К мотонейронам спинного мозга кроме первичных афферентных волокон конвергируют волокна различных нисходящих трактов, идущих из центральных структур мозга, а также аксоны возбуждающих и тормозных вставочных нейронов спинного мозга. Вследствие этого Ч. Шеррингтон именно мотонейроны рассматривал как общий конечный путь многочисленных структур мозга, связанных с регуляцией моторных функций. Принцип общего конечного пути показывает, каким образом одна и та же конечная реакция может быть получена при раздражении различных структур мозга. Этот принцип имеет важное значение для анализа рефлекторной деятельности нервной системы.
Иррадиация возбуждения – это широкое распространение возбуждения по различным нервным центрам. В основе этого процесса лежит большая продолжительность и сила поступающих стимулов в ЦНС, высокая возбудимость нейронов и ослабление центрального торможения. Механизм иррадиации – дивергенция.
Иррадиация возбуждения по нервным центрам способствует возможности одних нейронов участвовать в различных нервных реакциях и контролировать деятельность других нейронов. Однако иррадиация возбуждения может стать патологической в связи с возникновением сильного очага возбуждения и с изменением свойств нервной ткани, усиливающим распространение возбуждения по ней, как это бывает при эпилепсии.
Доминанта – временно господствующий очаг возбуждения в ЦНС, обуславливающий интегральный характер функционирования нервных центров в каждый данный период времени и определяющий целесообразное поведение человека.
Доминантный очаг возбуждения притягивает к себе возбуждение из других нервных центров и одновременно подавляет их деятельность. Доминантный очаг обладает также и свойством притягивания сигналов с других рецептивных полей.
Доминанта может исчезнуть при возникновении более сильной доминанты, реализации доминантного рефлекса или ее затухания в следствие истощения энергетических ресурсов.
Различают следующие виды доминанты: физиологическую и патологическую. Физиологическая доминанта обусловлена биологическими и социальными потребностями (мотивами). Патологическая – проявляется в виде вредных привычек (табакокурение, алкоголизм, наркомания) или при психических расстройствах.
И. П. Павлов указывал также на то, что принцип доминанты лежит в основе формирования временной функциональной связи (условного рефлекса). Таким образом, явление доминанты является одним из важнейших принципов работы ЦНС.
Тема 3. Частная физиология центральной нервной системы.
Вопросы для самоподготовки.
2. Функции спинного мозга.
2.1. Проводниковая функция (проводящие пути спинного мозга).
2.2. Рефлекторная функция. Рефлексы спинного мозга.
2.3. Спинальный шок.
II. Продолговатый мозг.
1. Строение продолговатого мозга (границы, пирамиды, оливы, особенности расположения белого и серого вещества, ядра продолговатого мозга).
2. Функции продолговатого мозга.
2.1. Проводниковая функция продолговатого мозга.
2.2. Рефлекторная деятельность продолговатого мозга:
- центры жизненноважных рефлексов (дыхательный, сердечно-сосудистый);
- защитные рефлексы (мигание, чихание, кашель, рвотный акт и др.);
- рефлексы, связанные с пищеварительной деятельностью (глотание, отделение пищеварительных соков и др.);
- рефлексы, связанные с функциями ядер черепно-мозговых нервов, расположенных в продолговатом мозге (в том числе и вегетативные);
3. Участие продолговатого мозга в регуляции мышечного тонуса и рефлексов позы.
III. Средний мозг.
1. Строение среднего мозга (границы, ядра).
2. Функции среднего мозга.
2.1. Проводниковая функция.
2.2. Рефлекторная деятельность среднего мозга:
- роль красных ядер и черной субстанции в распределении мышечного тонуса (синдром Паркинсона и децеребрационная ригидность).
3. Роль среднего мозга в сохранении нормального положения тела в пространстве (выпрямительные и статокинетические рефлексы).
IV. Ретикулярная формация ствола мозга.
- строение РФ (расположение, ядра РФ, афферентные и эфферентные связи, виды нейрональных контактов);
- функции РФ (контроль сна и бодрствования, участие в регуляции вегетативных функций, фазный и тонический мышечный контроль, участие в механизмах формирования целостных условно -рефлекторных реакций организма).
1. Строение мозжечка (червь, полушария, кора и белое вещество, ножки, ядра; связи мозжечка с другими структурами ЦНС).
2. Функции мозжечка:
- участие в координации движений;
- регуляция мышечного тонуса;
- сохранение позы и равновесия тела;
- участие в регуляции вегетативных функций (функций внутренних органов);
- влияние мозжечка на образование условных рефлексов.
3. Симптомы нарушения функций мозжечка (астазия, атаксия, астения, атония, дистония и др.).
VI. Промежуточный мозг.
1. Составные части промежуточного мозга (эпиталамус, метаталамус, таламус и гипоталамус).
2.1. Нейронная организация.
2.1. Функции таламуса:
- роль специфических (переключательных и ассоциативных) ядер, моторных и неспецифических ядер;
- регуляция важных физиологических состояний (смена сна и бодрствования, сохранение сознания, развитие процессов внутреннего торможения и др.).
3.1. Нейронная организация.
3.2. Афферентные и эфферентные связи гипоталамуса.
3.3. Функции гипоталамуса:
- роль гипоталамуса в регуляции вегетативных функций;
- участие в регуляции поведенческих реакций;
3.4. Функциональные расстройства у людей с повреждениями гипоталамуса.
VII. Базальные ядра.
1. Структуры, входящие в состав базальных ядер и их связи.
2. Функции базальных ядер:
- обеспечение миостатических реакций (плавности движений);
- обеспечение автоматизма движений – бессознательного их выполнения;
- обеспечение движения мимических мышц и участие в формировании эмоциональных реакций;
- формирование защитных ориентировочных рефлексов.
3. Патофизиология базальных ганглиев:
- гипофункция медиаторных систем (болезнь Паркинсона);
- гиперфункциональные симптомы (ригидность, баллизм, атетоз, хорея, тремор).
VIII. Кора больших полушарий.
1. Организация коры больших полушарий (клеточные слои, доли, области, поля).
2. Древняя и старая кора.
2.1. Структуры, входящие в состав (обонятельный мозг и лимбическая область).
2.2. Функции древней и старой коры:
- обеспечение реакций настораживания и внимания;
- регуляция вегетативных функций;
- осуществление видоспецифического (инстинктивного) поведения;
- осуществление социального поведения;
- участие в процессах сохранения памяти.
3. Функции новой коры.
3.1. Чувствительные зоны коры большого полушария.
3.2. Моторные зоны коры большого полушария.
3.3. Электрические явления в коре больших полушарий (электроэнцефалография – ЭЭГ).
Ретикулярная формация ствола мозга – скопление полиморфных нейронов по ходу ствола мозга.
Физиологическая особенность нейронов ретикулярной формации:
1) самопроизвольная биоэлектрическая активность. Ее причины – гуморальное раздражение (повышение уровня углекислого газа, биологически активных веществ);
2) достаточно высокая возбудимость нейронов;
3) высокая чувствительность к биологически активным веществам.
Ретикулярная формация имеет широкие двусторонние связи со всеми отделами нервной системы, по функциональному значению и морфологии делится на два отдела:
1) растральный (восходящий) отдел – ретикулярная формация промежуточного мозга;
2) каудальный (нисходящий) – ретикулярная формация заднего, среднего мозга, моста.
Физиологическая роль ретикулярной формации – активация и торможение структур мозга.
Влияния РФ можно разделить в целом на нисходящие и восходящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.
Восходящие влияния РФ на кору большого мозга повышают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на функциональное состояние всех сенсорных областей мозга, следовательно, она имеет значение в интеграции сенсорной информации от разных анализаторов.
РФ имеет прямое отношение к регуляции цикла бодрствование—сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга
Ретикулярная формация начинается в срединной части верхних шейных сегментов спинного мозга и продолжается в центральных отделах продолговатого мозга, моста, среднего и промежуточного мозга. Она представляет собой скопления нейронов (ядра) с многочисленными сильно ветвящимися отростками, идущими в разных направлениях и образующими густую сеть. Между нейронами ретикулярной формации образуется очень много синапсов. От всех поступающих в таламус, а затем в кору больших полушарий афферентных путей отходят многочисленные коллатерали к ретикулярной формации, чем и обеспечивается ее восходящая активирующая деятельность. Ретикулярная формация также получает импульсы из мозжечка, подкорковых ядер, лимбической системы, которые обеспечивают эмоционально-адаптивные поведенческие реакции, мотивационные формы поведения.
В ретикулярной формации человека выделяют 48 ядер. Наиболее крупным является гигантоклеточное ядро, которое содержит гигантские нейроны, отсутствующие в других ядрах. Важным свойством нейронов ретикулярной формации является их высокая химическая чувствительность к различным гуморальным факторам и фармакологическим веществам, особенно к анестезирующим препаратам и так называемым успокаивающим средствам.
тановлено, что ретикулярная формация по восходящим нервным путям оказывает возбуждающее влияние на кору больших полушарий, а по нисходящим путям – возбуждающее или тормозящее действие на деятельность спинного мозга (рис. 84). Ретикулоспинальные влияния играют важную роль в координации простых и сложных движений, в реализации влияний психической сферы на осуществление сложной двигательной поведенческой деятельности человека.
Было обнаружено, что электрическое раздражение гигантоклеточного ядра ретикулярной формации вызывает неспецифическое торможение сгибательных и разгибательных рефлексов, осуществляемых мотонейронами спинного мозга. Влияние ретикулярной формации на мышечный тонус передается по двум ретикуло-спинальным путям: быстропроводящему и медленнопроводящему. Импульсы, поступающие по этим путям, повышают активность гамма-мотонейронов спинного мозга, что в свою очередь возбуждает альфа-мотонейроны, и мышечный тонус увеличивается. Ретикулярная формация может выступать не только в роли регулятора возбудимости мотонейронов спинного мозга, но и принимать участие в процессах, связанных с поддержанием позы и организацией целенаправленных движений.
тивность самой ретикулярной формации поддерживается непрерывным поступлением импульсов, идущих от рецепторов тела. Важная роль в поддержании ее активности принадлежит гуморальным факторам, по отношению к которым она обладает высокой чувствительностью.
Благодаря работам Х. Мегуна и Дж. Моруцци были открыты восходящие, активирующие влияния ретикулярн
формации на кору больших полушарий (рис. 84, А). Обнаружено, что ретикулярная формация участвует в регуляции сна и бодрствования. Раздражение и возбуждение ее с помощью вживленных в мозг электродов вызывает пробуждение у спящих животных. Эта поведенческая реакция пробуждения сопровождается учащением ритма электроэнцефалограммы в обширных областях коры больших полушарий. У бодрствующего животного подобное раздражение повышало уровень корковой активности, усиливало внимание к внешним сигналам и улучшало их восприятие. Разрушение восходящих путей от ретикулярной формации приводит к глубокому сну у бодрствовавших животных и уменьшению частоты колебаний электроэнцефалограммы.
Ретикулярная формация может оказывать и тормозное влияние на кору больших полушарий. Оно имеет место в случае длительной и монотонной работы. Например, в производственных условиях при работе на конвейере или в спорте при прохождении длинных и сверхдлинных дистанций.
ектрических проявлениях деятельности мозга активирующие влияния ретикулярной формации проявляются в виде возникновения частой асинхронной активности (десинхронизация), а тормозящие влияния – в виде медленных ритмичных колебаний (синхронизация).
Большинство нейронов ретикулярной формации являются полисенсорными, т.е. отвечают на различные раздражения: световые, звуковые, тактильные и т.д. Эти нейроны имеют обширные рецептивные поля, большой латентный период и слабую воспроизводимость реакции, что сильно отличает их от нейронов специфических ядер. В связи с этим нейроны ретикулярной формации относят к неспецифическим. Точно также восходящие пути ретикулярной формации называют неспецифическими, т.к. они направлены к обширным областям коры больших полушарий в отличие от специфических проекционных путей от органов чувств, идущих в конкретные зоны коры.
Ретикулярной формации принадлежит важная роль в механизмах формирования условнорефлекторных реакций организма. Она повышает активность вегетативных нервных центров, функционируя совместно с симпатическим отделом вегетативной нервной системы. Введение адреналина повышает тонус ретикулярной формации, в результате чего усиливается ее активирующее влияние на кору больших полушарий. Адреналин, выделяемый мозговым веществом надпочечников при эмоциях, действуя на ретикулярную формацию, увеличивает и удлиняет эффекты возбуждения симпатической нервной системы.
Благодаря наличию кольцевых связей в ретикулярной формации происходит взаимодействие афферентных и эфферентных импульсов, возможна их продолжительная циркуляция по кругу. Вследствие этого поддерживается определённый уровень возбуждения самой ретикулярной формации, а она в свою очередь поддерживает тонус и готовность к деятельности различных отделов центральной нервной системы. Активность ретикулярной формации находится под регулирующим влиянием коры больших полушарий (рис. 84, Б).
Ретикулярна формация — совокупность нейронов отростки которых образуют своеобразную форму в пределах ЦНС.
Растральный отдел- ретикулярная формация на уровне промежуточного мозга.
Каудальный- ретикулярная формация продолговатого мозга,моста и среднего мозга.
Восходящие (афферентные) пути мозжечка
1. Задний спинно-мозжечковый путь и передний спинно-мозжечковый путь
2. Передние и задние наружные дугообразные волокна, проходят в нижней мозжечковой ножке от ядер тонкого и клиновидного пучков своей и противоположной сторон к коре червя мозжечка.
3. Ядерно-мозжечковый путь приходит в нижней мозжечковой ножке, связывает вестибулярные ядра с шаровидным ядром и ядром шатра, а также чувствительные ядра тройничного, языкоглоточного и блуждающего нервов с корой червя мозжечка.
4. Оливомозжечковый путь,проходит в нижней мозжечковой ножке и соединяет клетки ядра оливы своей и противоположной сторон с корой мозжечка.
Нисходящие (эфферентные) пути мозжечка
Нисходящие проекционные волокна мозжечка соединяют последний с ядрами мозгового ствола (латеральное вестибулярное ядро, красное ядро, таламус).
1. Мозжечково-красноядерный путь, начинается от клеток коры мозжечка, отростки которых направляются к пробковидному, шаровидному и зубчатому ядрам. Волокна, отходящие от клеток этих ядер, идут по верхней мозжечковой ножке, переходят в среднем мозге на противоположную сторону и заканчиваются в красном ядре.
2. Зубчато-таламический путь, начинается в зубчатом ядре, идет в составе верхней мозжечковой ножки, переходит в области среднего мозга на противоположную сторону. Здесь волокна этого пути проходят через красное ядро, не переключаясь на его клетки, достигают нижних ядер таламуса и оканчиваются на клетках последних.
3. Мозжечково-ядерный путь, идет от коры червя мозжечка на противоположную сторону к ядру шатра, проходит в нижних мозжечковых ножках к продолговатому мозгу и затем к латеральному вестибулярному ядру и ретикулярной формации. Отростки клеток латерального вестибулярного ядра следуют в составе продольного пучка, волокна которого соединяются с клетками двигательных ядер глазодвигательного, блокового и отводящего нервов.
4. Дугообразный пучок, соединяет клетки язычка, клетки ядра шатра с латеральным, медиальным и верхним преддверными ядрами.
Функции ретикулярной формации
1)контроль над состояниями сна и бодрствования;
2)мышечный контроль;
3)обработка информационных сигналов окружающей и внутренней среды организма,которые поступают по разным каналам.
- Физиология
- История физиологии
- Методы физиологии
Ретикулярная формация ствола головного мозга
Ретикулярная формация - совокупность различных нейронов, расположенных на протяжении ствола мозга, оказывающих активирующее или тормозящее влияние на различные структуры центральной нервной системы, тем самым контролируя их рефлекторную деятельность.
Ретикулярная формация ствола мозга оказывает активирующее влияние на клетки коры головного мозга и тормозное действие на мотонейроны спинного мозга. Посылая в спинной мозг к его двигательным нейронам тормозящие и возбуждающие импульсы ретикулярная формация участвует в регуляции тонуса скелетных мышц.
Ретикулярная формация поддерживает тонус вегетативных центров, интегрирует симпатические и парасимпатические влияния, передает модулирующее влияние от гипоталамуса и мозжечка к внутренним органам.
Соматодвигательный контроль (активация скелетной мускулатуры), может быть прямым через tr. reticulospinalis и непрямым через мозжечок, оливы, бугорки четверохолмия, красное ядро, черное вещество, полосатое тело, ядра таламуса и даже соматомоторные зоны коры.
Висцеромоторный контроль состояния сердечно-сосудистой, дыхательной систем, активности гладкой мускулатуры различных внутренних органов.
Нейроэндокринная трансдукция через влияние на нейромедиаторы, центры гипоталамуса и далее гипофиз.
Биоритмы через связи с гипоталамусом и шишковидной железой.
Различные функциональные состояния организма (сон, пробуждение, состояние сознания, поведение) осуществляются посредством многочисленных связей ядер ретикулярной формации со всеми частями ЦНС.
Координация работы разных центров ствола мозга, обеспечивающих сложные висцеральные рефлекторные ответы (чихание, кашель, рвота, зевота, жевание, сосание, глотание и др.).
Ретикулярная формация образована совокупностью многочисленных нейронов, лежащих отдельно или сгруппированных в ядра (см. рис. 1 и 2). Ее структуры локализуются в центральных участках ствола, начиная с верхних сегментов шейного отдела спинного мозга до верхнего уровня ствола мозга, где они постепенно сливаются с ядерными группами таламуса. Ретикулярная формация занимает пространства между ядрами черепных нервов, другими ядрами и трактами, проходящими через ствол мозга.
Нейроны ретикулярной формации характеризуются большим разнообразием форм и размеров, но их общим признаком является то, что они образуют длинными дендритами и широко ветвящимися аксонами многочисленные синаптические контакты как между собой, так и с нейронами других ядер мозга. Эти ветвления формируют своеобразную сеть (ретикулум), откуда произошло название — ретикулярная формация. У нейронов, формирующих ядра ретикулярной формации, имеются длинные аксоны, образующие проводящие пути к спинному мозгу, ядрам ствола мозга, мозжечка, таламуса и других областей головного мозга.
Рис. 1. Важнейшие структурные образования среднего мозга (поперечный срез)
К нейронам ретикулярной формации поступают многочисленные афферентные сигналы из различных структур ЦНС. Можно выделить несколько групп нейронов, к которым поступают эти сигналы. Это группа нейронов латерального ядра ретикулярной формации, расположенного в продолговатом мозге. Нейроны ядра получают афферентные сигналы от вставочных нейронов спинного мозга и входят в состав одного из непрямых спиномозжечковых путей. Кроме того, они получают сигналы от вестибулярных ядер и могут интегрировать информацию о состоянии активности вставочных нейронов, связанных с мотонейронами спинного мозга, и о положении тела и головы в пространстве.
Следующая группа — это нейроны ретикулотегментального ядра, расположенные на границе дорсального края моста. Они получают афферентные синаптические входы от нейронов претектальных ядер и верхних холмиков четверохолмия и посылают свои аксоны в структуры мозжечка, участвующие в контроле движений глаз.
Нейроны ретикулярной формации получают разнообразные сигналы через пути, связывающие их с корой головного мозга (кортикоретикулоспинальные пути), черной субстанцией, гипоталамусом и лимбической системой.
Рис. 2. Расположение некоторых ядер в стволе мозга и гипоталамусе: 1 — паравентрикулярное; 2 — дорсомедиальное: 3 — преоптическое; 4 — супраоптическое; 5 — заднее
Кроме описанных афферентных путей в ретикулярную формацию поступают сигналы по аксонным коллатералям проводящих путей сенсорных систем. При этом на один и тот же нейрон могут конвергировать сигналы от разных рецепторов (тактильных, зрительных, слуховых, вестибулярных, болевых, температурных, проприорецепторов, рецепторов внутренних органов).
Из приведенного перечня основных афферентных связей ретикулярной формации с другими областями ЦНС видно, что состояние ее тонической нейронной активности определяется притоком практически всех типов сенсорных сигналов от чувствительных нейронов, а также сигналов от большинства структур ЦНС.
Отделы
Характеристика
- дыхательный;
- сосудодвигательный;
- слюноотделительный и др.
Ретикулокортикальные: активирующие; гипногенные
Ядра ретикулярной формации и их функции
Долгое время считалось, что ретикулярная формация, строение которой характеризуется широкими межнейронными связями, интегрирует сигналы различной модальности, не выделяя при этом специфической информации. Однако становится все более очевидным, что ретикулярная формация является не только морфологически, но и функционально гетерогенной, хотя различия между функциями ее отдельных частей не столь очевидны, как это характерно для других областей мозга.
Действительно, многие нейронные группы ретикулярной формации формируют ее ядра (центры), выполняющие специфические функции. Это нейронные группы, формирующие сосудодвигательный центр продолговатого мозга (гигантоклеточное, парамедианное, латеральное, вентральное, каудальное ядра продолговатого мозга), дыхательный центр (гигантоклеточное, мелкоклеточное ядра продолговатого мозга, оральное и каудальное ядра моста), центры жевания и глотания (латеральное, парамедианное ядра продолговатого мозга), центры движений глаз (парамедианная часть моста, ростральная часть среднего мозга), центры регуляции тонуса мышц (ростральное ядро моста и каудальное — продолговатого мозга) и др.
Одной из важнейших неспецифических функций ретикулярной формации является регуляция общей нейронной активности коры и других структур ЦНС. В ретикулярной формации проводится оценка биологической значимости поступающих сенсорных сигналов, и в зависимости от результатов этой оценки она может активировать или тормозить через неспецифические или специфические нейронные группы таламуса нейронные процессы во всей коре головного мозга или в се отдельных зонах. Поэтому стволовая ретикулярная формация называется также активирующей системой ствола мозга. Благодаря этим свойствам ретикулярная формация может оказывать влияние на уровень общей активности коры, поддержание которой является важнейшим условием для сохранения сознания, состояния бодрствования, формирования направленности внимания.
Повышение активности ретикулярной формации (на общем высоком фоне) в отдельных сенсорных, ассоциативных областях коры обеспечивает возможность выделения и обработки специфической, наиболее важной в данный момент времени информации для организма и организации адекватных ответных поведенческих реакций. Обычно эти реакции, организуемые при участии ретикулярной формации ствола мозга, предваряются ориентационными движениями глаз, головы и тела в направлении источника сигнала, изменениями дыхания и кровообращения.
Активирующее влияние ретикулярной формации на кору и другие структуры ЦНС осуществляется по восходящим путям, идущим от гигантоклеточного, латерального и вентрального ретикулярных ядер продолговатого мозга, а также от ядер моста и среднего мозга. По этим путям потоки нервных импульсов проводятся к нейронам неспецифических ядер таламуса и после их обработки переключаются в таламических ядрах для последующей передачи к коре. Кроме того, от перечисленных ретикулярных ядер потоки сигналов проводятся к нейронам заднего гипоталамуса и базальных ганглиев.
Кроме регуляции нейронной активности высших отделов мозга ретикулярная формация может регулировать сенсорные функции. Это осуществляется путем влияния на проведение афферентных сигналов в нервные центры, на возбудимость нейронов нервных центров, а также на чувствительность рецепторов. Повышение активности ретикулярной формации сопровождается повышением активности нейронов симпатической нервной системы, иннервирующей органы чувств. В результате может повышаться острота зрения, слуха, тактильная чувствительность.
Наряду с восходящими активирующими и тормозящими влияниями на высшие отделы головного мозга ретикулярная формация принимает участие в регуляции движений, оказывая активирующие и тормозные воздействия на спинной мозг. На ее ядрах происходит переключение как восходящих путей, идущих от проприорецепторов и спинного мозга к головному мозгу, так и нисходящих двигательных путей от коры мозга, базальных ядер, мозжечка и красного ядра. Хотя восходящие нейронные пути, идущие из ретикулярной формации в таламус и кору, играют роль преимущественно в поддержании общего уровня активности коры больших полушарий мозга, но именно эта их функция важна для осуществления бодрствующей корой планирования, запуска, исполнения движений и контроля за их исполнением. Между восходящими и нисходящими через ретикулярную формацию путями имеется большое число коллатеральных связей, через которые они могут оказывать взаимное влияние. Существование такого тесного взаимодействия создает условия для взаимного воздействия области ретикулярной формации, влияющей через таламус на активность коры, планирующей и инициирующей движения, и области ретикулярной формации, влияющей на исполнительные нейронные механизмы спинного мозга. В ретикулярной формации имеются группы нейронов, которые посылают большинство аксонов в мозжечок, участвующий в регуляции и координации сложных движений.
По нисходящим ретикулоспинальным путям ретикулярная формация непосредственно воздействует на функции спинного мозга. Прямое влияние на его двигательные центры осуществляется по медиальному ретикулоспинальному тракту, идущему от ядер моста и активирующему преимущественно интер- и у-моторные нейроны разгибателей и тормозящему моторные нейроны мышц-сгибателей туловища и конечностей. По латеральному ретикулоспинальному тракту, начинающемуся от гигантоклеточного ядра продолговатого мозга, ретикулярная формация оказывает активирующее влияние на интер- и у-моторные нейроны мышц-сгибателей конечностей и тормозящее на нейроны мышц-разгибателей.
Из экспериментальных наблюдений на животных известно, что стимуляция более рострально расположенных нейронов ретикулярной формации на уровне продолговатого и среднего мозга, оказывает диффузное облегчающее влияние на спинальные рефлексы, а стимуляция нейронов каудальной части продолговатого мозга сопровождается торможением сиинальных рефлексов.
Активирующее и тормозное влияние ретикулярной формации на моторные центры спинного мозга может осуществляться через у-мотонейроны. При этом ретикулярные нейроны рострального участка ретикулярной формации активируют у-мотонейроны, которые своими аксонами иннервируют интрафузальные мышечные волокна, вызывают их сокращение, активируют рецепторы мышечных веретен. Поток сигналов от этих рецепторов активирует а-мотонейроны и вызывает сокращение соответствующей мышцы. Нейроны каудального участка ретикулярной формации тормозят активность у-мотонейронов спинного мозга и вызывают расслабление мышц. От баланса нейронной активности этих участков ретикулярной формации зависит распределение тонуса в больших мышечных группах. Поскольку этот баланс зависит от нисходящих влияний на ретикулярную формацию коры головного мозга, базальных ганглиев, гипоталамуса, мозжечка, то эти структуры мозга также могут через ретикулярную формацию и другие ядра ствола мозга воздействовать на распределение тонуса мышц и позу тела.
Широкое ветвление аксонов ретикулоспинальных путей в спинном мозге создает условия для влияния ретикулярной формации практически на все моторные нейроны и соответственно на состояние мышц различных частей тела. Такая особенность обеспечивает эффективное воздействие ретикулярной формации на рефлекторное распределение тонуса мышц, позу, ориентацию головы и тела в направлении действия внешних раздражителей и участие ретикулярной формации в осуществлении произвольных движений мышц проксимальных частей тела.
В центральной части ретикулярного гигантоклеточного ядра располагается участок, раздражение которого тормозит все двигательные рефлексы спинного мозга. Наличие такого торможения структур головного мозга на спинной мозг было открыто И.М. Сеченовым в опытах на лягушках. Суть опытов состояла в исследовании состояния рефлексов спинного мозга после перересечения ствола мозга на уровне промежуточного мозга и раздражении каудального участка разреза кристалликом поваренной соли. Оказалось, что двигательные спинальные рефлексы при раздражении не проявлялись или становились ослабленными и восстанавливались после устранения раздражения. Таким образом было впервые выявлено, что один нервный центр может тормозить активность другого. Это явление назвали центральным торможением.
Ретикулярная формация играет важную роль в регуляции не только соматических, но и вегетативных функций (ретикулярные ядра ствола мозга входят в структуру жизненно важных отделов дыхательного центра и центров регуляции кровообращения). Латеральная группа ретикулярных ядер моста и дорсолатеральное ядро покрышки формируют мочевыделительный центр моста. Аксоны нейронов ядер этого центра достигают преганглионарных нейронов крестцового отдела спинного мозга. Стимуляция нейронов этих ядер в мосту сопровождается сокращением мускулатуры стенки мочевого пузыря и мочевыделением.
В дорсолатеральном мосту расположено парабрахиальное ядро, на нейронах которого заканчиваются волокна сенсорных нейронов вкуса. Нейроны ядра, подобно нейронам голубоватого пятна и черной субстанции, содержат нейромеланин. Число таких нейронов в парабрахиальном ядре уменьшается при болезни Паркинсона. Нейроны парабрахиального ядра имеют связи с нейронами гипоталамуса, амигдалы, ядрами шва, одиночного тракта и другими ядрами ствола мозга. Предполагают, что парабрахиальные ядра имеют отношение к регуляции вегетативных функций и понижение их числа при паркинсонизме объясняет возникновение вегетативных нарушений при этом заболевании.
В опытах на животных было показано, что при раздражении некоторых локальных участков ретикулярных структур продолговатого мозга и моста можно вызвать торможение активности коры и сон. На ЭЭГ при этом возникают низкочастотные (1-4 Гц) волны. На основе описанных фактов считают, что важнейшими функциями восходящих влияний ретикулярной формации являются регуляция цикла сон — бодрствование и уровня сознания. Оказалось, что к формированию этих состояний имеют прямое отношение ряд ядер ретикулярной формации ствола мозга.
Так, с каждой стороны центрального шва моста располагаются парамедианные ретикулярные ядра, или ядра шва, содержащие серотонинергические нейроны. В каудальной части моста они включают нижнее центральное ядро, которое является продолжением ядра шва продолговатого мозга, а в ростральной части моста в состав ядер шва моста входит верхнее центральное ядро, называемое ядром Бехтерева, или срединным ядром шва.
В ростральной части моста на дорсальной стороне покрышки располагается группа ядер голубоватого пятна. В них имеется около 16 000-18 000 меланинсодержащих норадренергических нейронов, аксоны которых широко представлены в различных отделах ЦНС — гипоталамусе, гиппокампс, коре больших полушарий мозга, мозжечке и спинном мозге. Голубоватое пятно простирается в средний мозг, и его нейроны прослеживаются в ссром веществе околоводопроводного пространства. Число нейронов в ядрах голубоватого пятна уменьшается при паркинсонизме, болезни Альцгеймера и синдроме Дауна.
Как серотонинергические, так и норадреналинергические нейроны ретикулярной формации играют роль в контроле цикла сон — бодрствование. Подавление синтеза серотонина в ядрах шва ведет к развитию бессонницы. Предполагают, что серотонинергические нейроны являются частью нервной сети регуляции медленноволнового сна. При действии серотонина на нейроны голубоватого пятна возникает парадоксальный сон. Разрушение ядер голубоватого пятна у экспериментальных животных не ведет к развитию бессонницы, но вызывает на несколько недель исчезновение фазы парадоксального сна.
Читайте также: