Внеэмбриональная кровеносная система. Кровоснабжение эмбриона
Добавил пользователь Дмитрий К. Обновлено: 14.12.2024
Рева И.В. 1, 2 Гармаш А.И. 1 Садовая Я.О. 1 Шиндина А.Д. 1 Индык М.В. 1 Калинин И.О. 1 Шек Л.И. 1 Фургал А.А. 1 Сорокин В.А. 1 Рева Г.В. 1, 2
Для создания фундаментальной платформы по внедрению клеточных технологий в лечение сосудистой патологии необходимо исчерпывающее знание и понимание процессов эмбрионального васкулогенеза и механизмов постнатального ангиогенеза. Противоречивые данные не только по механизмам индукции и ингибирования развития сосудов, но и источников развития эндотелия, противоречия в сроках эмбрионального васкулогенеза, и даже по размерам эмбриона в разные сроки, особенно в самый ранний сразу после имплантации, тормозят развитие не только ангиологии, но и трансплантологии. Клеточные взаимодействия в условиях васкулогенеза изучены в эксперименте на лабораторных животных, а полученные результаты только условно могут быть экстраполированы на человека. На материале эмбриона человека установлено, что васкулогенез в различных органах имеет морфологические отличия, в сердце, печени и нервной трубке кровеносные сосуды отсутствуют, а первичные капилляры идентифицируются в экто- и мезенхиме. Идентификация клеток с рецепторами CD68 и CD163 свидетельствует об их участии в морфо- и васкулогенезе. Полученные данные об особенностях васкулогенеза в различных органах эмбриона человека способствуют пониманию органной специфичности эндотелия.
1. Kupatadze D.D., Nabokov V.V., Malikov S.A., Polozov R.N., Kanina L.Ia., Veselov A.G. Current problems in the reconstructive surgery of the locomotor apparatus in children //Vestn. Khir. Im. I.I. Grek. 1997; 156(2):94-6.
2. Brewster L., Robinson S., Wang R., Griffiths S., Li H., Peister A., Copland I., McDevitt T. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limbischemia // J. Vasc. Surg. 2017 Mar; 65(3):826-838.e1. DOI: 10.1016/j.jvs.2015.02.061.
3. Banin VV. Role of pericytes in mechanism of vessel neovascularisation in the regenerating connective tissue // Morfologiia. 2004; 125(1):45-50.
5. Liu X., Li Q., Niu X., Hu B., Chen S., Song W., Ding J., Zhang C., Wang Y. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis // Int J Biol Sci. 2017 Feb 6; 13(2):232-244. DOI: 10.7150/ijbs.16951.
6. Tournois C., Pignon B., Sevestre M.A., Al-Rifai R., Creuza V., Poitevin G., Franсois C., Nguyen P. Cell therapy in critical limb ischemia: A comprehensive analysis of two cell therapy products // Cytotherapy. 2017 Feb; 19(2):299-310. DOI: 10.1016/j.jcyt.2016.10.013.
7. Nguyen H.L., Boon L.M., Vikkula M. Vascular Anomalies Caused by Abnormal Signaling within Endothelial Cells: Targets for Novel Therapies // Semin Intervent Radiol. 2017 Sep; 34(3):233-238. DOI: 10.1055/s-0037-1604296.
8. Varazashvili M.N., Mchedlishvili G.I. The hematocrit in the microcirculatory bed of the brain // Fiziol. Zh SSSR Im I.M. Sechenova. 1991 Jun; 77(6):12-9.
9. Mchedlishvili G.I. Disturbances of the normal structuring of the blood flow in the microvessels as the cause of hemorheological disorders // Fiziol. Zh Im I M Sechenova. 1996 Dec; 82(12):41-7.
11. Catani L., Sollazzo D., Bianchi E., Ciciarello M., Antoniani C., Foscoli L., Caraceni P., Giannone F.A., Baldassarre M., Giordano R., Montemurro T., Montelatici E., D’Errico A., Andreone P., Giudice V., Curti A., Manfredini R., Lemoli R.M. Molecular and functional characterization of CD133 + stem/progenitor cells infused in patients with end-stage liver disease reveals their interplay with stromal liver cells // Cytotherapy. 2017 Sep 13. pii: S1465-3249(17)30660-6. DOI: 10.1016/j.jcyt.2017.08.001.
12. Dreyer C.H., Kjaergaard K., Ditzel N., Jоrgensen N.R., Overgaard S., Ding M. Optimizing combination of vascular endothelial growth factor and mesenchymal stem cells on ectopic bone formation in SCID mice // J Biomed Mater Res A. 2017 Sep 6. DOI: 10.1002/jbm.a.36195.
13. Caporali A., Martello A., Miscianinov V., Maselli D., Vono R., Spinetti G. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis // Pharmacol Ther. 2017 Mar; 171:56-64. DOI: 10.1016/j.pharmthera.2016.10.001.
14. Mathiyalagan P., Liang Y., Kim D., Misener S., Thorne T., Kamide C.E., Klyachko E., Losordo D.W., Hajjar R.J., Sahoo S. Angiogenic Mechanisms of Human CD34 + Stem Cell Exosomes in the Repair of Ischemic Hindlimb // Circ Res. 2017 Apr 28; 120(9):1466-1476. DOI: 10.1161/CIRCRESAHA.116.310557.
15. Rigato M., Fadini G.P. Circulating stem/progenitor cells as prognostic biomarkers in macro- and microvascular disease. A narrative review of prospective observational studies.//Curr Med Chem. 2017 Sep 20. DOI: 10.2174/0929867324666170920154020.
17. Wu Q.H., Ma Y., Ruan C.C., Yang Y., Liu X.H., Ge Q., Kong L.R., Zhang J.W., Yan C., Gao P.J. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway // Cardiovasc Res. 2017 Jan; 113(1):70-80. DOI: 10.1093/cvr/cvw220.
20. Guerin C.L., Rossi E., Saubamea B., Cras A., Mignon V., Silvestre J.S., Smadja D.M. Human very Small Embryonic-like Cells Support Vascular Maturation and Therapeutic Revascularization Induced by Endothelial Progenitor Cells // Stem Cell. 2017 Aug; 13(4):552-560. DOI: 10.1007/s12015-017-9731-7.
21. Welt K., Schippel K., Mironov V.A., Mironov A.A., Alimov G.A., Bobrik I.I., Banin V.V., Karaganov J.L. Vascular endothelium (review). I. General morphology. 2A: histogenesis of the vascular endothelium // Gegenbaurs Morphol Jahrb. 1990; 136(2):163-99.
22. Kang J.M., Yoon J.K., Oh S.J., Kim B.S., Kim S.H. Synergistic Therapeutic Effect of Three-Dimensional Stem Cell Clusters and Angiopoietin-1 on Promoting Vascular Regeneration in Ischemic Region // Tissue Eng Part A. 2017 Sep 26. DOI: 10.1089/ten.TEA.2017.0260.
23. Banin V.V., Muller F.S. Effect of hydrogen peroxide on the permeability of the walls of the mesenteric venules for fluorescein // Fiziol Zh SSSR Im I M Sechenova. 1988 Aug; 74(8):1149-57.
24. Calderon G.A., Thai P., Hsu C.W., Grigoryan B., Gibson S.M., Dickinson M.E., Miller J.S. Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels // Biomater Sci. 2017 Jul 25; 5(8):1652-1660. DOI: 10.1039/c7bm00223h.
26. Du W., Zhang K., Zhang S., Wang R., Nie Y., Tao H., Han Z., Liang L., Wang D., Liu J., Liu N., Han Z., Kong D., Zhao Q., Li Z. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer // Biomaterials. 2017 Jul; 133:70-81. DOI: 10.1016/j.biomaterials.2017.04.030.
28. Bikfalvi A. History and conceptual developments in vascular biology and angiogenesis research: a personal view // Angiogenesis. 2017 Jul 24. DOI: 10.1007/s10456-017-9569-2.
29. Putman D.M., Cooper T.T., Sherman S.E., Seneviratne A.K., Hewitt M., Bell G.I., Hess D.A. Expansion of Umbilical Cord Blood Aldehyde Dehydrogenase Expressing Cells Generates Myeloid Progenitor Cells that Stimulate Limb Revascularization // Stem Cells Transl Med. 2017 Jul; 6(7):1607-1619. DOI: 10.1002/sctm.16-0472.
30. Rossi E., Smadja D., Goyard C., Cras A., Dizier B., Bacha N., Lokajczyk A., Guerin C.L., Gendron N., Planquette B., Mignon V., Bernabеu C., Sanchez O., Smadja D.M. Co-injection of mesenchymal stem cells with endothelial progenitor cells accelerates muscle recovery in hind limb ischemia through an endoglin-dependent mechanism // Thromb Haemost. 2017 Aug 3; 117(10). DOI: 10.1160/TH17-01-0007.
31. Кнорре А.Г. Краткий очерк эмбриологии человека с элементами сравнительной, экспериментальной и патологической эмбриологии. - 1967. - С. 202-209.
32. Robertson D.J. Congenital arteriovenous fistulae of the extremities // J. Cardiovasc Surg (Torino). 1965 Sep-Oct; 5(6):Suppl:237-40.
Врожденные пороки развития сосудов являются причиной приблизительно 20 % смертей в неонатальном периоде, а также занимают значительное место в практике акушерства и гинекологии, медицинской генетике, детской хирургии и ортопедии, патологической анатомии [1]. Аномалии развития артерий и вен, такие как агенезия, аплазия, артериальные и венозные аневризмы, недоразвитие клапанного аппарата вен возникают при нарушении образования сосудистых стволов. По данным Brewster L., Robinson S., Wang R., Griffiths S., Li H., Peister A., Copland I., McDevitt T. (2017) нарушения ангиогенеза, критичные для жизни, наблюдаются среди населения в 1 % случаев [2], а связанные с заболеванием периферических артерий - в 10 % 4. При этом традиционные варианты реваскуляризации возможны только у 50 % пациентов, остальным потребуются методы клеточной терапии, с использованием клеток костного мозга, мезенхимальных стволовых клеток (мск), обладающих большим потенциалом в качестве альтернативы реваскуляризационной терапии [6]. Nguyen H.L., Boon L.M., Vikkula M. (2017) указывают на то, что возникают сосудистые аномалии как следствие неправильного развития и регуляции ангиогенеза [7]. Исследуя ангиогенез, Varazashvili M.N., Mchedlishvili G.I. (1991), Mchedlishvili G.I. (1996) пришли к выводу, что агрегация эритроцитов вызывает нарушения кровотока и ишемию 8.
Знания о патофизиологических основах сосудистых аномалий резко возросли за последние 5 лет, дополнив теорию эмбриогенеза сосудистой системы молекулярно-генетическими находками [11]. Нарушения общих внутриклеточных сигнальных путей, часто активирующие мутации, по мнению автoров новых концепций, вызывают эндотелиальную клеточную дисфункцию 12. Mathiyalagan P., Liang Y., Kim D., Misener S., Thorne T., Kamide C.E., Klyachko E., Losordo D.W., Hajjar R.J., Sahoo S. (2017) большую роль отводят СD34+ стволовым клеткам, которые, по их мнению, способны через паракринную секрецию влиять на ангиогенез. Подавляя и одновременно модулируя экспрессию генов, участвующих в ангиогенезе, ответственных за синтез сосудистого эндотелиального фактора роста, ангиопоэтина 1 и ангиопоэтина 2 (ANG1, ANG2), metallopeptidase 9 (MMP9), thrombospondin 1(TSP1), они оказывают терапевтический эффект при ишемии задних конечностей у мыши, что может быть перспективным для экстраполяции в медицинскую практику [15].
Предметом острых дискуссий является вопрос происхождения эндотелия. Rigato M., Fadini G.P. (2017) считают, что циркулирующие прогениторные клетки (circulating progenitor cells, СРС) и эндотелиальные прогениторные клетки (endothelial progenitor cells, ЕРС) являются незрелыми клетками, участвующими в сосудистой регенерации и связанными со многими аспектами макро-и микрососудистых заболеваний [16]. Lu W., Li X. (2017) считают стволовые/прогениторные клетки (VSCs) выполняющими ключевую роль в развитии организма и важным источником всех видов сосудистых клеток, необходимых для создания, поддержания, регенерации и ремоделирования кровеносных сосудов. Авторы выделяют четыре основных типа VSCs, в том числе эндотелиальные прогениторные клетки (Ерс), гладкие мышечные прогениторные клетки (SMPCs), перициты и мезенхимальные стволовые клетки (Мск) [17]. Lin C.S., Lue T.F. (2013) подвергают сомнению роль перицитов, как стволовых, с учётом экспериментальных доказательств их ингибирующих ангиогенез свойств и функционального разнообразия [18]. Мезенхимальные стволовые клетки (мск) существуют в большинстве тканей взрослого человека и располагаются вблизи или внутри кровеносных сосудов. Ibrahim M., Richardson M.K. (2017) свидетельствуют о важности изучения ангиогенеза, так как состояние этого вопроса тормозит развитие трансплантологии, методов репаративной регенерации во всех областях медицины, и на современном этапе имеет недостаточность в изучении на материале человека [19]. Guerin C.L., Rossi E., Saubamea B., Mignon V., Silvestre J.S., Smadja D.M. (2017), подтвердив результаты Банина В.В., Куприянова В.В., Karaganov J.L., Мчедлишвили, Welt с соавторами [20] выдвинули концепцию реваскуляризации критически ишемизированной конечности за счёт выделенных из костного мозга мелких эмбрионально подобных плюрипотентных эндотелиальных прогениторных клеток, способных дифференцироваться в эндотелиоциты с терапевтическим реваскуляризационным потенциалом [21].
Поскольку ангиодисплазии не относятся к казуистическим находкам, существует острая необходимость разработки стратегий консервативного лечения на основе клеточных технологий. Однако, по данным Kang J.M., Yoon J.K., Oh S.J., Kim B.S., Kim S.H. (2017), в клинической практике использование взрослых стволовых клеток имеет ряд ограничений, таких, как низкая выживаемость клетки и низкая терапевтическая эффективность [22]. Несмотря на значительные успехи в изучении ангиогенеза, наличие нескольких противоречивых концепций развития сосудов в теле эмбриона человека (из мезенхимы и целома), а также участия в ангиогенезе циркулирующих ангиобластов, свидетельствуют о том, насколько далека эта проблема от решения. Множество концепций ангиодисплазий учитывают экзо- и эндогенные, молекулярно-генетические, метаболические и другие факторы, которые на современном этапе не получили окончательного подтверждения, а теория эмбриогенеза сосудистой системы требует значительной доработки, поэтому гистогенез эндотелия на современном этапе является одной из важнейших проблем васкуло- и ангиогенеза [23]. Calderon G.A., Thai P., Hsu C.W, Grigoryan B., Gibson S.M., Dickinson M.E., Miller J.S. (2017) подтвердили исследования Banin V.V. [24]. Jeong H.W., Hernfndez-Rodriguez B., Kim J., Kim K.P., Enriquez-Gasca R., Yoon J., Adams S., Scholer H.R., Vaquerizas J.M., Adams R.H. (2017) указывают, что молекулярные механизмы, регулирующие эндотелиальную активность клеток на различных этапах сосудистого роста, ремоделирования, созревания и покоя, остаются неясными [25]. Васкуло- и ангиогенез представляют собой сложные процессы, которые требуют скоординированных изменений в эндотелиальных клетках [26]. Многочисленные гипотезы происхождения эндотелиоцитов трактуют их развитие в связи с теорией трех зародышевых листков [27]. Существенная роль кровеносных сосудов в тканях и органах человека, понимание функциональных свойств и основополагающей молекулярной основы VSC имеет решающее значение для фундаментальных исследований [28]. Современное неудовлетворительное состояние данных по вопросу эмбрионального ангиогенеза определило направление нашего исследования.
Цель исследования - изучить кровеносные сосуды эмбриона человека в эмбриональном периоде.
Материалы и методы исследования
Исследование выполнено с учётом положений Хельсинской декларации (2000) и с разрешением этического комитета ФГАОУ ВО «Дальневосточный федеральный университет». Биоптаты эмбрионов были получены в соответствии с приказом Минздравмедпрома РФ от 29.04.94 № 82 «О порядке проведения патологоанатомических вскрытий» и в соответствии с номенклатурой клинических лабораторных исследований МЗ РФ (приказ 21 февраля 2000 г. № 64). Изучен материал эмбрионов человека 3, 5, 8 недель эмбрионального развития. Распределение материала представлено в табл. 1.
Кровообращение плода: мать и ребенок - единая система
Это — естественные шунты, «шунты во спасение» растущего плода. Без них плод оказывается нежизнеспособным, а при их преждевременном закрытии возникают тяжелейшие врожденные пороки. В хирургии врожденных пороков сердца искусственное (временное или постоянное) создание таких шунтов является одним из широко применяющихся способов лечения. Но об этом — позже.
Сброс слева направо
Когда определенный объем крови с каждым сокращением отклоняется от нормального пути и уходит из левых отделов в правые, то, естественно, возникают две проблемы: недостаток крови в большом круге и — переполнение круга малого. Большой круг при этом не страдает: быстро включаются сложные механизмы компенсации. А вот малому кругу приходится тяжелее.
Сброс справа налево и цианоз
После рождения ребенка сердце, как и при пороках со сбросом слева-направо, работает с перегрузкой, особенно его правые отделы, и мы поговорим об этом, когда будем описывать отдельные пороки. Но здесь мы хотим подчеркнуть, что само существование цианоза может быть опасным, так как недостаточное содержание кислорода в артериальной крови вызывает ее сгущение, увеличение числа эритроцитов и может привести к закупорке мелких сосудов тела, в том числе и мозга со всеми вытекающими последствиями.
Понятие о перекрестном сбросе
В некоторых ситуациях, когда дефекты в перегородках достаточно большие, а сопротивление кровотоку почти одинаковое на выходе из обоих желудочков, кровь может частично перетекать через дефект в обоих направлениях в различные фазы сердечного цикла. То есть в какой-то отрезок времени в ходе одного сокращения имеется сброс слева-направо, а в другой отрезок в ходе того же цикла, но через несколько долей секунды происходит сброс справа-налево.
В таких случаях говорят о «перекрестном сбросе», и степень недосыщения артериальной крови кислородом будет зависеть от преимущественного направления тока крови. Соответственно видимой и выраженной будет степень цианоза.
Скажем здесь, что к порокам с таким «перекрестным сбросом» относятся чаще всего очень сложные, комбинированные пороки, включающие сочетания разных нарушений развития сердца.
Препятствия кровотоку
Врожденные препятствия нормальному кровотоку обычно возникают вследствие неправильного развития в местах соединений сердечных камер друг с другом или с магистральными сосудами. Чаще всего это относится к клапанам. Сужение называют «стенозом», если оно вызвано изменением клапанов, а когда это касается аорты, то говорят о ее «коарктации».
Подробно мы разберем это ниже, но здесь хочется отметить несколько моментов, касающихся кровотока. Поскольку к восьмой неделе внутриутробной жизни плода сердце, в основном, сформировано и кровообращение уже происходит, то влияние сужения, затруднения нормальному кровотоку сказывается уже на ранних стадиях развития эмбриона. Если больше никаких дефектов нет, то желудочкам приходится работать с повышенной нагрузкой, результатом которой станет утолщение стенок, уменьшение размеров полости, недоразвитие сердечных камер. После рождения эти явления только прогрессируют и могут стать жизнеопасными уже в первые дни жизни ребенка.
Если такие препятствия сочетаются с дефектами в перегородках, то сердцу легче работать, т.к. есть другие пути для крови, в которых сопротивление меньше и поток выбирает такие пути меньшего сопротивления.
Но мы уже вплотную подошли к классификации пороков, т.е. к тому, какие пороки бывают и что при этом происходит с ребенком, справляется ли сердце с ними и каким образом.
Цитируется по книге Г. Э. Фальковский, С. М. Крупянко. Сердце ребенка. Книга для родителей о врожденных пороках сердца
Кровообращение плода: особенности внутриутробного периода
Сердечно-сосудистая система обеспечивает функционирование внутренних органов и нервных структур. Кровообращение плода имеет ряд отличий от взрослого. Это связано с длительным внутриутробным развитием, когда кровь поступает из сосудов беременной. Знание основ формирования сосудистой системы и сердца позволяет понять механизмы развития болезней у новорожденного и детей старшего возраста.
Схема кровообращения
Кровообращение плода: особенности и схема
Кровообращение плода обеспечивается сосудами плаценты. Это орган, обеспечивающий взаимодействие между организмами матери и развивающегося плода. Первые признаки его активности наблюдаются на 4-5 неделе внутриутробного периода.
Плацента имеет ворсины. Это соединительнотканные структуры, содержащие большое количество сосудов. С помощью них кислород и питательные вещества попадают из крови женщины в кровь плода.
Начинается кровообращение с пупочной вены, которая впадает в печень. Из органа кровь поступает в венозный или аранциев проток, сообщающийся с нижней полой веной.
Аномалии строения сосудов у ребенка могут приводить к врожденным порокам развития сердечно-сосудистой системы.
Из нижней полой вены кровь переходит в правое предсердие, а затем в одноименный желудочек. Отсюда она попадает в легочной ствол, отходящий к легким. Часть крови через овальное окно напрямую попадает из правого предсердия в левое. Из него — в левый желудочек и аорту.
Так как органы дыхания у плода не функционируют, они не нуждаются в кровоснабжении. Поэтому кровь из легочного ствола через Боталлов проток устремляется в аортальный сосуд. Он, благодаря своим ветвям, кровоснабжает все внутренние органы и структуры нервной системы.
Венозная кровь собирается в пупочную артерию, которая вновь направляется в плаценту. На этом круг кровообращения плода замыкается.
Особенности плацентарного кровообращения
Внутриутробное развитие плода и кровоток через плаценту приводят к тому, что часть сердечно-сосудистой системы у ребенка имеет отличия от организма взрослого. Это влияет и на функционирование органов. Отличительные черты кровообращения следующие:
- артерии и вены устроены таким образом, что кровь, богатая кислородом и питательными веществами, напрямую попадает в организм и артериальные сосуды плода. Это обеспечивает насыщение плазмы кислородом и питательными молекулами;
- малый круг кровообращения, обеспечивающий у взрослого человека поступление в кровь кислорода, не работает. Это следствие отсутствия у ребенка легочного дыхания;
- более 95% крови находится в большом круге кровообращения. Подобное состояние связано с наличием овального окна и Боталлова протока;
- давление в магистральных сосудах (легочной ствол и аорта) низкое и находится на одинаковом уровне, так как они сообщаются друг с другом.
Плацентарное кровообращение сохраняется до рождения ребенка. После этого в сердечно-сосудистой системе наблюдаются структурные и функциональные изменения.
Сердце у новорожденного
После рождения ребенок совершает первый вдох. Это обеспечивает расправление легких и начало дыхания с их помощью. На фоне этого кровь из правого желудочка устремляется в легочной ствол и попадает в сосуды органа. Боталлов проток начинает закрываться и постепенно полностью зарастает соединительной тканью.
Рост давления в правом предсердии приводит к тому, что ток крови через овальное окно прекращается. Оно постепенно зарастает мышечной перегородкой, в которой находится проводящая система сердца. Это отражает окончание изменений в кровообращении ребенка.
Врожденные аномалии сердечно-сосудистой системы встречаются у женщин, имеющих факторы риска: вредные привычки, тяжелые заболевания внутренних органов, внутриутробные инфекции и т.п.
Особенности кровообращения во время беременности появились в результате эволюции. Они позволяют внутренним органам и головному мозгу плода получать достаточное количество кислорода и питательных веществ.
Любые нарушения строения сердца и сосудов приводят к врожденным аномалиям различной степени выраженности. При этом, если анатомические особенности остаются после рождения, это также приводит к появлению патологий, требующих лечения.
Видео
Читайте в следующей статье: ктр плода
* Представленная информация не может быть использована для самостоятельной постановки диагноза, определения лечения и не заменяет обращение к врачу!
Сердечно-сосудистая система плода
Эмбрион после зачатия начинает стремительно развиваться в связи с наличием закладок для формирования систем органов. Примерно на 2 неделе зарождается сердечно-сосудистая система плода из двух эндотелиальных трубок, что образуют одну сердечную трубку и кровяных клеток, что образовывают первичные сосуды. Оболочка эндотелиальных трубок является основой развития эндокарда и миокарда. Потом уже происходит выделение отделов сердца.
Развитие сердечно-сосудистой системы проходит через разные этапы, например, когда сердечная трубка в результате роста изгибается, то образуются клапаны, что разделяют желудочки и предсердия, тогда сердце становится двухкамерным. На 6 недели у зародыша образуется еще и перегородка, которая делит сердце на половины и создает окончательные его формы. Так как желудочек тоже разделяется, то сердце становится четырехкамерным. Положение сердца плода становится ниже, смещаясь в грудную часть тела. Заканчиваются структурные изменения приблизительно на 8 неделе.
Первые месяцы развития плода очень важны для дальнейшего развития организма. В этот период лучше максимально обезопасить его, не попадая под воздействие негативных факторов и болезней, что могут навредить. Это самая вероятная причина наличия врожденных пороков. При первых симптомах заболеваний или даже при возникновении сомнений рекомендуем в срочном порядке проконсультироваться с врачом.
У плода сердце по размерам и массе в процентном соотношении достаточно большое и увеличивается за счет мышечной массы. Клетки стенок сердца находятся в стадии их разделения. Развитие сосудов происходит в результате деления аорты на легочную артерию и аорту. При этом у плода имеется плацентарное кровообращение и кислород поступает вместе с кровью через пупочную вену. Особенностью сердца плода является овальное окно, что распределяет кровь ко всем органам, а малый круг кровообращения не функционирует через отсутствие лёгочного дыхания.
Развитие сердечно-сосудистой системы ребёнка после рождения
После рождения ребёнка все изменения и особенности развития сердечно-сосудистой системы связаны с активацией нового кровообращения. Новорожденный делает первый вздох легкими, так как пуповина перерезана и завязана. Свои функции перестают исполнять пупочные сосуды. Овальное окно и проток постепенно закрываются и возникает два круга кровообращения. В дальнейшем сердце меняет свою форму, положение и вес вместе с ростом ребёнка. Частота сердечных сокращений постепенно уменьшаются, соответственно — цикл увеличивается.
Развитие сердечно-сосудистой системы взрослых
Сердечно-сосудистая система продолжает развиваться в подростковом возрасте и приобретает характеристики, присущие взрослым, после чего практически мало меняется. Форма сердца становится овальной с рельефным преобладанием желудочков, а его вес стабилизируется и зависит от пола (в пределе 200-300 г). У взрослых сердце расположено ниже, чем у детей, что связано с ростом тела. Артериальное давление, как функциональный показатель работы сердечно-сосудистой системы, выше детского.
Внеэмбриональная кровеносная система. Кровоснабжение эмбриона
Сердечно-сосудистая система человека представлена во всех отделах - от сердца до капилляров - слоистыми трубками. Такая структура, основы которой возникают уже на ранних этапах эмбрионального развития, сохраняется на всех и последующих этапах.
Первые закладки сосудов в теле эмбриона отмечены в период формирования первой пары сомитов. Они представлены тяжами, состоящими из скоплений мезенхимных клеток, расположенных между мезодермой и энтодермой на уровне передней кишки. Эти тяжи образуют с каждой стороны два ряда: медиальный („аортальная линия") и латеральный („сердечная линия"). Краниально эти закладки сливаются, образуя сетевидное „эндотелиальное сердце". Одновременно из мезенхимы по бокам тела зародыша между энтодермой и мезодермой образуются закладки пупочных вен. Далее отмечается преимущественное развитие сердца, обеих аорт и пупочных вен. Только после того, как эти главные магистрали желточного и хорионального (аллантоидного) кровообращения в основном сформируются (стадия 10 пар сомитов) начинается, собственно, развитие других сосудов тела эмбриона (Clara, 1966).
У человеческого зародыша кровообращение в желточном и аллантоидном кругах начинается практически одновременно у 17-сегментного эмбриона (начало сердцебиений). Желточное кровообращение существует у человека недолго, аллантоидное преобразуется в плацентарное и осуществляется вплоть до конца внутриутробного периода.
Описанный способ образования сосудов имеет место в основном в раннем эмбриогенезе. Сосуды, образующиеся позже, развиваются несколько иным путем. Со временем все большее распространение получает способ новообразования сосудов (сначала типа капилляров) путем почкования. Этот последний способ в постэмбриональном периоде становится единственным.
В эмбриогенезе человека сердце закладывается очень рано (рис. 2), когда зародыш еще не обособлен от желточного пузыря и кишечная энтодерма одновременно представляет собой крышу последнего. В это время в кардиогенной зоне в шейной области, между энтодермой и висцеральными листками спланхнотомов слева и справа, скапливаются выселяющиеся из мезодермы клетки мезенхимы, образующие справа и слева клеточные тяжи. Эти тяжи вскоре превращаются в эндотелиальные трубки. Последние вместе с прилегающей к ним мезенхимой составляют закладку эндокарда. Сразу же нужно отметить, что закладки эндокарда и сосудов в принципе тождественны. Отсюда вытекает и принципиальное сходство процессов гистогенеза и их результата- дефинитивных структур. Одновременно с образованием эндотелиальных трубок происходят процессы, приводящие к образованию остальных оболочек сердца - миокарда и эпикарда. Такие процессы разыгрываются в примыкающих к зачаткам эндокарда листках спланхноплевры. Эти участки утолщаются и разрастаются, окружая зачаток эндокарда мешком, вдающимся в полость тела. Здесь содержатся как элементы, образующие в дальнейшем миокард, так и элементы, строящие эпикард. Все образование в связи с этим называют миоэпикардиальной мантией, или, чаще, миоэпикардиальной пластинкой.
Тем временем в области глотки происходит замыкание кишечной трубки. В связи с этим левый и правый зачатки эндокарда все более сближаются, пока не сливаются в единую трубку (рис.3) Немного позже объединяются также левая и правая миоэпикардиальные пластинки.
На первых порах миоэпикардиальная пластинка отделяется от эндокардиальной трубки широкой щелью, заполненной желеобразной субстанцией. Впоследствии происходит их сближение. Миоэпикардиальная пластинка накладывается непосредственно на закладку эндокарда сначала в области венозного синуса, затем предсердий и, наконец, желудочков. Только в тех местах, в которых впоследствии происходит образование клапанов, желеобразная субстанция сохраняется относительно долго.
Образовавшаяся непарная закладка сердца соединяется с дорсальной и вентральной стенками полости тела зародыша, соответственно дорсальной и вентральной брыжейками, которые в дальнейшем редуцируются (сначала редуцируется вентральная, а затем дорсальная), и сердце оказывается свободно лежащим, как бы подвешенным, на сосудах, во вторичной полости тела, в полости перикарда.
Следует отметить, что наряду с широко распространенным представлением о единстве образования целомических полостей в отношении человека существует мнение о том, что образование полости перикарда происходит ранее формирования брюшной полости и независимо от нее путем слияния отдельных лакун, возникающих в мезодерме головного конца зародыша (Clara, 1955, 1962).
Первоначально сердце представляет собой прямую трубку, затем каудальное расширение сердечной трубки, принимающее венозные сосуды, образует венозный синус. Головной конец сердечной трубки сужен. В это время обнаруживается четкое метамерное строение сердечной трубки. Хорошо различаются метамеры, содержащие материал основных дефинитивных отделов сердца. Расположение их - обратное топографии соответствующих отделов окончательно сформированного сердца.
Показано (De Haan, 1959), что в раннем трубчатом сердце эндокард представлен одним слоем рыхло расположенных эндотелиальных клеток, в цитоплазме которых обнаруживается значительное количество электронноплотных гранул. Миокард состоит из рыхло расположенных полигональных или веретеновидных миобластов, образующих слой толщиной в 2-3 клетки. Цитоплазма их богата водой, содержит большое количество гранулярного материала (предположительно РНК, гликоген), относительно небольшое количество равномерно распределенных митохондрий.
Одним из факторов, характеризующих ранние этапы развития сердца, является быстрый рост первичной сердечной трубки, увеличивающейся в длину быстрее, чем полость, в которой она расположена. Это обстоятельство является одной из причин того, что сердечная трубка, увеличиваясь в длину, образует ряд характерных изгибов, расширений (рис. 4). При этом венозный отдел смещается краниально и охватывает с боков артериальный конус, а артериальный отдел сильно разрастается и смещается каудально. В результате в развивающемся сердце эмбриона можно видеть контуры его основных дефинитивных отделов - предсердий и желудочков (рис. 5).
Читайте также: