Возбуждение нейрона. Концентрация ионов по сторонам нейрона

Добавил пользователь Владимир З.
Обновлено: 14.12.2024

Сразу сообщу, что данная заметка не имеет отношения к перцептронам, сетям Хопфилда или любым другим искусственным нейронным сетям. Мы будем моделировать работу «настоящей», «живой», биологической нейронной сети, в которой происходят процессы генерации и распространения нервных импульсов. В англоязычной литературе такие сети ввиду их отличия от искусственных нейронных сетей называются spiking neural networks, в русскоязычной же литературе - нет устоявшегося названия. Кто-то называет их просто нейронными сетям, кто-то - импульсными нейронными сетями, а кто-то - спайковыми.

Вероятно, большинство читателей слышали о проектах Blue Brain и Human Brain, спонсируемых Европейским Союзом, под последний проект правительство ЕС выдало около миллиарда евро, что говорит о наличии большого интереса к этой области. Оба проекта тесно связаны и пересекаются друг с другом, даже руководитель у них общий, Генри Маркрам, что может создать некоторую путаницу в том, чем же они отличаются друг от друга. Если кратко, то конечной целью обоих проектов является разработка модели работы целого мозга, всех ~86 миллиардов нейронов. Blue Brain Project - это вычислительная часть, а Human Brain - это больше фундаментальная часть, где работают над сбором научных данных о принципах работы мозга и созданием единой модели. Чтобы прикоснуться к этой науке и попробовать самим сделать нечто подобное, хотя и в значительно меньших масштабах, была написана эта заметка.

Но в них не рассматривались вопросы вычислительной нейробиологии, или по-другому вычислительной нейронауки, включающей в себя компьютерное моделирование электрической активности нейронов, поэтому я решил восполнить этот пробел.

Немного биологии

Рис. 1 — Схематическое изображение строения нейрона.


Прежде чем приступим к моделированию, нам нужно ознакомиться с некоторыми азами нейробиологии. Типичный нейрон состоит из 3-х частей: тела (сомы), дендритов и аксона. Дендриты принимают сигнал от других нейронов (это input нейрона), а аксон передает сигналы от тела нейрона к другим нейронам (output). Место контакта аксона одного нейрона и дендрита другого нейрона называется синапсом. Сигнал, принимаемый с дендритов, суммируется в теле и если он превышает определённые порог, то генерируется нервный импульс или по-другому спайк. Тело клетки окружено липидной оболочкой, являющейся хорошим изолятором. Ионные составы цитоплазмы нейрона и межклеточной жидкости различаются. В цитоплазме концентрация ионов калия выше, а концентрация натрия и хлора ниже, в межклеточной же жидкости все наоборот. Это связано с работой ионных насосов, которые постоянно перекачивают определенные типы ионов против градиента концентрации, потребляя при этом энергию, запасенную в молекулах АденозиноТриФосфата (АТФ). Самым известным и изученным из таких насосов является натрий-калиевый насос. Он выводит 3 иона натрия в наружу, а внутрь нейрона забирает 2 иона калия. На рисунке 2 изображен ионный состав нейрона и отмечены ионные насосы. Благодаря работе этих насосов в нейроне образуется равновесная разность потенциалов между внутренней стороной мембраны, заряженной отрицательно, и внешней, заряженной положительно.

Рис. 2 — Ионный состав нейрона и окружающей среды

Кроме насосов на поверхности нейрона есть ещё ионные каналы, которые при изменении потенциала или при химическом воздействии могут открываться или закрываться, тем самым увеличивая или уменьшая токи определённого типа ионов. Если мембранный потенциал превышает некоторый порог, открываются натриевые каналы, а так как снаружи больше натрия, то возникает электрический ток направленный внутрь нейрона, что ещё больше увеличивает мембранный потенциал и ещё сильнее открывает натриевые каналы, происходит резкое увеличение мембранного потенциала. Физики назовут это положительной обратной связью. Но, начиная с какого-то значения потенциала, более высокого чем пороговый потенциал открытия натриевых каналов, открываются и калиевые каналы, благодаря чему ионы калия начинают течь в наружу, уменьшая мембранный потенциал и тем самым возвращая его к равновесному значению. Если же первоначальное возбуждение меньше порога открытия натриевых каналов, то нейрон вернётся к своему равновесному состоянию. Что интересно, амплитуда генерируемого импульса слабо зависит от амплитуды возбуждающего тока: либо импульс есть, либо его нет, закон «всё или ничего».

Кстати, именно принцип «всё или ничего» и вдохновил Мак-Каллока и Питтса на создание моделей искусственных нейронных сетей. Но область искусственных нейросетей развивается по своему, и главной её целью является наиболее оптимальное решение практических задач, безотносительно к тому, насколько это соотносится с процессами обработки информации в живом мозге. В то время как спайковые нейронные сети - это модель работы настоящего мозга. Можно собрать спайковую сеть для распознования визуальных образов, но для практического применения лучше подойдут классические нейронные сети, они проще, считаются на компьютере быстрее и для них придуманно множество алгоритмов для обучения под конкретные практические задачи.

image

Принцип «всё или ничего» наглядно изображён на рисунке 3. Внизу изображён входной ток, направленный к внутренней стороне мембраны нейрона, а вверху - разность потенциалов между внутренней и внешней стороной мембраны. Поэтому согласно доминирующей ныне концепции в живых нейронных сетях информация кодируется во временах возникновения импульсов или, как сказали бы физики, - путем фазовой модуляции.

Рис. 3 — Генерация нервного импульса. Внизу изображен подаваемый внутрь клетки ток в пкА, а вверху мембранный потенциал в мВ

Возбудить нейрон можно, например, воткнув в него микроэлектрод и подав ток внутрь нейрона, но в живом мозге возбуждение обычно происходит путем синаптического воздействия. Как уже было сказано, нейроны соединяются друг с другом с помощью синапсов, образующихся в местах контакта аксона одного нейрона с дендритами другого. Нейрон, от которого идет сигнал, называется пресинаптическим, а тот к которому идет сигнал - постсинаптическим. При возникновении импульса на пресинаптическом нейроне, он выделят в синаптическую щель нейротрансмиттеры, которые открывают натриевые каналы на постсинаптическом нейроне, а дальше происходит цепь описанных выше событий, приводящих к возбуждению. Кроме возбуждения нейроны могут и тормозить друг друга. В случае если пресинаптический нейрон тормозный, то он выделят в синаптическую щель тормозный нейротрансмиттер открывающий хлорные каналы, а так как снаружи хлора больше, то хлор течет внутрь нейрона из-за чего отрицательный заряд на внутренней стороне мембраны увеличивается (не забываем, что ионы хлора в отличии от натрия и калия заряжены отрицательно), вгоняя нейрон в ещё более неактивное состояние. В таком состоянии нейрон труднее возбудить.

Математическая модель нейрона

На основе описанных выше динамических механизмов работы нейрона может быть составлена его математическая модель. На данный момент созданы различные как относительно простые модели, вроде «Inregrate and Fire», в которой нейрон представляется в виде конденсатора и резистора, так и более сложные, биологически правдоподобные, модели, вроде модели Ходжкина-Хаксли, которая гораздо сложнее как в вычислительном плане так и в плане анализа её динамики, но она гораздо точнее описывает динамику мембранного потенциала нейрона. В данной же статье мы будем использовать модель Ижикевича [1], она представляет из себя компромисс между вычислительной сложностью и биофизической правдоподобностью. Несмотря на свою вычислительную простоту, в этой модели можно воспроизвести большое количество явлений, происходящих в настоящих нейронах. Модель Ижикевича задается в виде системы дифференциальных уравнений (Рисунок 4).



Рис. 4 — Модель Ижикевича

Где a, b, c, d, k, Cm различные параметры нейрона. Vm — это разность потенциалов на внутренней и внешней стороне мембраны, а Um — вспомогательная переменная. I — это внешний постоянный приложенный ток. В данной модели наблюдаются такие характерные для нейронов свойства как: генерация спайка в ответ на одиночный импульса внешнего тока и генерация последовательности спайков с определённой частотой при подаче на нейрон постоянного внешнего тока. Isyn — сумма синаптических токов от всех нейронов, с которыми связан этот нейрон.
В случае если на пресинаптическом нейроне генерируется спайк, на постсинаптическом происходит скачок синапического тока, который экспоненциально затухает с характерным временем.

Переходим к кодингу

Итак, мы приступаем к самому интересному. Пора закодить на компьютере виртуальный кусок нервной ткани. Для этого будем численно решать систему дифференциальных уравнений, задающих динамику мембранного потенциала нейрона. Для интегрирования будем использовать метод Эйлера. Кодить будем на С++, рисовать с помощью скриптов написанных на Python с использованием библиотеки Matplolib, но у кого нет Питона могут рисовать с помощью Exel.

Нам понадобятся двумерные массивы Vms, Ums размерности Tsim*Nneur для хранения мембранных потенциалов и вспомогательных переменных каждого нейрона, в каждый момент времени, Tsim это время симуляции в отсчетах, а Nneur количество нейронов в сети.
Связи будем хранить в виде двух массивов pre_con и post_con размерности Ncon, где индексами является номера связей, а значениями являются индексы пресинаптических и постсинаптических нейронов. Ncon — число связей.
Так же нам понадобится массив для представления переменной, модулирующей экспоненциально затухающий постсинаптический ток каждого синапса, для этого создаем массив y размерности Ncon*Tsim.


Как уже было сказано, информация кодируется во временах возникновения импульсов, поэтому создаем массивы для сохранения времен их возникновения и индексов нейронов где они возникли. Далее их можно будет записать в файл, с целью визуализации.


Разбрасываем случайно связи и задаем веса.


Установка начальных условий для нейронов и случайное задание внешнего приложенного тока. Те нейроны для которых внешний ток превысит порог генерации спайков, будут генерировать спайки с постоянной частотой.


Основная часть программы с интегрированием модели Ижикевича.


Полный текст кода можно скачать тут. Код свободно компилируется и запускается хоть под виндой с Visual Studio 2010 Express Edition или MinGW, хоть под GNU/Linux c GCC. После завершения работы программа сохраняет растр активности, времена и индексы возникновения нервных импульсов, и осциллограммы среднего мембранного потенциала в файлах rastr.csv и oscill.csv, соответственно. Можно их прямо в Exelе и нарисовать. Либо с помощью прикрепленных мною питоновских скриптов, но для их работы нужна библиотека Matplotlib. Для тех у кого GNU/Linux установить из репозиториев пакет python-matplotlib не составит труда, пользователям же Windows придется вручную скачать отсюда последовательно пакеты numpy, scypy, pyparsing, python-dateutil и matplotlib.
Рисование растра активности — plot_rastr.py
Рисование среднего мембранного потенциала — plot_oscill.py

Результаты


Рис. 5 — Активность нейронной сети. Вверху по оси y отложены номера нейронов, а моменты времени когда на нейроне генерируется спайк отмечены точкой, внизу - среднее количество спайков в 1 мс времени.

Рис. 6 — Средний мембранные потенциал, «электроэнцефалограмма».

Вот что получается при моделировании 1 секунды активности 125 нейронов. Мы наблюдаем периодическую активность на частоте ~3 Гц, похожую на дельта-ритм.

[1] E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, USA, MA, Cambridge: The MIT Press., 2007

ВОЗБУЖДЕНИЕ НЕЙРОНА

Нейрон в отличие от других клеток способен возбуждаться. Под возбуждением нейрона понимают генерацию нейроном потенциала действия. Основная роль в возбуждении принадлежит другому типу ионных каналов, при открытии которых ионы натрия устремляются в клетку. Напомним, что благодаря постоянной работе насосных каналов концентрация натриевых ионов вне клетки примерно в 50 раз больше, чем в клетке, поэтому при открытии натриевых каналов ионы натрия устремляются в клетку, а ионы калия через открытые калиевые каналы начинают выходить из клетки. Для каждого типа ионов - натрия и калия - имеется свой собственный тип ионного канала. Движение ионов по этим каналам происходит по концентрационным градиентам, т.е. из места высокой концентрации в место с более низкой концентрацией.

Ответим на вопрос: как ионные каналы открываются и закрываются? В покоящемся нейроне натриевые каналы мембраны закрыты и на мембране, как это уже описывалось выше, регистрируется потенциал покоя порядка -70 мВ (отрицательность в цитоплазме). Если потенциал мембраны деполяризовать (уменьшить поляризацию мембраны) примерно на 10 мВ, натриевый ионный канал открывается (рис. 2.6). Действительно, в канале имеется своеобразная заслонка, которая реагирует на потенциал мембраны, открывая этот канал при достижении потенциала определенной величины. Такой канал называется потенциалзависимым. Как только канал открывается, в цитоплазму нейрона устремляются из межклеточной среды ионы натрия, которых там примерно в 50 раз больше, чем в цитоплазме. Такое движение ионов является следствием простого физического закона: ионы движутся по концентрационному градиенту.Таким образом, в нейрон поступают ионы натрия, они заряжены положительно. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который будет смещать потенциал мембраны в сторону деполяризации, т.е. уменьшать поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется. Потенциал на мембране будет увеличиваться, открывая все большее количество натриевых каналов. Но этот потенциал будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют натриевым равновесным потенциалом. Вспомним, что в покое мембрана имела потенциал -70 мВ, тогда абсолютная амплитуда потенциала составит величину около 125 мВ. Мы говорим «около», «примерно» потому, что у клеток разного размера и типов этот потенциал может несколько отличаться, что связано с формой этих клеток (например, количеством отростков), а также с особенностями их мембран.

Все изложенное выше можно формально описать следующим образом. В покое клетка ведет себя как «калиевый электрод», а при возбуждении - как «натриевый электрод». Однако после того как потенциал на мембране достигнет своего максимального значения +55 мВ, натриевый ионный канал со стороны, обращенной в цитоплазму, закупоривается специальной белковой молекулой. Это так называемая «натриевая инактивация» (см. рис. 2.6); она наступает примерно через 0,5-1 мс и не зависит от потенциала на мембране. Мембрана становится непроницаемой для натриевых ионов. Для того чтобы потенциал мембраны вернулся к исходному состоянию-состоянию покоя, необходимо, чтобы из клетки выходил ток положительных частиц. Такими частицами в нейронах являются ионы калия. Они начинают выходить через открытые калиевые каналы. Вспомните, что в клетке в состоянии покоя накапливаются ионы калия, поэтому при открывании калиевых каналов эти ионы покидают нейрон, возвращая мембранный потенциал к исходному уровню (уровню покоя). В результате этих процессов мембрана нейрона возвращается к состоянию покоя (-70 мВ) и нейрон готовится к следующему акту возбуждения.


Таким образом, выражением возбуждения нейрона является генерация на мембране нейрона потенциала действия. Его длительность в нервных клетках составляет величину около 1/1000 с (1 мс). Описанная последовательность событий приведена на рис. 2.7.


Подобные потенциалы действия могут возникать и в других клетках, назначение которых - возбуждаться и передавать это возбуждение другим клеткам. Например, сердечная мышца имеет в своем составе специальные мышечные волокна, обеспечивающие бесперебойную работу сердца в автоматическом режиме. В этих клетках также генерируются потенциалы действия (рис. 2.8). Однако они имеют затянутую, почти плоскую вершину, и длительность такого потенциала действия может затянуться до нескольких сот миллисекунд (сравните с 1 мс у нейрона). Такой характер потенциала действия мышечной клетки сердца физиологически оправдан, так как возбуждение сердечной мышцы должно быть длительным, чтобы кровь успела покинуть желудочек. С чем же связан такой затянутый потенциал действия у этого типа клетки? Оказалось, в мембране этих клеток натриевые ионные каналы не так быстро закрываются, как в нейронах, т.е. натриевая инактивация затянута.

Как ясно из этого описания, возбуждение (потенциал действия) нейрона сменяется так называемым «покоем». Однако никакого покоя в этот период нет. Как уже указывалось выше, в мембране есть еще и насосные каналы, количество которых примерно в 10 раз больше ионных, и они постоянно работают, откачивая из цитоплазмы излишек ионов натрия и закачивая туда недостающие ионы калия. Благодаря неустанной работе этих каналов нейрон всегда готов к возбуждению.

Описанный выше механизм возбуждения клетки (конечно, далеко не все клетки нашего организма способны возбуждаться) в основных чертах одинаков не только в нейронах и мышечных клетках человека, но и в аналогичных клетках других организмов. Например, в нейронах моллюсков, червей, крыс и обезьян при возбуждении происходят описанные выше последовательности событий. Более того, конструкция мембран, включая каналы, также примерно одинакова у всех организмов Земли.

Как уже указывалось, каналы представляют собой белковые молекулы, «прошивающие» мембрану (одна часть молекулы находится в цитоплазме, а другая во внеклеточной среде). Интересно, что эти белковые молекулы, образующие ионный или насосный каналы, не вечны, а постоянно заменяются на новые (примерно каждые несколько часов). Все это свидетельствует об очень большой динамичности структуры нейрона.

Нейрон способен к возбуждению, которое состоит в том, что мембрана нейрона в состоянии покоя имеет потенциал порядка -70 мВ (отрицательность в цитоплазме), а в состоянии возбуждения приобретает потенциал +55 мВ. Таким образом, абсолютная величина потенциала действия - около 125 мВ. Длительность потенциала действия нейрона составляет всего около 1 мс (1/1000 с).

Далее это возбуждение (потенциал действия) должно передаться другому нейрону или какой-то другой клетке, например мышечной, железистой и др.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

4.2. Возрастные изменения морфофункциональной организации нейрона

4.2. Возрастные изменения морфофункциональной организации нейрона На ранних стадиях эмбрионального развития нервная клетка имеет большое ядро, окруженное незначительным количеством цитоплазмы. В процессе развития относительный объем ядра уменьшается. Рост аксона

3. СИСТЕМНАЯ ДЕТЕРМИНАЦИЯ АКТИВНОСТИ НЕЙРОНА

3. СИСТЕМНАЯ ДЕТЕРМИНАЦИЯ АКТИВНОСТИ НЕЙРОНА 3.1. Парадигма реактивности: нейрон, как и индивид, отвечает на стимул Как мы уже отмечали, с позиций парадигмы реактивности поведение индивида представляет собой реакцию на стимул. В основе реакции лежит проведение

3.3. «Потребности» нейрона и объединение нейронов в систему как способ их обеспечения

3.3. «Потребности» нейрона и объединение нейронов в систему как способ их обеспечения Охарактеризуем очень кратко некоторые существенные «потребности» нейрона. Они определяются необходимостью синтеза новых молекул, в том числе белков, расходуемых в процессе

3.4. Значение системного понимания детерминации активности нейрона для психологии

3.4. Значение системного понимания детерминации активности нейрона для психологии Итак, поскольку системная психофизиология отвергает парадигму реактивности, основывая свои положения на представлении об опережающем отражении, о направленной в будущее активности не

Возбуждение дыхания

Возбуждение дыхания Возбуждение дыхания необходимо применять при его расстройстве или отсутствии.Если нарушение дыхания у собаки произошло по причине расстройства мозгового кровообращения (солнечный или тепловой удары), необходимо сделать следующее: а) опрыскивать

Глава 3 Нет нейрона, который был бы как остров

Глава 3 Нет нейрона, который был бы как остров В списке моих любимых клеток нейрон занимает второе место, ненамного отставая от сперматозоида. Если вы никогда не смотрели в микроскоп на бешено снующие туда-сюда сперматозоиды, срочно хватайте своего знакомого биолога

Глава 3. Нет нейрона, который был бы как остров

Глава 3. Нет нейрона, который был бы как остров Рис. 13. Хотя в мозгу не существует нейронов-островов, изолированные нейроны можно вырастить в пластмассовой чашке, как и показано на рис. 13. Но даже этот нейрон не совсем походит на остров: его отростки простираются

2. Наивысшее возбуждение

2. Наивысшее возбуждение Наивысшее возбуждение есть оборотная сторона наивысшей умиротворенности. Это поток возбуждения и энергии, порождающий мощное чувство бодрости и предельную концентрацию внимания, которые позволяют исключить все посторонние чувства или мысли.

4. Наивысшее возбуждение со вспышкой умиротворенности

4. Наивысшее возбуждение со вспышкой умиротворенности Крайне сильная стимуляция системы возбуждения может также вызывать «выброс» в форме реакции умиротворения. В результате возникает состояние транса с экстатическим высвобождением энергии, подобным оргазму. Это

1.3. Нервная клетка

Нейрон - это анатомическая, метаболическая, генетическая и функциональная единица нервной системы. Мы говорим о нервной клетке, как об анатомической единице нервной системы, поскольку она является ее структурным элементом. Каждая нервная клетка самостоятельно реализует процессы, связанные с обменом веществ, и поэтому мы вправе считать ее метаболической единицей. Каждая клетка содержит в своем ядре молекулу ДНК, а потому является генетической единицей. И, наконец, функционирование нервной системы определяется функционированием отдельных нейронов. А значит, нервная клетка - функциональная единица нервной системы.

Нейроны - особые клетки, не похожие ни на какие другие клетки нашего организма. Их отличает: характерная форма, функционирование посредством изменения потенциала мембраны, наличие специального контактного аппарата - синапсов.

Что касается характерной формы, то в первую очередь речь идет о большом количестве отростков. При этом функционально нервная клетка имеет выраженную полярную организацию с разделением входа и выхода (рис. 21).


Рис. 21. Строение нервной клетки

Нервные клетки выполняют неспецифические и специфические функции. Неспецифическими называются функции, присущие всем клеткам организма. Они связаны с поддержанием их жизнедеятельности. К ним относятся синтез, энергообмен, трансмембранный перенос. Специфическими называются функции, реализуемые только нервными клетками. Речь идет о восприятии, переработке, передаче и хранении информации.

Специфические функции реализуются благодаря особым свойствам мембраны нейрона. Помимо функций, присущих мембранам всех других клеток организма (барьерная, транспортная, рецепторная), мембрана нервной клетки выполняет еще и электрическую функцию, которая заключается в создании разности потенциалов между внутренней и внешней поверхностью мембраны. Благодаря такой особенности мембраны нейроны приобретают два важных свойства: возбудимость и проводимость. Возбудимость выражается в способности клетки генерировать потенциалы действия при раздражении. Проводимость - это способность проводить потенциалы действия к другим клеткам.

В основе электрической функции мембраны лежит ее избирательная проницаемость. Проницаемость обеспечивается наличием специальных каналов и зависит от нескольких факторов. Канал - это пора в мембране, образованная белковыми молекулами. Факторы, определяющие проницаемость мембраны, следующие: 1) соотношение размеров каналов и частиц, 2) наличие градиентов (химического, электрического), 3) работа специальных переносчиков (насосов). Первый фактор очевиден: если размер молекулы или иона больше ширины канала, такая частица сквозь мембрану пройти не сможет. Второй фактор определяется разницей концентрации веществ или заряда по обе стороны мембраны. Если градиент имеет место, то частицы перемещаются через мембрану (при наличии открытых каналов) в направлении снижения этой разницы. Такое перемещение происходит пассивно, то есть без затраты энергии. Однако когда необходимо переместить частицы против градиента, в действие вступает третий фактор: включается специальный клеточный механизм - мембранный насос. Этот процесс позволяет вывести из клетки или ввести в клетку определенные вещества или ионы и требует затрат энергии.

Электрические процессы на мембране нейрона

Потенциал покоя

В те редкие мгновения, когда на нейрон не оказываются синаптические воздействия, на его мембране формируется потенциал покоя (мембранный потенциал). Это разность потенциалов между внутренней и наружной поверхностью мембраны. При этом ее внутренняя поверхность заряжена отрицательно по отношению к наружной.

Разность потенциалов создается за счет того, что положительно заряженные ионы калия выходят из клетки через открытые калиевые каналы (рис. 22). Выход калия обусловлен наличием химического градиента и происходит пассивно, то есть без затрат энергии. Химический градиент возникает потому, что в клетке концентрация калия существенно выше, чем в межклеточной среде. Выход калия увеличивает количество положительно заряженных ионов на внешней поверхности мембраны.

В клетке же остаются крупные отрицательно заряженные молекулы, которые не в состоянии покинуть клетку через открытые узкие каналы. Они концентрируются на внутренней поверхности мембраны. Выход калия продолжается до тех пор, пока противоположно направленные химический

и электрический градиенты не уравновесят друг друга. Обычно это происходит, когда заряд мембраны достигает - 60-80 мВ. В это время натриевые каналы закрыты и положительно заряженные ионы натрия концентрируются в межклеточной среде.


Рис. 22. Формирование потенциала покоя

Потенциал действия

Главная функциональная задача нервной клетки - генерировать потенциалы действия. Потенциал действия - это кратковременная инверсия заряда мембраны нейрона. С помощью потенциалов действия нервные клетки обмениваются информацией. Процесс его формирования графически представлен на рис. 23.

Когда на нейрон оказывается внешнее воздействие (через возбудительные синапсы), происходит небольшое уменьшения разности потенциалов между внешней и внутренней поверхностью мембраны. Это приводит к раскрытию части натриевых каналов, которые в состоянии покоя закрыты. Поскольку концентрация натрия выше вне клетки, а число отрицательно заряженных ионов больше внутри клетки, положительно заряженные ионы натрия устремляются в клетку по химическому и электрическому градиентам. Это приводит к тому, что разность потенциалов на мембране продолжает снижаться. Данный процесс называется локальной деполяризацией мембраны.


Рис. 23. Потенциал действия. По оси абсцисс - время, по оси ординат - заряд мембраны

На рис. 23 этот процесс обозначен цифрой 1. Если внешнее воздействие оказывается достаточно сильным, деполяризация достигает критической (пороговой) величины (цифра 2 на рис. 23), и это приводит к раскрытию всех натриевых каналов. Резкое увеличение притока натрия в клетку (через 1 канал за 1 мс проходит до 6 тысяч ионов натрия) приводит к резкой деполяризации мембраны вплоть до изменения знака заряда, который достигает +30 мВ (цифра 3). Однако уже через 0,5 мс натриевые каналы закрываются. Выход калия из клетки через открытые калиевые каналы примерно за 1 мс возвращает заряд мембраны к прежнему уровню (реполяризация) (4).

Однако, несмотря на то, что заряд мембраны после завершения потенциала действия вновь стал отрицательным, концентрация калия и натрия внутри и снаружи оказывается противоположной той, что предшествовала его формированию. Для возвращения клетки в исходное состояние включается натрий-калиевый насос (рис. 24).


Рис. 24. Натрий-калиевый насос

На 1 квадратном микроне мембраны нейрона одновременно функционирует до 200 насосов. Каждый из них за 1 цикл переносит 3 иона натрия из клетки и 2 иона калия в клетку. На это расходуется 1 молекула АТФ. В результате примерно через 1 мс натрия снаружи становится в 10 раз больше, чем внутри клетки, а калия в 10 раз больше внутри, чем снаружи. Происходит восстановление исходного ионного баланса. Насос - это мембранная транспортная система, обеспечивающая перенос ионов против градиента, то есть с затратой энергии.

Потенциал действия формируется по закону «все или ничего». Суть этого закона состоит в том, что если деполяризация мембраны достигает критической (пороговой) величины, то потенциал действия формируется, если деполяризация мембраны не достигает критической (пороговой) величины, то потенциал действия не формируется. От силы воздействия зависит не величина потенциала действия (она всегда постоянна), а их число в единицу времени.

Проведение потенциала действия

Потенциал действия первоначально формируется в области нейрона, которая называется аксонный холмик. Речь идет о самом начале аксона - месте его выхода из сомы (рис. 25).

Это самая возбудимая часть нейрона (триггерная зона), здесь в 7 раз выше плотность натриевых каналов, чем в других участках мембраны.


Рис. 25. Триггерная зона нейрона. Стрелки показывают направление проведения сигналовв нейроне

Сформировавшись, потенциал действия должен быть проведен по аксону от тела клетки к синапсам. Рассмотрим механизм проведения потенциала действия.

Известно, что между участками проводника, имеющими противоположный заряд, возникают силовые линии (рис. 26).


Рис. 26. Силовые линии между участками проводника, имеющими противоположный заряд

Когда в триггерной зоне происходит деполяризация мембраны, между аксонным холмиком и ближайшей областью аксона появляются силовые линии. Это приводит к открытию в этой области части натриевых каналов и возбуждение начинает распространяться по аксону. Но возбуждение распространяется по аксону не плавно, а скачками. Это связано с тем, что аксон покрыт особой изоляцией - миелиновой оболочкой. При этом между отрезками изоляции есть свободные участки - перехваты Ранвье. Потенциалы действия последовательно формируются именно в этих перехватах, то есть как бы перепрыгивают из одного перехвата в следующий. Такое проведение получило название сальтаторного (рис. 27).


Рис. 27. Сальтаторное проведение. Стрелкой показано направление распространения потенциала действия

На рис. 27 в качестве активного обозначен тот перехват, в котором в текущий момент времени формируется потенциал действия. Между этим и соседними (невозбужденными) перехватами возникают силовые линии. Это должно привести к открытию в них натриевых каналов и создать условия для формирования потенциала действия. Но это произойдет лишь в одном из них - более удаленном от тела клетки. Другой же перехват находится в это время в состоянии невозбудимости, поскольку в нем как раз завершилось формирование потенциала действия и работает натрий-калиевый насос. Это состояние невозбудимости называется рефрактерным периодом. То есть вслед за потенциалом действия по аксону перемещается рефракторность, которая препятствует обратному распространению возбуждения.

Сальтаторное проведение имеет преимущество перед обычным способом проведения возбуждения по мембране, не покрытой миелином. Во-первых, этот способ более экономичен. Расстояние между перехватами Ранвье может достигать 2 мм, а ширина самого перехвата, как правило, не превышает 14 мкм. Поэтому энергозатратные насосы работают на площади, составляющей менее 1 % мембраны аксона. Еще одно преимущество сальтаторного проведения - его скорость, которая может достигать 120 м/с.

Синаптическая передача

Нейроны контактируют между собой с помощью особых образований, называемых синапсами (рис. 28).

Основными компонентами синапса являются: пресинаптическая мембрана (мембрана передающего нейрона), синаптическая щель (пространство шириной 20-50 нм, заполненное межклеточной жидкостью) и постсинаптическая мембрана (мембрана принимающего нейрона).


Рис. 28. Синапс

Способ передачи сигнала в подавляющем большинстве синапсов - химический. В синаптических пузырьках содержится особое вещество - медиатор. Когда потенциал действия приходит к окончанию аксона, деполяризованная пресинаптическая мембрана притягивает и разрывает пузырьки. Их содержимое выбрасывается в синаптическую щель, медиатор диффундирует к постсинаптической мембране и взаимодействует с ее рецепторными белками. В результате в постсинаптической мембране открываются определенные ионные каналы, а возникающий ионный ток меняет ее заряд, формируя постсинаптический потенциал. Чем выше частота потенциалов действия, тем сильнее воздействие на принимающий нейрон. Один потенциал действия вызывает выброс 200-300 квантов медиатора. Один квант открывает порядка 2 тысяч ионных каналов в постсинаптической мембране. Весь процесс синаптической передачи занимает около 2 мс. Таким образом, проведение в синапсах всегда одностороннее и осуществляется с временной задержкой.

Все синапсы в нервной системе делятся на возбудительные и тормозные (рис. 29).


Рис. 29. Возбудительные (В) и тормозные (Т) синапсы

Стрелками показано направление перемещения ионов через постсинаптическую мембрану; графики отображают процесс формирования возбудительного и тормозного постсинаптических потенциалов.

Возбудительные деполяризуют постсинаптическую мембрану (снижают разницу заряда внутренней и внешней поверхности мембраны) и формируют возбудительный постсинаптический потенциал (ВПСП). Тормозные синапсы гиперполяризуют мембрану принимающего нейрона (увеличивают разницу заряда) и формируют тормозной постсинаптический потенциал (ТПСП). Таким образом, возбудительные синапсы возбуждают принимающий нейрон, а тормозные - тормозят. Тип синапса определяется тем химическим веществом (медиатором), которое выбрасывается в синаптическую щель и воздействует на постсинаптическую мембрану.

Постсинаптические потенциалы по своим свойствам отличны от потенциалов действия. Потенциалы действия имеют постоянную амплитуду, распространяются без затухания и не взаимодействуют. Постсинаптические потенциалы, напротив, градуальны (имеют переменную амплитуду), локальны (распространяются по мембране с затуханием) и способны к суммации.

В норме нейроны постоянно испытывают множество синаптических воздействий. ВПСП и ТПСП «стекают» по мембране клетки в направлении аксонного холмика. Поскольку распространение происходит с затуханием, чем ближе синапс располагается к триггерной зоне, тем выше его «вес». Встречаясь по пути следования, постсинаптические потенциалы суммируются: одноименные усиливают друг друга, противоположные ослабляют. Если в какой-то момент времени суммарный ВПСП в области аксонного холмика превысит суммарный ТПСП на определенную (пороговую) величину, произойдет формирование потенциала действия.

Контрольные вопросы

1. Что отличает нервную клетку от других клеток организма?

2. Какова функция дендритов?

3. Каковы основные функции мембраны нейрона?

4. Какие факторы определяют проницаемость мембраны нейрона?

5. Какова природа мембранного потенциала покоя?

6. С каким мембранным процессом связана деполяризация мембраны?

7. С каким мембранным процессом связана реполяризация мембраны (возвращение заряда к исходному уровню)?

8. Что происходит во время работы ионного насоса?

9. Каковы особенности проведения в синапсах?

10. Каковы свойства постсинаптических потенциалов?

Вопросы рубежного контроля

1. Что представляет собой серое и белое вещество ЦНС?

2. Что представляет собой псевдоуниполярный нейрон?

3. Каковы особенности организации узловой нервной системы?

4. Что отличает нервную клетку от других клеток организма?

5. Каковы структурные элементы нервной клетки?

6. Что в нервной системе является единицей информации?

7. В чем отличие безусловных и условных рефлексов?

8. В чем проявляется сигнальное значение условного рефлекса?

9. Как безусловные рефлексы классифицируются по уровню сложности?

10. Что такое доминанта, и каково ее значение?

11. Какие факторы определяют проницаемость мембраны нейрона?

12. Какова природа мембранного потенциала (потенциала покоя)?

13. Какие процессы реализуются на мембране нейрона после того, как деполяризация достигает пороговой величины?

Потенциал покоя и потенциал действия

Мембрана всех живых клеток поляризована. Внутренняя сторона мембраны несет отрицательный заряд по сравнению с межклеточным пространством (рис. 1). Величина заряда, который несет мембрана называется мембранным потенциалом (МП). В невозбудимых тканях МП низкий, и составляет около -40 мВ. В возбудимых тканях он высокий, около -60 - -100 мВ и называется потенциалом покоя (ПП).

Потенциал покоя, как и любой мембранный потенциал формируется за счет избирательной проницаемости клеточной мембраны. Как известно, плазмолемма состоит из липидного бислоя, через который движение заряженных молекул затруднено. Белки, встроенные в мембрану, могут избирательно изменять проницаемость мембраны для различных ионов, в зависимости от приходящих стимулов. При этом, для формирования потенциала покоя ведущую роль играют ионы калия, кроме них важны ионы натрия и хлора.

Рис. 1. Концентрации и распределение ионов с внутренней и внешней стороны мембраны.

Большинство ионов распределяются неравномерно с внутренней и внешней стороны клетки (рис. 1). Внутри клетки концентрация ионов калия выше, а натрия и хлора - ниже, чем снаружи. В состоянии покоя мембрана проницаема для ионов калия и практически непроницаема для ионов натрия и хлора. Несмотря на то, что калий может свободно выходить из клетки, его концентрации остаются неизменными благодаря отрицательному заряду на внутренней стороне мембраны. Таким образом, на калий действуют две силы, находящиеся в равновесии: осмотические (градиент концентрации К + ) и электрические (заряд мембраны), благодаря чему число входящих в клетку ионов калия равно выходящим. Движение калия осуществляется через калиевые каналы утечки, открытые в состоянии покоя. Величину заряда мембраны, при которой ионы калия находятся в равновесии можно вычислить по уравнению Нернста:

где Ек — равновесный потенциал для К + ; R — газовая постоянная; Т — абсолютная температура; F — число Фарадея; n — валентность К + (+1), [К + н] — [К + вн] — наружная и внутренняя концентрации К + .

Если подставить в уравнение значения из таблицы на рис. 43, то мы получим величину равновесного потенциала, равную примерно -95 мВ. Это значение вписывается в диапазон мембранного потенциала возбудимых клеток. Отличия ПП разных клеток (даже возбудимых) могут возникать по трем причинам:

  • отличия внутриклеточной и внеклеточной концентраций ионов калия в разных тканях (в таблице приведены данные по среднестатистическому нейрону);
  • натрий-калиевая АТФаза может вносить свой вклад в значение заряда, так как она выводит из клетки 3 Na + в обмен на 2 К + ;
  • несмотря на минимальную проницаемость мембраны для натрия и хлора, эти ионы все-таки могут попадать в клетки, хоть и от 10 до 100 раз хуже, по сравнению с калием.

Чтобы учесть проникновение других ионов в клетку существует уравнение Нернста-Гольдмана:

, где Еm — мембранный потенциал; R — газовая постоянная; Т — аб­солютная температура; F — число Фарадея; РK , PNa и РCl константы проницаемости мембраны для К + Na + и Сl, соответственно; + н], [K + вн], [Na + н], [Na + вн], [Сl — н] и [Сl — вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.

Такое уравнение позволяет установить более точную величину ПП. Обычно, мембрана оказывается на несколько мВ менее поляризована, по сравнению с равновесным потенциалом для К + .

Потенциал действия (ПД) может возникать в возбудимых клетках. Если на нерв или мышцу нанести раздражение выше порога возбуждения, то ПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет кратковременная перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной, после чего восстановится ПП. Это кратковременное изменение ПП, происходящее при возбуждении клетки называется потенциалом действия.

Возникновение ПД возможно благодаря тому, что в отличие от ионов калия, ионы натрия далеки от равновесия. Если подставить в уравнение Нернста натрий вместо калия, то мы получим равновесный потенциал, равный примерно +60 мВ. Во время ПД, происходит кратковременное увеличение проницаемости для Na + . При этом, натрий начнет проникать в клетку под действием двух сил: по градиенту концентрации и по заряду мембраны, стремясь подстроить заряд мембраны под свой равновесный потенциал. Движение натрия осуществляется по потенциал-зависимым натриевым каналам, которые открываются в ответ на смещение мембранного потенциала, после чего сами инактивируются.

Рис. 2. Потенциал действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).

На записи ПД выглядит как кратковременный пик (рис. 44), имеющий несколько фаз.

  1. Деполяризация (фаза нарастания) (рис. 44) - увеличение проницаемости для натрия из-за открытия натриевых каналов. Натрий стремится к своему равновесному потенциалу, но не достигает его, так как канал успевает инактивироваться.
  2. Реполяризация - возвращение заряда к величине потенциала покоя. Помимо калиевых каналов утечки здесь подключаются потенциал-зависимые калиевые каналы (активируются от деполяризации). В это время калий выходит из клетки, возвращаясь к своему равновесному потенциалу.
  3. Гиперполяризация (не всегда) - возникает в случаях, если равновесный потенциал по калию превышает по модулю ПП. Возвращение к ПП происходит после возвращения к равновесному потенциалу по К + .

Во время ПД происходит изменение полярности заряда мембраны. Фаза ПД, при которой заряд мембраны положителен, называется овершутом (рис. 2).

Благодаря Н-воротам инактивация канала происходит раньше, чем потенциал на мембране достигнет равновесной величины по натрию. После прекращения поступления натрия в клетку, происходит реполяризация за счет выходящих из клетки ионов калия. При этом к каналам утечки в этом случае подключаются еще и потениал-активируемые калиевые каналы. Во время реполяризации, в быстром натриевом канале быстро закрываются М-ворота. Н-ворота открываются гораздо медленнее и остаются закрытыми еще некоторое время после возвращения заряда к потенциалу покоя. Этот период принято называть периодом рефрактерности.

Рис. 3. Работа потенциал-управляемого натриевого канала.

Концентрации ионов внутри клетки восстанавливает натрий-калиевая АТФаза, которая с затратой энергии в виде АТФ откачивает из клетки 3 иона натрия и закачивает 2 иона калия.

По немиелинизированному волокну или по мембране мышцы потенциал действия распространяется непрерывно. Возникший потенциал действия за счет электрического поля способен деполяризовать мембрану соседнего участка до порогового значения, в результате чего на соседнем участке возникает деполяризация. Главную роль в возникновении потенциала на новом участке мембраны предыдущий участок. При этом на каждом участки сразу после ПД наступает период рефрактерности, за счет которое ПД распространяется однонаправленно. При прочих равных условиях распространение потенциала действия по немиелинизированному аксону происходит тем быстрее, чем больше диаметр волокна. У млекопитающих скорость составляет 1-4 м/с. Поскольку у беспозвоночных животных отсутствует миелин, в гигантских аксонах кальмара скорость ПД может достигать 100 м/c.

По миелинизированному волокну потенциал действия распространяется скачкообразно (сальтаторное проведение). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье; здесь их плотность в 100 раз больше, чем в мембранах немиелинизированных волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. Потенциал действия, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до порогового значения, что приводит к возникновению в них новых потенциалов действия, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье потенциал действия возбуждает 2-й, 3-й, 4-й и даже 5-й, поскольку электроизоляция, создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля. Сальтаторное проведение увеличивает скорость проведения ПД 15-20 раз до 120 м/с.

Работа нейронов

Нервная система состоит из нейронов и глиальных клеток. Однако, главную роль в проведении и передаче нервных импульсов играют нейроны. Они получают информацию от множества клеток по дендритам, анализируют ее и передают или не передают на следующий нейрон.

Передача нервного импульса с одной клетки на другую осуществляется с помощью синапсов. Различают два основных типа синапсов: электрические и химические (рис. 4). Задача любого синапса - передать информацию с пресинаптической мембраны (мембрана аксона) на постсинаптическую (мембрана дендрита, другого аксона, мышцы или другого органа-мишени). Большинство синапсов нервной системы образуется между окончанием аксонов и дендритами, которые в области синапса образуют дендритные шипики.

Преимущество электрического синапса состоит в том, что сигнал с одной клетки на другую переходит без задержки. Кроме того, такие синапсы не утомляются. Для этого пре- и постсинаптические мембраны соединены поперечными мостиками, через которые ионы из одной клетки могут перемещаться в другую. Однако, существенным минусом такой системы является отсутствие однонаправленной передачи ПД. То есть, он может передаваться как с пресинаптической мембраны на постсинаптическую, так и наоборот. Поэтому, такая конструкция встречается достаточно редко и в основном - в нервной системе беспозвоночных.

Рис. 4. Схема строения химического и электрического синапсов.

Химический синапс весьма распространен в природе. О устроен сложнее, так как необходима система преобразования электрического импульса в химический сигнал, затем, вновь в электрический импульс. Все это приводит к возникновению синаптической задержки, которая может составить 0,2-0,4 мс. Кроме того, может произойти истощение запасов химического вещества, что приведет к утомлению синапса. Однако, такой синапс обеспечивает однонаправленность передачи ПД, что является его главным преимуществом.

Рис. 5. Схема работы (а) и электронная микрофотография (б) химического синапса.

В состоянии покоя окончание аксона, или пресинаптическое окончание, содержит мембранные пузырьки (везикулы) с нейромедиатором. Поверхность везикул заряжена отрицательно, чтобы предотвратить связывание с мембраной, и покрыта специальными белками, и принимающими участие в высвобождении везикул. В каждом пузырьке находится одинаковое количество химического вещества, которое называется квантом нейромедиатора. Нейромедиаторы весьма разнообразны по химическому строению, однако, большинство из них производятся прямо в окончании. Поэтому, в нем могут находиться системы, для синтеза химического посредника, а также аппарат Гольджи и митохондрии.

Постсинаптическая мембрана содержит рецепторы к нейромедиатору. Рецепторы могут быть в виде как ионных каналов, открывающихся при контакте со своим лигандом (ионотропные), так и мембранными белками, запускающими внутриклеточный каскад реакций (метаботропные). Один нейромедиатор может иметь несколько как ионотропных, так и метаботропных рецепторов. При этом, часть из них может быть возбуждающими, а часть - тормозными. Таким образом, реакцию клетки на нейромедиатор будет определять тип рецептора на ее мембране, и разные клетки могут совершенно по-разному реагировать на одно и то же химическое вещество.

Между пре- и постсинаптической мембраной располагается синаптическая щель, шириной 10-15 нм.

При приходе ПД на пресинаптическое окончание, на нем открываются потенциал-активируемые кальциевые каналы и ионы кальция входят в клетку. Кальций связывается с белками на поверхности везикул, что приводит к их транспортировке к пресинаптической мембране с последующим слиянием мембран. После такого взаимодействия нейромедиатор оказывается в синаптической щели (рис. 5) и может связаться со своим рецептором.

Ионотропные рецепторы - это лиганд-активируемые ионные каналы. Это значит, что канал открывается только в присутствии определенного химического вещества. Для разных нейромедиаторов это могут быть натриевые, кальциевые или хлорные каналы. Ток натрия и кальция вызывает деполяризацию мембраны, поэтому такие рецепторы называют возбуждающими. Хлорный ток приводит к гиперполяризации, что затрудняет генерацию ПД. Следовательно, такие рецепторы называют тормозными.

Метаботропные рецепторы к нейромедиаторам относят к классу рецепторов, ассоцированных с G-белками (GPCR). Эти белки запускают разнообразные внутриклеточные каскады реакций, приводящих в конечном итоге либо к дальнейшей передачи возбуждения, либо к торможению.

После передачи сигнала необходимо быстро удалить нейромедиатор из синаптической щели. Для этого в щели присутствуют либо ферменты расщепляющие, нейромедиатор, либо на пресинаптическом окончании или соседних глиальных клетках могут располагаться транспортеры, закачивающие медиатор в клетки. В последнем случае он может использоваться повторно.

Каждый нейрон получает импульсы от 100 до 100 000 синапсов. Одиночная деполяризация на одном дендрите не приведет к дальнейшей передаче сигнала. На нейрон могут приходит одновременно множество как возбуждающих, так и тормозных стимулов. Все они суммируются на соме нейрона. Такая суммация называется пространственной. Далее, может возникнуть или не возникнуть (в зависимости от пришедших сигналов) ПД в области аксонного холмика. Аксонный холмик - это область аксона, примыкающая к соме и обладающая минимальным порогом ПД. Далее импульс распространяется по аксону, конец которого может сильно ветвиться и образовывать синапсы со множеством клеток. Помимо пространственной, существует временная суммация. Она происходит в случае, поступления часто повторяющихся импульсов от одного дендрита.

Помимо классических синапсов между аксонами и дендритами или их шипиками, существуют также синапсы, модулирующие передачу в других синапсах (рис. 6). К ним относят аксо-аксональные синапсы. Такие синапсы способны усиливать или тормозить синаптическую передачу. То есть, если на окончание аксона, образующего аксо-шипиковый синапс, пришел ПД, а в это время по аксо-аксональному синапсу на него пришел тормозный сигнал, высвобождения нейромедиатора в аксо-шипиковом синапсе не произойдет. Аксо-дендритные синапсы могут изменять проведение мембраной ПД на пути от шипика к соме клетки. Также существуют аксо-соматические синапсы, которые могут влиять на суммацию сигнала в области сомы нейрона.

Таким образом, существует огромное многообразие различных синапсов, отличающихся по составу нейромедиаторов, рецепторов и их местоположению. Все это обеспечивает разнообразие реакций и пластичность нервной системы.

Читайте также: