Значение углерода в жизни. Биологические молекулы.
Добавил пользователь Владимир З. Обновлено: 14.12.2024
Углерод является элементом-органогеном.
Его содержание в организме составляет 18% от общего веса, то есть более 12 кг для взрослого.
Атомы углерода являются структурной основой всех органических соединений, образуя бесконечное множество различных веществ (известно несколько миллионов органических соединений). Органические соединения углерода являются одним из основополагающих факторов жизни на Земле.
Биологическая роль углерода
Как и другие элементы-органогены, углерод в виде отдельного элемента не обладает биологическим значением, - биологической ролью обладают его соединения.
- из различных соединений углерода (белки, жиры, углеводы, нуклеотиды, гормоны, амино- и карбоновые кислоты и др.) состоят все ткани организма
- является структурным компонентом всех органических соединений
- его соединения участвуют во всех биохимических процессах
- при окислении соединений углерода образуется необходимая для организма энергия
- оксид углерода (IV) CO2, образующаяся в результате окисления соединений углерода, стимулирует дыхательный центр, регулирует значение рН крови
Пищевые источники углерода
Углерод находится во всех пищевых продуктах в виде соответствующих органических соединений. Человеческий организм не способен усваивать неорганические соединения углерода.
Дефицит углерода
Избыток углерода
Не наблюдается. Возможны отравления токсичными соединениями оксид углерода (II), четыреххлористый углерод, сероуглерод, соли цианистой кислоты, бензол и другие.
Важность углерода в живых существах 8 причин
Важность углерода в живых существах это основано на факте, что это - химический элемент, на котором основано существование жизни. Его способность образовывать полимеры делает его идеальным элементом для объединения в молекулы, которые генерируют жизнь.
Углерод является ключевым химическим элементом для жизни и природных процессов, происходящих на земле. Это шестой самый распространенный элемент во вселенной, участвующий в формированиях и астрономических реакциях..
Углерода в изобилии на Земле, и его свойства позволяют ему связываться с другими элементами, такими как кислород и водород, образуя молекулярные соединения, имеющие большое значение.
Углерод является легким элементом, и его присутствие в живых существах является фундаментальным, так как он используется и управляется энзимами органических систем..
Человеческое тело состоит из 18% углерода, и было подсчитано, что вся органическая жизнь на Земле имеет в качестве основы наличие углерода.
Некоторые теории предполагают, что если в другой части Вселенной есть жизнь, то в ее составе также присутствует большое количество углерода..
Углерод является фундаментальным элементом для формирования таких компонентов, как белки и углеводы, а также для физиологического функционирования живого организма..
Несмотря на то, что он является природным элементом, углерод также присутствует в реакциях и химических вмешательствах, которые совершил человек, обеспечивая новые преимущества..
Почему углерод важен для живых существ?
Химический состав живых существ
Поскольку живые существа являются результатом ряда химических реакций в определенный момент времени, и, как уже упоминалось, углерод играет фундаментальную роль в этих реакциях, было бы невозможно представить жизнь без присутствия этого элемента..
Универсальность углерода позволила ему присутствовать в клеточных и микроорганических процессах, которые вызывают жизненно важные компоненты организма: жиры, белки, липиды, которые помогают формированию неврологических систем, и нуклеиновые кислоты, которые хранят ДНК через ДНК. генетический код каждого человека.
Он также присутствует во всех тех элементах, которые потребляют живые существа, чтобы получить энергию и гарантировать свою жизнь..
Атмосферное значение
Углерод, в форме углекислого газа, представляет собой газ, присутствующий на атмосферном уровне, естественно.
Двуокись углерода препятствует выходу внутренней температуры земли, а ее постоянное присутствие позволяет ее поглощению другими существами выполнять свои циклы питания..
Это ключевой компонент для поддержания различных уровней жизни на планете. Однако на неестественных уровнях, вызванных чрезмерным выбросом человека, он может в конечном итоге содержать слишком много температуры, создавая парниковый эффект. Тем не менее, это будет иметь решающее значение для сохранения жизни в этих новых условиях.
Перенос углерода между живыми существами
Порядок питания в экосистемах тесно связан с переносом углерода между живыми существами, которые участвуют в этих взаимодействиях..
Например, животные обычно получают углерод от первичных производителей и передают его всем, кто находится выше в цепи.
В конце концов углерод возвращается в атмосферу в виде диоксида углерода, где он участвует в каком-то другом органическом процессе..
Клеточное дыхание
Углерод, наряду с водородом и кислородом, способствует процессу высвобождения энергии через глюкозу в организме, вырабатывая аденозинтрифосфат, который считается источником энергии на клеточном уровне..
Углерод облегчает процесс окисления глюкозы и выделения энергии, превращаясь в сам углекислый газ и выводясь из организма.
фотосинтез
Другое клеточное явление универсального значения - это то, на что способны только растения: фотосинтез; интеграция энергии, поглощенной непосредственно от Солнца, с углеродом, поглощенным из атмосферной среды.
Результатом этого процесса является питание растений и продление их жизненного цикла..
Фотосинтез не только гарантирует жизнь растений, но также способствует поддержанию теплового и атмосферного уровня под определенным контролем, а также обеспечивает пищу для других живых существ..
Углерод играет ключевую роль в фотосинтезе, а также в естественном цикле вокруг живых существ..
Дыхание животных
Хотя животные не могут получать прямую энергию от Солнца для своей пищи, почти все продукты, которые они могут потреблять, содержат в своем составе высокое содержание углерода..
Такое потребление продуктов на основе углерода вызывает у животных процесс, который приводит к выработке энергии для жизни.
Подача углерода животным через пищу обеспечивает непрерывное производство клеток у этих существ..
В конце процесса животные могут выделять углерод в виде отходов в виде углекислого газа, который затем поглощается растениями для осуществления своих собственных процессов..
Естественное разложение
Живые существа действуют как большие запасы углерода в течение своей жизни; атомы всегда работают над непрерывной регенерацией самых основных компонентов организма.
Когда существо умирает, углерод начинает новый процесс, который возвращается в окружающую среду и используется повторно..
Есть некоторые маленькие организмы, называемые дезинтеграторами или разлагающими веществами, которые обнаруживаются как на суше, так и в воде, и несут ответственность за поглощение остатков тела без жизни, а также за хранение атомов углерода, а затем за выброс их в окружающую среду..
Океанический регулятор
Углерод также присутствует в больших океанских телах планеты, как правило, в форме бикарбонат-ионов; результат растворения углекислого газа, присутствующего в атмосфере.
Углерод подвергается реакции, которая переводит его из газообразного состояния в жидкое и превращается в бикарбонат-ионы..
В океанах бикарбонат-ионы функционируют в качестве регуляторов рН, необходимых для создания идеальных химических условий, способствующих формированию морской флоры и фауны различных размеров, освобождая место для пищевых цепей океанических видов..
Углерод может быть выпущен из океана в атмосферу через поверхность океана; однако эти количества очень малы.
Значение углерода в жизни. Биологические молекулы.
Информация
Химические свойства
Это водородное соединение, входящее в группу биологических молекул, молярная масса и молекулярная масса которого - 12,011, температура плавления составляет 3550 градусов.
Степень окисления данного элемента может быть: 4, 3, 2, 1, 0, -1, -2, -3, -4, а плотность составляет 2,25 г/см3.
В агрегатном состоянии углерод твердое вещество, а кристаллическая решетка атомная.
Углерод имеет следующие аллотропные модификации:
Пребывая в нормальных условиях, элемент инертен и во взаимодействие с металлами и неметаллами вступает при повышенных температурах:
- взаимодействует с металлами, вследствие чего образуются карбиды,
- вступает в реакцию с фтором (галоген),
- при повышенных температурах взаимодействует с водородом и серой,
- при повышении температуры обеспечивает восстановление металлов и неметаллов из оксидов,
- при 1000 градусах вступает во взаимодействие с водой,
- при повышении температуры горит.
Физиологическая роль кислорода
Содержание кислорода в организме взрослого человека составляет около 62% от массы тела (43 кг на 70 кг массы тела).
Вместе с водородом кислород образует молекулу воды, содержание которой в организме взрослого человека в среднем составляет около 55-65%.
Кислород входит в состав белков, нуклеиновых кислот и других жизненно-необходимых компонентов организма. Кислород необходим для дыхания, окисления жиров, белков, углеводов, аминокислот, а также для многих других биохимических процессов.
Обычный путь поступления кислорода в организм лежит через легкие, где этот биоэлемент проникает в кровь, поглощается гемоглобином и образует легко диссоциирующее соединение — оксигемоглобин, а затем из крови поступает во все органы и ткани. Кислород поступает в организм также и в связанном состоянии, в виде воды.
Физиологическая роль азота
В тело человека углерод попадает вместе с пищей, в течение суток - 300 г. А общее количество вещества в человеческом организме составляет 21% от массы тела.
Из данного элемента состоят на 2/3 мышцы и 1/3 костей. А выводится из тела газ вместе с выдыхаемым воздухом либо же с мочевиной.
Стоит отметить: без этого вещества жизнь на Земле невозможна, ведь углерод составляет связи, помогающие организму бороться с губительным влиянием окружающего мира.
Таким образом, элемент способен составлять продолжительные цепи либо же кольца атомов, которые представляют собой основу для множества других важных связей.
Азот необходим всем живым организмам для синтеза азотсодержащих строительных блоков — аминокислот и азотистых оснований, из которых образуются белки и нуклеиновые кислоты. Сине-зеленые водоросли усваивают газообразный азот из атмосферного воздуха. Растения добывают азот из почвы, в виде растворимых нитратов и соединений аммиака.
Схема обмена азота в организме человека представлена на рисунке.
Содержание азота в организме взрослого человека составляет около 3% от массы тела (2,1 кг на 70 кг массы тела).
Азот поступает в организм с пищевыми продуктами, в состав которых входят белки и другие азотсодержащие вещества. Эти вещества расщепляются в желудочно-кишечном тракте и затем всасываются в виде аминокислот и низкомолекулярных пептидов, из которых организм строит собственные аминокислоты и белки. Вместе с тем, организм человека не способен синтезировать некоторые необходимые для жизни аминокислоты и получает их с пищей «в готовом виде».
Азот (в виде аминогруппы -NH2) входит в состав различных биолигандов, играющих огромную роль в процессах жизнедеятельности (аминокислоты, биогенные амины, нуклеотиды, нуклеиновые кислоты). Одним из конечных продуктов метаболизма этих веществ является аммиак МНз- Из организма азот выводится вместе с мочой, калом, выдыхаемым воздухом, а также с потом, слюной и волосами. В моче азот содержится в основном в виде мочевины.
Физиологическая роль азота в организме ассоциируется, прежде всего, с белками и аминокислотами, их метаболизмом, участием в жизненно-важных процессах и влиянием на эти процессы. Аминокислоты являются исходными соединениями при биосинтезе гормонов, витаминов, медиаторов, пигментов, пуриновых и пиримидиновых оснований и т. д. Белки в пересчете на сухой вес составляют 44% от массы тела.
Изменения в содержании белков и аминокислот, расстройства их метаболизма могут быть вызваны различными причинами. Среди этих причин — их недостаточное (или избыточное) поступление, нарушение переваривания и всасывания белка в желудочно-кишечном тракте, расстройство процессов экскреции азота и его соединений.
Интегральным показателем состояния белкового обмена является азотистый баланс, т. е. разница между количествами азота, поступающего извне и выводимого из организма за сутки. Сдвиги в обмене белков сопровождаются разнообразными клиническими проявлениями. Известны многочисленные аминоацидопатии — последствия нарушения промежуточного обмена аминокислот (фенинилаланина, лейцина, валина и др.).
Имеются джанные и о биорегулирующей роли азота в организме.
В последние годы оксид азота (NO) воспринимается как один из важнейших иммунотропных медиаторов. NO синтезируется из аминокислоты L-аргинина в присутствии фермента NO-синтетазы. Главным источником и местом образования NO в организме является эндотелий, общая масса которого в теле человека достигает 1,5 кг.
Функции оксида азота в организме весьма многообразны. NO участвует в поддержании системной и локальной гемодинамики, способствует снижению повышенного тонуса гладкой мускулатуры сосудов и обеспечивает поддержание нормального уровня артериального давления. NO выступает в роли нейротрансмиттера в желудочно-кишечном тракте, мочевыводящей и половой системе, активируя цикло-ГМФ.
При иммунном ответе NO является стимулятором фагоцитоза и уничтожения внутриклеточных паразитов. При сепсисе, под влиянием цитокинов, происходит высвобождение NO в больших количествах, что способствует развитию септического шока. Оксид азота играет важнейшую роль медиатора, в патогенезе бронхиальной астмы, хронического гломерулонефрита, туберкулеза, рассеянного склероза, болезни Крона, различных опухолей, а также СПИДа.
NO участвует в деструкции и метаболизме ферментов, содержащих железо, кобальт, марганец, цинк. Именно благодаря способности NO инактивировать Fe-содержащие ферменты происходит гибель внутриклеточных микроорганизмов, жизнедеятельность которых зависит от присутствия железа и других биоэлементов. Очевидно, что эта функция NO является универсальной и отводит NO решающую роль в удалении «стареющих» молекул цитохромов, каталазы, гемоглобина, а также в индукции апоптоза в клетках, где повышается уровень свободного железа.
Права на статью принадлежат ООО «Электронная Медицина».
История открытия
Углерод использовался людьми с давних времен. Грекам был известен графит и уголь, а алмазы впервые нашлись в Индии. К слову, в качестве графита люди часто принимали схожие по виду соединения. Но даже несмотря на это, графит широко использовался для письма, ведь даже слово «графо» с греческого языка переводится как «пишу».
В настоящее время графит используется так же в письме, в частности его можно встретить в карандашах. В начале 18 века в Бразилии началась торговля алмазами, были открыты многие месторождения, а уже во второй половине 20 века люди научились получать ненатуральные драгоценные камни.
На настоящий момент ненатуральные алмазы используются в промышленности, а настоящие - в ювелирной сфере.
Нахождение в природе углерода
Элемент и его соединения можно встретить повсюду. В первую очередь отметим, что вещество составляет 0,032% от общего количества земной коры.
Одиночный элемент можно встретить в каменном угле. А кристаллический элемент находится в аллотропных модификациях. Также в воздухе постоянно растет количество углекислого газа.
Большую концентрацию элемента в окружающей среде можно встретить в качестве соединений с различными элементами. Например, двуокись углерода содержится в воздухе в количестве 0,03%. В таких минералах как известняк или же мрамор, содержатся карбонаты.
Все живые организмы несут в себе соединения углерода с иными элементами. К тому же остатки живых организмов становятся такими отложениями, как нефть, битум.
Применение углерода
Соединения этого элемента широко используются во всех сферах нашей жизни и перечислять их можно бесконечно долго, поэтому мы укажем несколько из них:
Углерод — основа жизни всех органических молекул
Углерод — элемент номер шесть. Прямо в середине первой строки периодической таблицы химических элементов. Ну и что? Углерод основа жизни - это самый важный элемент живых организмов. Без этого элемента жизнь, какой мы ее знаем, не существовала бы.
Как вы увидите, шестой элемент периодической таблицы является центральным в соединениях, необходимых для жизни.
Значение углерода
Соединение, содержащееся главным образом в живых организмах, известно как органическое соединение.
Органические соединения составляют клетки и другие структуры организмов и осуществляют жизненные процессы. Углерод является основным элементом в органических соединениях, поэтому элемент необходим для жизни на Земле. Углерод основа жизни и она, какой мы ее знаем, не могла бы существовать. Теоретически, вроде бы возможны другие формы жизни, но человечество их не знает.
Соединения
Соединение — это вещество, состоящее из двух или более элементов. Соединение имеет уникальный состав, который всегда один и тот же. Мельчайшая частица соединения называется молекулой. Рассмотрим в качестве примера воду. Молекула воды всегда содержит один атом кислорода и два атома водорода. Состав воды выражается химической формулой H2O. Вода не является органическим соединением. Молекула воды всегда имеет такой состав: один атом кислорода и два атома водорода.
Что заставляет атомы молекулы воды «слипаться» вместе? Ответ — химические связи. Химическая связь-это сила, которая удерживает молекулы вместе. Химические связи образуются, когда вещества вступают в реакцию друг с другом. Химическая реакция-это процесс, который превращает одни химические вещества в другие. Для образования соединения необходима химическая реакция. Для разделения веществ в соединении необходима еще одна химическая реакция.
Почему этот элемент главный для жизни
Почему углерод так важен для жизни? Причина — способность образовывать устойчивые связи со многими элементами, в том числе и с самим собой. Это свойство позволяет шестому элементу образовывать огромное разнообразие очень больших и сложных молекул.
Однако миллионы органических соединений можно разделить всего на четыре основных типа: углеводы, липиды (жиры), белки и нуклеиновые кислоты.
Вы можете сравнить четыре типа в таблице ниже:
Углеводы, белки и нуклеиновые кислоты-это крупные молекулы (макромолекулы), построенные из более мелких молекул (мономеров) в результате реакций дегидратации. В реакции дегидратации вода удаляется по мере соединения двух мономеров.
Возникновение «жизненного» элемента углерода
Каждый атом углерода, находящийся на Земле и во Вселенной, возник в ядре красных гигантов при температуре около 100 миллионов градусов.
Атомы углерода как сказано выше, являются основой любого живого организма, ибо обладают способностью соединяться в длинные цепочки и создавать сложные органические молекулы.
Углеродные атомы, из которых построен человеческий организм и биосфера в целом, возникали в те далекие времена, когда еще не существовали Солнце и Солнечная система, когда не было еще даже полимерной цепи, из которой позднее родилось Солнце и все его семейство. Именно в звездах-гигантах возникали тогда из атомов гелия атомы углерода. Это произошло более семи миллиардов лет тому назад. Из звезд атомы углерода потом попали в межзвездное пространство. Там они смешались с межзвездным веществом, из которого позднее возникли полимерные цепи, включая и создание нашей Солнечной системы.
Таким образом, углерод основа жизни которая переместилась из недр старых красных гигантов на нашу планету, а отсюда в земные растения и, наконец, вместе с пищей — в человеческий организм. Именно тогда зародилась жизнь на Земле.
Можно сказать, что без красных гигантов, существовавших семь миллиардов лет назад, на Земле не было бы углерода, а, следовательно, и жизни. Итак, с точки зрения астрономии нашими далекими предками являются именно красные гиганты.
Углерод в природе, где он находится и как, свойства, использование
углерод в природе это может быть найдено в алмазах, нефти и граффити, среди многих других сценариев. Этот химический элемент занимает шестое место в периодической таблице и находится в горизонтальном ряду или периоде 2 и столбце 14. Он неметаллический и четырехвалентный; то есть вы можете установить 4 химические связи общих электронов или ковалентных связей.
Углерод - это элемент с наибольшим изобилием в земной коре. Это изобилие, его уникальное разнообразие в образовании органических соединений и его исключительная способность образовывать макромолекулы или полимеры при температурах, обычно встречающихся на Земле, делают его общим элементом всех известных форм жизни.
Углерод существует в природе как химический элемент без объединения в форме графита и алмаза. Тем не менее, по большей части он объединяется с образованием химических соединений углерода, таких как карбонат кальция (CaCO).3) и другие соединения в нефти и природном газе.
Он также образует несколько минералов, таких как антрацит, уголь, лигнит и торф. Наибольшее значение углерода заключается в том, что он представляет собой так называемый «строительный блок жизни» и присутствует во всех живых организмах..
- 1 Где находится углерод и в какой форме?
- 1.1 Кристаллические формы
- 1.2 Аморфные формы
- 1.3 Нефть, природный газ и битум
- 2.1 Химический символ
- 2.2 Атомный номер
- 2.3 Физическое состояние
- 2,4 Цвет
- 2.5 Атомная масса
- 2.6 Точка плавления
- 2.7 Точка кипения
- 2.8 Плотность
- 2.9 Растворимость
- 2.10 Электронная конфигурация
- 2.11 Количество электронов во внешнем или валентном слое
- 2.12 Емкость канала
- 2.13 Катенасьон
- 3.1 Фотосинтез
- 3.2 Дыхание и разложение
- 3.3 Геологические процессы
- 3.4 Вмешательство человеческой деятельности
- 4.1 Нефть и природный газ
- 4.2 Графит
- 4.3 Алмаз
- 4.4 Антрацит
- 4.5 каменный уголь
- 4.6 лигнит
- 4.7 Торф
Где находится углерод и в какой форме?
Помимо того, что он является химическим компонентом, общим для всех форм жизни, углерод в природе присутствует в трех кристаллических формах: алмаз, графит и фуллерен..
Есть также несколько аморфных минеральных форм угля (антрацит, лигнит, уголь, торф), жидких форм (разновидности масел) и соды (природный газ)..
Кристаллические формы
В кристаллических формах атомы углерода объединяются, образуя упорядоченные структуры с геометрическим пространственным расположением.
графит
Это мягкий сплошной черный цвет с блеском или металлическим блеском теплостойким (огнеупорным). Его кристаллическая структура представляет собой атомы углерода, соединенные в гексагональные кольца, которые, в свою очередь, соединяются вместе, образуя листы.
Месторождения графита редки и были обнаружены в Китае, Индии, Бразилии, Северной Корее и Канаде..
бриллиант
Это очень твердое твердое вещество, прозрачное для прохождения света и намного более плотное, чем графит: значение плотности алмаза эквивалентно почти в два раза больше, чем у графита.
Атомы углерода в алмазе соединяются в тетраэдрической геометрии. Аналогично, алмаз сформирован из графита, подвергнутого условиям очень высоких температур и давлений (3000 ° С и 100 000 атм).
Большая часть алмазов находится на глубине от 140 до 190 км в мантии. Через глубокие извержения вулканов магма может переносить их на расстояния, близкие к поверхности.
Алмазные месторождения имеются в Африке (Намибия, Гана, Демократическая Республика Конго, Сьерра-Леоне и Южная Африка), Америке (Бразилия, Колумбия, Венесуэла, Гайана, Перу), Океании (Австралия) и Азии (Индия)..
фуллерены
Это молекулярные формы углерода, которые образуют кластеры из 60 и 70 атомов углерода в почти сферических молекулах, похожих на футбольные мячи.
Есть также фуллерены, меньшие, чем 20 атомов углерода. Некоторые формы фуллеренов включают углеродные нанотрубки и углеродные волокна.
Аморфные формы
В аморфных формах атомы углерода не объединяются, образуя упорядоченную и правильную кристаллическую структуру. Вместо этого они даже содержат примеси от других элементов.
антрацит
Это самый старый метаморфический минеральный уголь (который происходит от модификации горных пород под воздействием температуры, давления или химического воздействия жидкостей), поскольку его образование относится к первичной или палеозойской эре, каменноугольному периоду..
Антрацит - это аморфная форма углерода, в которой содержание этого элемента выше: от 86 до 95%. Серо-черный и металлический глянец, тяжелый и компактный.
Как правило, антрацит находится в зонах геологической деформации и составляет приблизительно 1% мировых запасов угля..
Географически он встречается в Канаде, США, Южной Африке, Франции, Великобритании, Германии, России, Китае, Австралии и Колумбии..
Каменный уголь
Это минеральный уголь, осадочная порода органического происхождения, образование которой относится к эпохам палеозоя и мезозоя. Содержание углерода составляет от 75 до 85%..
Это черный, он характеризуется непрозрачностью и имеет матовый и жирный вид, так как он содержит большое количество битумных веществ. Образуется при сжатии лигнита в палеозойскую эру, в каменноугольный и пермский периоды..
Это самая распространенная форма угля на планете. В Соединенных Штатах, Великобритании, Германии, России и Китае имеются крупные месторождения угля..
бурый уголь
Это ископаемый минеральный уголь, образовавшийся в третичном возрасте из торфа при сжатии (высокие давления). Он имеет более низкое содержание углерода, чем уголь, от 70 до 80%.
Это немного компактный материал, рассыпчатый (характеристика, которая отличает его от других углеродных минералов), коричневый или черный. Его текстура похожа на древесину, а содержание углерода колеблется от 60 до 75%..
Это топливо с легким воспламенением, с низкой теплотворной способностью и более низким содержанием воды, чем торф.
В Германии, России, Чехии, Италии (в регионах Венето, Тоскана, Умбрия) и Сардинии имеются важные шахты с бурым углем. В Испании месторождения лигнита находятся в Астурии, Андорре, Сарагосе и Ла-Корунья.
торф
Это материал органического происхождения, образование которого происходит из четвертичной эры, гораздо более поздней, чем предыдущие угли..
Это коричневато-желтый цвет и выглядит как губчатая масса низкой плотности, в которой вы можете увидеть остатки растений от того места, где они произошли.
В отличие от перечисленных выше углей, торф не происходит в результате процессов карбонизации древесного материала или дерева, а образуется в результате скопления растений - в основном трав и мхов - в болотистых районах в результате процесса карбонизации, который еще не завершен..
Торф имеет высокое содержание воды; по этой причине требует использования сушки и уплотнения перед использованием.
Имеет низкое содержание углерода (всего 55%); следовательно, он имеет низкую энергетическую ценность. Когда он подвергается сгоранию, его остаток золы в изобилии и выделяет много дыма.
Существуют важные месторождения торфа в Чили, Аргентине (Огненная Земля), Испании (Эспиноса-де-Серрато, Паленсия), Германии, Дании, Голландии, России, Франции..
Нефть, природный газ и битум
Масло (с латыни Petrae, что означает "камень"; и олеум, что означает «нефть»: «каменная нефть») представляет собой смесь многих органических соединений - большинства углеводородов, - образующихся в результате анаэробного бактериального разложения (в отсутствие кислорода) органического вещества..
Он образовался в недрах, на больших глубинах и в особых условиях, как физических (высокие давления и температуры), так и химических (присутствие определенных каталитических соединений) в процессе, который занял миллионы лет.
Во время этого процесса C и H высвобождались из органических тканей и снова объединялись, образуя огромное количество углеводородов, которые смешиваются в соответствии с их свойствами, образуя природный газ, нефть и битум..
Нефтяные месторождения планеты расположены в основном в Венесуэле, Саудовской Аравии, Ираке, Иране, Кувейте, Объединенных Арабских Эмиратах, России, Ливии, Нигерии и Канаде..
Есть запасы природного газа в России, Иране, Венесуэле, Катаре, Соединенных Штатах, Саудовской Аравии и Объединенных Арабских Эмиратах, среди других..
Физико-химические свойства
Среди свойств углерода можно отметить следующие:
Химический символ
С.
Атомный номер
6.
Физическое состояние
Твердый, при нормальных условиях давления и температуры (1 атмосфера и 25 ° C).
цвет
Серый (графит) и прозрачный (алмаз).
Атомная масса
Точка плавления
Точка кипения
плотность
растворимость
Нерастворим в воде, растворим в четыреххлористом углероде CCl4.
Электронная конфигурация
Количество электронов во внешнем слое или валентности
4.
Пропускная способность
сцепление
Обладает способностью образовывать химические соединения в длинных цепях..
Биогеохимический цикл
Углеродный цикл представляет собой круговой биогеохимический процесс, посредством которого углерод может обмениваться между биосферой, атмосферой, гидросферой и земной литосферой..
Знание этого циклического углеродного процесса на Земле позволяет продемонстрировать действия человека в этом цикле и его последствия для глобального изменения климата..
Углерод может циркулировать между океанами и другими водоемами, а также между литосферой, почвой и недрами, атмосферой и биосферой. В атмосфере и гидросфере углерод существует в газообразной форме в виде СО2 (углекислый газ).
Углерод в атмосфере поглощается наземными и водными организмами экосистем (фотосинтезирующими организмами)..
Фотосинтез позволяет химической реакции между СО происходить2 и вода, опосредованная солнечной энергией и хлорофиллом из растений, для производства углеводов или сахаров. Этот процесс превращает простые молекулы с низким содержанием энергии CO2, H2O и кислород O2, в сложных молекулярных формах высокой энергии, которые являются сахарами.
Гетеротрофные организмы, которые не могут осуществлять фотосинтез и являются потребителями в экосистемах, получают углерод и энергию при питании самих производителей и других потребителей..
Дыхание и разложение
Дыхание и разложение - это биологические процессы, которые выделяют углерод в окружающую среду в форме CO2 или СН4 (метан образуется при анаэробном разложении, то есть в отсутствие кислорода).
Геологические процессы
В результате геологических процессов и, как следствие, с течением времени, углерод анаэробного разложения может превращаться в ископаемое топливо, такое как нефть, природный газ и уголь. Кроме того, углерод также является частью других минералов и горных пород..
Вмешательство человеческой деятельности
Когда человек использует сжигание ископаемого топлива для получения энергии, углерод возвращается в атмосферу в виде огромных количеств СО2 которые не могут быть ассимилированы естественным биогеохимическим циклом углерода.
Это избыток СО2 вызванный деятельностью человека отрицательно влияет на баланс углеродного цикла и является основной причиной глобального потепления.
приложений
Использование углерода и его соединений чрезвычайно разнообразно. Наиболее выдающийся со следующим:
Нефть и природный газ
Основное экономическое использование углерода заключается в его использовании в качестве углеводородного ископаемого топлива, такого как газообразный метан и нефть..
Масло перегоняется на нефтеперерабатывающих заводах для получения различных производных, таких как бензин, дизельное топливо, керосин, асфальт, смазочные материалы, растворители и другие, которые, в свою очередь, используются в нефтехимической промышленности, которая производит сырье для пластмасс, удобрений, фармацевтической и лакокрасочной промышленности. среди прочих.
графит
Графит используется в следующих действиях:
- Используется при изготовлении карандашей, смешанных с глинами.
- Это часть производства огнеупорных кирпичей и тиглей, термостойких.
- В различных механических устройствах, таких как шайбы, подшипники, поршни и прокладки.
- Это отличная твердая смазка.
- Из-за его электрической проводимости и его химической инертности, он используется в производстве электродов, углей электродвигателей..
- Используется в качестве модератора на атомных электростанциях.
бриллиант
Алмаз обладает особенно исключительными физическими свойствами, такими как более высокая степень твердости и теплопроводность, известные до сих пор..
Эти особенности позволяют промышленное применение в инструментах, используемых для резки и полировки инструментов для их высокой абразивности.
Его оптические свойства, такие как прозрачность и способность расщеплять белый свет и преломлять свет, дают ему множество применений в оптических приборах, например, в производстве линз и призм..
Характерная яркость, полученная из его оптических свойств, также очень ценится в ювелирной промышленности..
антрацит
Антрацит с трудом поджигается, медленно горит и требует много кислорода. Его сгорание производит небольшое пламя бледно-синего цвета и выделяет много тепла.
Несколько лет назад антрацит использовался в термоэлектростанциях и для отопления домов. Его использование имеет такие преимущества, как производство небольшого количества золы или пыли, небольшое количество дыма и медленный процесс сгорания..
Из-за высокой экономической стоимости и дефицита антрацит был заменен природным газом на термоэлектростанциях и электроэнергией в домах..
Каменный уголь
Уголь используется в качестве сырья для получения:
- Кокс, топливо из доменных печей сталелитейных заводов.
- Креозот, полученный путем смешивания смолистых дистиллятов из каменного угля и используемый в качестве защитного герметика для древесины, подверженной атмосферным воздействиям.
- Крезол (химически метилфенол) извлекают из угля и используют в качестве дезинфицирующего и антисептического средства,
- Другие производные, такие как газ, смола или смола, а также соединения, используемые в производстве парфюмерии, инсектицидов, пластмасс, красок, шин и дорожных покрытий, среди прочих.
бурый уголь
Лигнит представляет собой топливо среднего качества. Струя, разновидность лигнита, характеризуется очень компактным из-за длительного процесса карбонизации и высокого давления и используется в ювелирном деле и украшении..
Читайте также:
- Железодефицитная анемия
- Распределение лекарств в организме в зависимости от пути введения
- Зубные пасты. Методика чистки зубов.
- Полип толстой кишки: причины, симптомы и лечение
- Врожденный и приобретенный токсоплазмоз глаз. Клиника