Гемостаз. Механизмы свертывания крови. Тромбоцитарный гемостаз. Тромбоцитарная реакция. Первичный гемостаз.

Добавил пользователь Валентин П.
Обновлено: 14.12.2024

Система гемостаза - совокупность функционально-морфологических и биохимических механизмов, обеспечивающих сохранение жидкого состояния крови, предупреждение и остановку кровотечений, а также целости кровеносных сосудов.

В целостном организме при отсутствии патологических воздействий жидкое состояние крови является следствием равновесия факторов, обусловливающих процессы свертывания и препятствующих их развитию. Нарушение подобного баланса может быть вызвано очень многими факторами, однако вне зависимости от этиологических причин тромбообразование в организме происходит по единым законам с включением в процесс определенных клеточных элементов, энзимов и субстратов.

В свертывании крови различают два звена:

1. клеточный (сосудисто-тромбоцитарный) и

2. плазменный (коагуляционный) гемостаз.

Под клеточным гемостазом понимают адгезию клеток (т.е. взаимодействие клеток с чужеродной поверхностью, в том числе и с клетками иного вида), агрегацию (склеивание одноименных клеток крови между собой), а также высвобождение из форменных элементов веществ, активирующих плазменный гемостаз.

Плазменный (коагуляционный) гемостаз представляет собой каскад реакций, в которых участвуют факторы свертывания крови, завершающийся процессом фибринообразования. Образовавшийся фибрин подвергается далее разрушению под влиянием плазмина (фибринолиз).

Важно отметить, что деление гемостатических реакций на клеточные и плазменные является условным, однако оно справедливо в системе in vitro и существенно облегчает выбор адекватных методик и интерпретацию результатов лабораторной диагностики патологии гемостаза. В организме эти два звена свертывающей системы крови тесно связаны и не могут функционировать раздельно.

Физиология системы гемостаза

Очень важную роль в осуществлении реакций гемостаза играет сосудистая стенка. Эндотелиальные клетки сосудов способны синтезировать и/или экспрессировать на своей поверхности различные биологически активные вещества, модулирующие тромбообразование. К ним относятся:

1. фактор Виллебранда,

2. эндотелиальный фактор релаксации (оксид азота),

6. активатор плазминогена тканевого типа,

7. ингибитор активатора плазминогена тканевого типа,

8. тканевый фактор (тромбопластин),

9. ингибитор пути тканевого фактора и другие.

Кроме того, мембраны эндотелиоцитов несут на себе рецепторы, которые при определенных условиях опосредуют связывание с молекулярными лигандами и клетками, свободно циркулирующими в кровотоке.

При отсутствии каких-либо повреждений выстилающие сосуд эндотелиальные клетки обладают тромборезистентными свойствами, что способствует поддержанию жидкого состояния крови. Тромборезистентность эндотелия обеспечивается:

· контактной инертностью внутренней, обращенной в просвет сосуда поверхности этих клеток;

· синтезом мощного ингибитора агрегации тромбоцитов - простациклина;

· наличием на мембране эндотелиоцитов тромбомодулина, который связывает тромбин; при этом последний утрачивает способность вызывать свертывание крови, но сохраняет активирующее действие на систему двух важнейших физиологических антикоагулянтов - протеинов С и S;

· высоким содержанием на внутренней поверхности сосудов мукополисахаридов и фиксацией на эндотелии комплекса гепарин-антитромбин III;

· способностью секретировать и синтезировать тканевый активатор плазминогена, обеспечивающий фибринолиз;

· способностью стимулировать фибринолиз через систему протеинов С и S.

Нарушение целости сосудистой стенки и/или изменение функциональных свойств эндотелиоцитов могут способствовать развитию протромботических реакций - антитромботический потенциал эндотелия трансформируется в тромбогенный. Причины, приводящие к травме сосудов, весьма разнообразны и включают в себя как экзогенные факторы (механические повреждения, лучевое воздействие, гипер- и гипотермия, токсические вещества, в том числе и лекарственные препараты, и т.п.), так и эндогенные факторы. К последним относятся биологически активные вещества (тромбин, циклические нуклеотиды, ряд цитокинов и т.п.), способные при определенных условиях проявлять мембраноагрессивные свойства. Такой механизм поражения сосудистой стенки характерен для многих заболеваний, сопровождающихся склонностью к тромбообразованию.

Абсолютно все клеточные элементы крови принимают участие в тромбогенезе, но для тромбоцитов (в отличие от эритроцитов и лейкоцитов) прокоагулянтная функция является основной. Тромбоциты не только являются главными клеточными участниками процесса тромбообразования в артериях и важными компонентами, обеспечивающими флеботромбоз, но также обладают существенным влиянием на другие звенья гемокоагуляции, представляя активированные фосфолипидные поверхности, необходимые для реализации процессов плазменного гемостаза, высвобождая в кровь ряд факторов свертывания, модулируя фибринолиз и нарушая гемодинамические константы как путем транзиторной вазоконстрикции, обусловленной генерацией ТХА2 (тромбоксан А2), так и путем образования и выделения митогенных факторов, способствующих гиперплазии сосудистой стенки. При инициации тромбогенеза происходит активация тромбоцитов (т.е. активация тромбоцитарных гликопротеинов и фосфолипаз, обмен фосфолипидов, образование вторичных посредников, фосфорилирование белков, метаболизм арахидоновой кислоты, взаимодействие актина и миозина, Nа + /Н + -обмен, экспрессия фибриногеновых рецепторов и перераспределение ионов кальция) и индукция процессов их адгезии, реакции высвобождения и агрегации; при этом адгезия предшествует развитию реакции высвобождения и агрегации тромбоцитов и является первой ступенью формирования гемостатического процесса.

При нарушении эндотелиальной выстилки субэндотелиальные компоненты сосудистой стенки (фибриллярный и нефибриллярный коллаген, эластин, протеогликан и др.) вступают в контакт с кровью и образуют поверхность для связывания фактора Виллебранда, который не только стабилизирует фактор VIII в плазме, но и играет ключевую роль в процессе адгезии тромбоцитов, связывая субэндотелиальные структуры с рецепторами клеток. Взаимодействие тромбоцитарных рецепторов с фактором Виллебранда возможно только при наличии сил, создаваемых кровотоком.

Адгезия тромбоцитов к тромбогенной поверхности сопровождается их распластыванием. Этот процесс необходим для осуществления более полного взаимодействия тромбоцитарных рецепторов с фиксированными лигандами, что способствует дальнейшему прогрессированию тромбообразования, так как, с одной стороны, обеспечивает более прочную связь адгезированных клеток с сосудистой стенкой, а с другой стороны иммобилизованные фибриноген и фактор Виллебранда способны выступать в качестве тромбоцитарных агонистов, способствуя дальнейшей активации этих клеток.

Помимо взаимодействия с чужеродной (в том числе и поврежденной сосудистой) поверхностью, тромбоциты способны прилипать друг к другу, т.е. агрегировать. Агрегацию тромбоцитов вызывают различные по своей природе вещества, например тромбин, коллаген, АДФ, арахидоновая кислота, тромбоксан А2, простагландины G2 и Н2, серотонин, адреналин, фактор активации тромбоцитов и др. Проагрегантами могут быть и вещества, отсутствующие в организме, например латекс.

Как адгезия, так и агрегация тромбоцитов могут приводить к развитию реакции высвобождения - специфического Са 2+ -зависимого секреторного процесса, при котором тромбоциты выбрасывают содержимое некоторых своих внутриклеточных образований в экстрацеллюлярное пространство. АДФ, адреналин, субэндотелиальная соединительная ткань и тромбин являются физиологически важными агентами, индуцирующими реакцию высвобождения. Вначале высвобождается содержимое плотных гранул: АДФ, серотонин, Са 2+ ; высвобождение содержимого α-гранул (тромбоцитарный фактор 4, β-тромбоглобулин, тромбоцитарный фактор роста, фактор Виллебранда, фибриноген и фибронектин) требует более сильной стимуляции тромбоцитов. Липосомальные гранулы, содержащие кислые гидролазы, высвобождаются только в присутствии концентрированного коллагена или тромбина. Следует отметить, что высвободившиеся из тромбоцитов факторы способствуют закрытию дефекта сосудистой стенки и развитию гемостатической пробки, однако при достаточно выраженном поражении сосуда дальнейшая активация тромбоцитов и их адгезия к травмированному участку сосудистой поверхности формирует основу для развития распространенного тромботического процесса с последующей окклюзией сосудов.

В любом случае итогом повреждения эндотелиоцитов является приобретение интимой сосудов про коагулянтных свойств, что сопровождается синтезом и экспрессией тканевого фактора (тромбопластина) - основного инициатора процесса свертывания крови. Тромбопластин, который хотя и не обладает энзиматической активностью, может выступать в роли кофактора активированного фактора VII. Комплекс тромбопластин-фактор VII способен активировать как фактор X, так и фактор XI, вызывая тем самым генерацию тромбина, что в свою очередь индуцирует дальнейшее прогрессирование реакций как клеточного, так и плазменного гемостаза.

Гемостатические реакции, совокупность которых принято называть плазменным (коагуляционным) гемостазом и итогом которых является образование фибрина, обеспечиваются протеинами, носящими название плазменных факторов.

Процесс протекания плазменного гемостаза можно условно разделить на три фазы.

Первая фаза - протромбиназообразование, или контактно-калликреин-кинин-каскадная активация. Первая фаза представляет собой многоступенчатый процесс, в результате которого в крови накапливается комплекс факторов, способных превратить протромбин в тромбин, поэтому комплекс называется протромбиназой. В зависимости от пути формирования протромбиназы различают внутренний и внешний пути ее формирования. По внутреннему пути свертывание крови инициируется без участия тканевого тромбопластина; в образовании протромбиназы принимают участие факторы плазмы (XII, XI, IX, VIII, X), калликреин-кининовая система и тромбоциты. В результате инициации реакций внутреннего пути образуется комплекс факторов Ха с V на фосфолипидной поверхности (3-й фактор тромбоцитов) в присутствии ионизированного кальция. Весь этот комплекс действует как протромбиназа, превращая протромбин в тромбин. Пусковым фактором этого механизма является фактор XII, который активируется либо вследствие контакта крови с чужеродной поверхностью, либо при контакте крови с субэндотелием (коллагеном) и другими компонентами соединительной ткани при повреждении стенок сосудов, либо фактор XII активируется путем его ферментативного расщепления (калликреином, плазмином, другими протеазами). Во внешнем пути формирования протромбиназы основную роль играет тканевый фактор (фактор III), который экспрессируется на клеточных поверхностях при повреждении тканей и образует с фактором VIIa и ионами кальция комплекс, способный перевести фактор X в фактор Ха, который и активирует протромбин. Кроме того, фактор Ха ретроградно активирует комплекс тканевого фактора + фактора VIIa. Таким образом, внутренний и внешний пути соединяются на факторах свертывания. Однако так называемые «мосты» между этими путями реализуются через взаимную активацию факторов XII, VII и IX. Эта фаза длится от 4 мин 50 с до 6 мин 50 с.

Вторая фаза - тромбинообразование. В эту фазу протромбиназа вместе с факторами коагуляции V, VII, X и IV переводит неактивный фактор II (протромбин) в активный фактор IIа - тромбин. Эта фаза длится 2 - 5 с.

Третья фаза свертывания крови - фибринообразование. Возникший тромбин отщепляет от молекулы фибриногена два пептида А и два В, переводит его в фибрин-мономер. Молекулы последнего полимеризуются сначала в димеры, затем в еще растворимые, особенно в кислой среде, олигомеры, и фибрин-папилляры становятся фибрин-полимером. Кроме того, тромбин способствует превращению фактора XIII в фактор ХIIIа. Последний в присутствии Са 2+ изменяет фибрин-полимер из лабильной, легко растворимой фибринолизином (плазмином) формы в медленно и ограниченно растворимую форму, составляющую основу кровяного сгустка. Эта фаза длится 2 - 5 с.

В процессе образования гемостатического тромба не происходит распространения тромбообразования от места повреждения стенки сосуда по сосудистому руслу, так как этому препятствуют быстро возрастающий вслед за свертыванием антикоагулянтный потенциал крови и активация фибринолитической системы.

Сохранение крови в жидком состоянии и регуляция скоростей взаимодействия факторов во все фазы коагуляции во многом определяются наличием в кровотоке естественных веществ, обладающих антнкоагулянтной активностью. Жидкое состояние крови достигается равновесием между факторами, индуцирующими свертывание крови, и факторами, препятствующими его развитию, причем последние не выделяются в отдельную функциональную систему, так как реализация их эффектов чаще всего невозможна без участия прокоагуляционных факторов. Поэтому выделение антикоагулянтов, которые препятствуют активации факторов свертывания крови и нейтрализуют их активные формы, является чисто условным. Вещества, обладающие антнкоагулянтной активностью, постоянно синтезируются в организме и с определенной скоростью выделяются в кровоток. К ним относятся: антитромбин III, гепарин, протеины С и S, недавно открытый ингибитор тканевого пути свертывания - TFPI (ингибитор комплекса тканевый фактор—фактор VIIa—Ca 2+ ), α2-макроглобулин, антитрипсин и др. В процессе свертывания крови, фибринолиза из факторов свертывания и других белков также образуются вещества, обладающие антнкоагулянтной активностью. Антикоагулянты оказывают выраженное действие на все фазы свертывания крови, поэтому исследование их активности при нарушениях свертывания крови очень важно.

После стабилизации фибрина, образующего вместе с форменными элементами первичный красный тромб, начинаются два основных процесса посткоагуляционной фазы - спонтайный фибринолиз и ретракция, приводящие в итоге к формированию гемостатически полноценного окончательного тромба. В норме эти два процесса идут параллельно. Физиологический спонтанный фибринолиз и ретракция способствуют уплотнению тромба и выполнению им гемостатических функций. В этом процессе активное участие принимают плазмнновая (фибринолитическая) система и фибриназа (фактор ХIIIа). Спонтанный (естественный) фибринолиз отражает сложную реакцию между компонентами плазминовой системы организма и фибрином. Плазминовая система состоит из четырех основных компонентов:

2. плазмина (фибринолизин),

3. активаторов проферментов фибринолиза и

4. ингибиторов фибринолиза.

Нарушение соотношений компонентов плазминовой системы ведет к патологической активации фибринолиза.

Сосудисто-тромбоцитарный (первичный) гемостаз

Сосудисто-тромбоцитарный, или первичный, гемостаз нарушают:

1. изменения сосудистой стенки (дистрофические, иммуноаллергические, неопластические и травматические капилляропатии);

Сосудисто-тромбоцитарный гемостаз


Защитная функция крови заключается в ее способности к свертыванию. Благодаря этому процессу, происходит локальная остановка кровотечения с целью сохранения полноценного функционирования кровеносной системы. Так сосудисто-тромбоцитарный гемостаз обеспечивает полную остановку кровотечения из сосудов мелкого диаметра, которые имеют низкое артериальное давление. Однако при повреждении артерий и вен данного механизма недостаточно для остановки кровотечения, так как он является первичным гемостазом, выступающим основной для формирования всех фаз гемостаза. Какие же механизмы включаются для ликвидации кровотечения, и как осуществляется их регуляция?

Роль первичного гемостаза в процессе свертывания крови

Стенки кровеносных сосудов не только поддерживают постоянство гемостаза, но и обеспечивают жидкое состояние крови. Одним из важных условий сохранения крови в жидком состоянии является возможность эндотелия не пропускать тромбоциты. При нарушении целостности кровеносных сосудов происходит активация тромбоцитов, они увеличиваются в размерах и приобретают дополнительные отростки, чтобы закрыть место повреждения.

Тромбоцит


В структуре тромбоцита содержится большое количество веществ, участвующих в остановке кровотечения

Первичный гемостаз состоит из двух основных компонентов:

  • Сосудистый . Повреждение сосудов вызывает их спазм, что служит быстрой первичной реакцией системы кровообращения. Сужение просвета сосудов возникает как ответная реакция на боль при повреждении, которую обеспечивают гормоны надпочечников. Однако за счет спазма невозможно ликвидировать кровотечение, которое продолжается 2-3 минуты.
  • Тромбоцитарный . Динамические превращения тромбоцитов происходят в несколько этапов, в результате чего происходит их разрушение с дальнейшим включением факторов свертываемости крови.

Благодаря двум компонентам первичного гемостаза, на месте повреждения формируется рыхлая тромбоцитарная пробка, препятствующая появлению кровотечения.

Образование тромба


При сближении большого количества тромбоцитов формируется белый тромб, стягивающий раневую поверхность поврежденного сосуда

При возникновении кровотечения в области микроциркуляции первичный сосудисто-тромбоцитарный гемостаз способен в полной мере остановить кровопотерю. Однако сформировавшаяся тромбоцитарная пробка без последующего образования фибрина в сосудах большего диаметра способна лишь временно остановить кровотечение, но не исключено его последующее возобновление.

Функции тромбоцитов в тромбоцитарно-сосудистом гемостазе

Тромбоциты являются важным звеном, обеспечивающим весь процесс ликвидации кровотечения. Для полноценного функционирования первичного звена гемостаза в кровотоке должны присутствовать структурно целостные клетки.

Тромбоциты


Процесс налипания тромбоцитов в очаге повреждения

Роль кровяных клеток в гемостазе определяется их действием в кровотоке:

  • Ангиотрофическое. Обеспечивают нормальную функциональную способность и проницаемость стенок кровеносных сосудов.
  • Репарационное. В местах повреждения микрососудов активируется ростовой фактор, стимулирующий образование коллагеновых волокон.
  • Ангиоспастическое. Поддерживают спазм микрососудов путем выработки активных веществ.
  • Коагуломодулирующие. Регулирование процессов свертывания крови.
  • Ретрактильное. Уплотнение образовавшегося тромба.
  • Адгезивно-агрегационное. Прилипание клеток к поверхности поврежденных сосудов.

Замедление или остановка кровотечения происходит в результате формирование тромба небольшого диаметра, однако он не может вернуться в кровоток, вызвав полную закупорку сосуда.

Механизм первичного гемостаза

Механизм первичного гемостаза заключается в образовании тромбоцитного сгустка на месте поврежденного сосуда. Данный процесс необходим для остановки кровотечения и для дальнейшего заживления поврежденных участков.

Фазы первичного гемостаза


Фазы первичного гемостаза

В механизме выделяют следующие этапы сосудисто-тромбоцитарного гемостаза:

  1. Повреждение внутренней оболочки сосуда и его спазм (процесс обусловлен рефлекторным спазмом сосуда вследствие сократительных движений клеток кровеносных сосудов).
  2. Склеивание тромбоцитов в участке повреждения (под силой действия электростатического притяжения происходит адгезия тромбоцитов с участием специфического белка).
  3. Активирование тромбоцитов и повторный спазм сосудов (активирование вызывает тромбин в процессе метаболических реакций мембран кровяных клеток, из которых высвобождаются вазоактивные компоненты, провоцирующие повторный спазм).
  4. Агрегация тромбоцитов (происходит слипание тромбоцитов и коллагена, этот процесс стимулируют вещества, вырабатываемые поврежденным кровеносным сосудом и гормонами, усиливающими его спазм).
  5. Формирование гемостатической пробки (вследствие слипания кровяных клеток образуется временная гемостатическая пробка, перекрывающая дефект сосуда, после чего включается вторичный гемостаз с образованием тромба).

В механизме сосудисто-тромбоцитарного и коагуляционного гемостаза кровяные тела выступают в роли поверхности, на которой формируется тромб.

Нарушение функционирования первичного гемостаза

В большинстве случаев патология, связанная с нарушением в работе сосудисто-тромбоцитарного гемостаза, вызвана изменениями в синтезе одного из рецепторов, расположенного на поверхности тромбоцитарной мембраны.

Носовое кровотечение


Врожденные формы пониженной свертываемости крови развиваются вследствие нарушенного процесса адгезии тромбоцитов

Наиболее распространенные заболевания, связанные с нарушением данной системы:

  • Синдром Бернара-Сулье. Наследственная геморрагическая дистрофия тромбоцитов, когда на мембране отсутствуют рецепторы, необходимые для присоединения фактора Виллебранда.
  • Тромбастения Гланцмана-Негли. На поверхности тромбоцитов отсутствует специальный белок, что приводит к невозможности клеток контактировать между собой, вследствие чего они не стягивают место дефекта.

Синдром Ослера

Врожденное генетическое заболевание сопровождается разрушением сосудистой стенки в результате сниженного количества коллагена в организм, что приводит к уменьшению адгезии тромбоцитов. Болезнь проявляется образованием на коже и слизистых оболочках ангиоэктазий после перенесенной механической травмы.

Кровоизлияние в кожу


Заболевание Ослера сопровождается кровоизлияниями, по характеру схожими с гематомой

Макроцитарная тромбоцитодистрофия

Наследственная патология, которая заключается в отсутствии рецептов к гликопротеину плазмы крови, из-за чего поверхности кровяных клеток не взаимодействуют между собой. В клинической картине наблюдаются кровотечения из пищеварительного тракта, кровоточивость, образование гематом при незначительных механических повреждениях.

Заболевание Гланцмана

Генетическое нарушение развивается на фоне функционального расстройства тромбоцита. Причиной патологии является отсутствие рецепторов на мембране к фибриногену.

Характеристика клинической картины:

  • Повышенная проницаемость сосудистой стенки, из-за чего наблюдаются частые кровотечения.
  • Значительно удлиняется время кровотечения.
  • Появление петехий в местах повреждений.

У новорожденных нарушение первичного звена гемостаза развивается на фоне несовместимости матери и ребенка по тромбоцитарному антигену или рождение детей от женщины, страдающей системными заболеваниями, и после проведенной спленэктомии.

Методы оценки функции тромбоцитов

Оценка первичного гемостаза заключается в определении следующих диагностических методов:

  • Манжетная проба. Позволяет выявить степень ломкости сосудов. Путем дозированного повышения венозного давления на поверхности предплечья образуются петехии в количестве не более 10.
  • Метод Айви. Позволяет оценить время свертываемости крови. Кожу верхней трети предплечья прокалывают, в норме кровь сворачивается в течение 5-8 минут.
  • Проба Дьюка. Определение скорости свертывания крови при помощи прокола мочки уха, в норме - 2-4 минуты.
  • Агрегация тромбоцитов. Оценка начальной стадии формирования тромба.
  • Фотоэлектроколориметрия с применением агрегометра. Определяет уровень фактора Виллебранда в плазме.
  • Степень ретракции кровяного сгустка.

Проведение анализа крови


Методы исследования свойств и структуры тромбоцитов позволяют уточнить характер патологии

Сниженное количество тромбоцитов в крови приводит к неполноценному функционированию эндотелия, вследствие чего повышается ломкость капилляров. Параллельно происходит нарушение адгезивной и агрегационной функции тромбоцитов, что способствует усилению и удлинению времени кровотечения при повреждении сосудов.

Повышенный уровень тромбоцитов и увеличение их вязкости приводит к развитию тромбоза, инфаркта миокарда, ишемии и облитерирующим болезням сосудов конечностей.

Первичное звено гемостаза является важным этапом в остановке кровотечения. Так, при травмах микрососудов компенсаторный механизм включается в первые секунды и продолжается до полной остановки кровопотери. Однако нарушение функций тромбоцитов приводит к дисбалансу в организме, что выявляется различными патологическими состояниями.

Этапы гемостаза

Гемостаз — это сложная биологическая система, которая обеспечивает сохранение жидкого состояния крови в обычных условиях, а при нарушении целостности сосудистого русла останавливает кровотечение.

По современным представлениям, в остановке кровотечения задействовано два механизма 1 :

1. Физиология человека. Под ред. Покровского В.М., Коротько Г.Ф. 2-е изд., перераб. и доп. - М.: 2003.

1) первичный гемостаз (сосудисто-тромбоцитарный), в котором принимают участие стенки сосудов, тромбоциты и отчасти эритроциты;

2) вторичный гемостаз, когда в процесс свертывания крови включаются белки плазмы крови (плазменные факторы свертывания крови).

Следует отметить, что деление гемостаза на клеточные и плазменные является условным, так как в организме эти два звена свертывающей системы крови тесно связаны.

Итак, при повреждении стенки кровеносного сосуда события следуют одно за другим таким образом 1 :

  • кровеносный сосуд сокращается;
  • в месте повреждения изменяются свойства сосудистой стенки: она становится липкой;
  • тромбоциты в большом количестве начинают прилипать к внутренней стенке сосуда, набухая и образуя все более крупные агрегаты (происходит агрегация тромбоцитов, или их склеивание друг с другом);
  • этап сосудисто-тромбоцитарного гемостаза заканчивается формированием рыхлого тромбоцитарного тромба, и начинается вторичный гемостаз, или собственно свертывание крови;
  • в процессе свертывания крови, подобно принципу домино, запускается каскад реакций, в результате которых растворенный в плазме белок фибриноген превращается в нерастворимый фибрин, формирующий подобие тонкой сетки;
  • сеть фибрина захватывает находящиеся рядом лейкоциты и эритроциты, уплотняя сгусток крови. В результате свертывания сгусток крови становится красным и плотным.

Процесс свертывания крови

Рисунок 1. Процесс свертывания крови

Таким образом, следует разграничивать понятия «гемостаз» (остановка кровотечения) и «свертывание крови» (формирование плотного тромба). Свертывание крови — это, безусловно, самый важный и, без сомнения, наиболее сложный механизм гемостаза 1 .

Врачи могут управлять временем свертывания крови при помощи специальных лекарственных препаратов — антикоагулянтов.

Тромбоциты (первичный гемостаз)

Тромбоциты — наименьшие форменные элементы крови, представляющие собой фрагменты клеток, поэтому их называют «кровяные пластинки».

Одна из основных особенностей тромбоцитов — это естественная «липкость» их мембраны. Определенные стимулы— например, даже незначительное повреждение стенки кровеносного сосуда, при котором разрушается внутренняя выстилка сосуда и в просвет выпячиваются волокна соединительной ткани, — резко повышают прилипание тромбоцитов. В результате тромбоциты начинают прилипать к волокнам соединительной ткани в месте повреждения стенки сосуда. Помимо волокон тромбоциты прочно прикрепляются друг к другу и образуют очень плотную многослойную пробку (белый тромб), которая закрывает рану. Обычно этого достаточно, чтобы остановить кровотечение 1 .

1. Шиффман Ф. Дж. Патофизиология крови / Пер с англ. под ред. Е. Б. Жибурта, Ю. Н. Токарева. - М: БИНОМ, 2001. - 448 с.

Но это только временное решение, так как даже незначительных колебаний систолического артериального давления (например, при физическом напряжении) или резкого движения достаточно, чтобы сорвать тромбоцитарный тромб с места дефекта сосудистой стенки. Кровотечение возобновляется 1 .

Таким образом, необходим дополнительный механизм, который укрепит скопление тромбоцитов и плотно свяжет его с краями раны.

У здорового человека кровотечение из мелких сосудов при их ранении останавливается за 1-3 минуты (так называемое время кровотечения). Этот первичный гемостаз почти целиком обусловлен сужением сосудов и их механической закупоркой агрегатами тромбоцитов - «белым тромбом».

Гемостаз


Гемостаз — это последовательность жестко регулируемых процессов, которые поддерживают кровь в жидком агрегатном состоянии и вызывают быстрое формирование локального тромба в месте повреждения сосуда. Тромбоз является патологической формой гемостаза, которая приводит к прижизненному свертыванию крови в сосудах после относительно незначительной травмы [1]. Тромбоэмболические осложнения занимают третье место по частоте причин смерти среди сердечно-сосудистых заболеваний после ИБС и инсульта. Несмотря на существенный прогресс в диагностике, распространенность и смертность от венозных тромбоэмболий существенно не уменьшилась за последние 30 лет [2], что говорит о недостаточной изученности механизмов данного заболевания и несовершенстве его терапии.

Механизмы возникновения атеросклероза, приводящего к артериальному тромбозу, также остаются не до конца изученными. Целый ряд операций (баллонная ангиопластика, стентирование, аортокоронарное шунтирование) не смог оказать существенного влияния на снижение смертности от сердечно-сосудистых заболеваний. Применение статинов хотя и улучшает качество жизни и снижает риск осложнений сердечно-сосудистых заболеваний, лишь незначительно сокращает количество смертей и повторных инфарктов миокарда [3]. При проведении терапии антикоагулянтами требуется лабораторный контроль за свертываемостью крови. Лечение может сопровождаться геморрагическими осложнениями, связанными со снижением не только свертываемости крови, но и резистентности капилляров, повышением их проницаемости. Эти факторы заставляют искать новые причины, а также методы профилактики и лечения тромбоза сосудов.

В настоящее время принято различать два вида гемостаза: сосудисто-тромбоцитарный и коагуляционный.

Первый относится к остановке кровотечений из сосудов мелкого калибра, о втором говорят при борьбе с кровопотерей из артерий и вен. Данное деление имеет весьма условный характер, поскольку как при повреждении мелких, так и крупных сосудов всегда вместе с образованием тромбоцитарной пробки осуществляется и свертывание крови [4].

Сосудисто-тромбоцитарный гемостаз приводит к образованию тромба и делится на три стадии.

Первой из них является спазм сосудов. Первичный спазм начинается сразу же после повреждения и обусловлен выбросом в кровь катехоламинов, он длится около 10 секунд. Затем наступает вторичный спазм, который происходит за счет активации тромбоцитов и выделения ими вазоконстрикторов: серотонина, тромбоксанов.

Вторая стадия — образование тромбоцитарной пробки. Это происходит посредством адгезии и агрегации тромбоцитов. На данном этапе адгезия обратима, но в результате реакций третьего этапа, которые вызывают выделение простагландинов и тромбоксанов, а также тромбостенина происходит сокращение и уплотнение тромбоцитарной пробки, другими словами — ретракция [4].

Коагуляционный гемостаз происходит за счет факторов свертывания крови и может быть разделен на 3 фазы.

  • Первая состоит из реакций, которые вызывают образование протромбиназы по внутреннему или внешнему пути.
  • Вторая — переход протромбина в тромбин под действием протромбиназы.
  • Третья — превращение фибриногена в фибрин.

На первом этапе происходит образование легкорастворимого фибрина-мономера, который в результате полимеризации и действия XIII фактора превращается в труднорастворимый фибрин-полимер [4].

В основе патологического гемостаза лежат три базовых принципа, сформулированные Вирховым и вошедшие в историю под названием триады Вирхова. Она состоит из патологических изменений внутреннего слоя сосудов, изменения скорости кровообращения и изменения вязкости крови.

Однако с точки зрения современной медицины, это не все факторы, влияющие на тромбообразование. Например, известно, что в развитии тромбоза глубоких вен значимую роль играет иммунная система. Большее значение при этом отводится нейтрофилам. Помимо привычного для всех фагоцитоза они также продуцируют NET (Neutrophil extracellular traps), основной функцией которых является захват и обездвиживание микробов во внеклеточном пространстве. NET состоят из интактных хроматиновых волокон и антимикробных белков. Многоступенчатый процесс образования NET называется «нетоз» (NETosis). После активации некоторые ферменты переносятся из гранул в ядро, вызывают деконденсацию хроматина, разрушают ядерные мембраны и вызывают цитолиз. Активированный эндотелий совместно с нейтрофилами вызывает формирование NET, которые, в свою очередь, являются очень большими структурами и способствуют адгезии тромбоцитов. NET также стимулирует образование и осаждение фибрина. Путем расщепления ингибитора тканевого фактора, стимуляции Xa и связывания XII фактора NET стимулирует внутренний и внешний пути коагуляции. Гистоны, выделяемые при формировании NET, способствуют высвобождению телец Вейбеля-Паладе при активировании эндотелия [5]. Так как иммунная система не участвует в нормальном гемостазе, предотвращение ее активации при тромбозе глубоких вен может быть ключом к лечению данного заболевания. В связи с тем, что эндотелиальный фактор является главным при образовании венозного тромба, подавление его активации может помочь в лечении и профилактике тромбообразования.

Еще одним важным аспектом, влияющим на гемостаз, являются неорганические полифосфаты, которые состоят из линейных полимеров ортофосфата, связанных высокоэнергетическими фосфоангидридными связями. Различают два вида полифосфатных цепей: длинные (до нескольких тысяч фосфатов) и короткие (60-100 фосфатных единиц), которые хранятся в плотных гранулах тромбоцитов и выделяются при их активации. Длинноцепочечные полимеры активируют XII фактор свертывания и повышают стабильность фибрина в тромбе, в то время как короткие полимеры увеличивают активацию V фактора и ингибируют TFPI (Tissue factor pathway inhibitor). Помимо этого, полифосфаты обоих видов так же являются кофакторами для активации тромбина; ослабляют фибринолиз, ухудшая связывание плазминогена с фибрином; уменьшают активность антикоагулянтов, таких как гепарин, прямых ингибиторов тромбина и фактора Xа [6, 7]. Применение антагонистов полифосфатов может быть перспективным подходом для предотвращения гиперкоагуляции, с меньшими побочными эффектами по сравнению с традиционными антикоагулянтными препаратами.

В крови людей находятся микрочастицы, которые выделяются различными клетками (тромбоциты, эндотелий, лейкоциты, эритроциты) после активации или апоптоза и представляют собой небольшие мембранные везикулы. Первоначально они были описаны как «тромбоцитарная пыль», которая высвобождается из активированных тромбоцитов. Вне зависимости от происхождения, все микрочастицы являются прокоагулянтами, поскольку они предоставляют мембранную поверхность для сборки различных компонентов коагуляционного каскада. Также на их поверхности присутствуют анионные фосфолипиды: фосфатидилсерин и прокоагулянтный тканевой фактор, которые являются активаторами свертывания крови. Микрочастицы играют важную роль в нормальном гемостазе [7], но их участие в тромбозе глубоких вен и других заболеваниях, связанных с тромбообразованием, остается недостаточно изученным.

Проблема спонтанного тромбообразования является одной из главных на сегодняшний день. Современные антиагрегантные препараты значительно повышают риск кровотечений, в связи с чем их использование остается ограниченным. Последние исследования позволили более глубоко понять механизмы тромбоза и гемостаза, отличия между ними. Новые тактики и препараты, разработанные на основе этих тактик, могут избирательно ингибировать патологический тромбоз. Все это может стать прекрасной возможностью для развития антиагрегантных препаратов, которые смогут обеспечить эффективное, а главное — безопасное лечение многим пациентам.

Читайте также: