Туберкулез не только социальная проблема
Туберкулез — проблема не только социальная.
кандидат биологических наук
Институт общей генетики им. Н.И. Вавилова РАН, Москва
Динамика заболеваемости туберкулезом в России
(вверху — всего населения, в середине — детей) и смертности от него.
По данным ВОЗ, туберкулезом инфицирована одна треть жителей нашей планеты. Ожидается, что к 2010 г. будет около 1 млрд вновь инфицированных, более 200 млн заболевших, а 70 млн умрет от этой болезни. К сожалению, таковы печальная статистика и не менее пессимистический прогноз. Однако не надо забывать, что впечатляющие успехи в научных разработках по молекулярной биологии туберкулеза могут быть реально использованы для точной диагностики и производства более эффективных вакцин и новых лечебных средств.
Особенности строения и функционирования возбудителя туберкулеза
В конце 1998 г. усилиями огромного коллектива молекулярных биологов из Великобритании, США, Франции и Дании полностью расшифрован геном Mycobacterium tuberculosis H37Rv — наиболее изученного лабораторного штамма (Cole S.T., Brosch R., Parkhill J. et al. // Nature. 1998. V.393. №6685. P.537—544). Этот самый медленно растущий на искусственных средах микроорганизм имеет довольно большой геном (4 411 529 пар нуклеотидов), 65.6% которого составляют гуанин и цитозин, что соответствующим образом отражается на аминокислотном составе бактериальных белков, которые в свою очередь определяют специфические особенности заболевания. Из 4000 генов 60 кодируют функциональные компоненты РНК: уникальный рибосомальный РНК оперон, 10Sа РНК, участвующий в деградации белков с нетипичной матричной РНК, РНК компонент фермента РНК-азы Р, а также 45 транспортных РНК (тРНК).
Причиной медленного роста микобактерий на искусственных средах, вероятно, служит необычайно большое расстояние между оперонами rrn и сайтами репликации oriC . Гены, кодирующие тРНК, которые узнают 43 из 61 возможных смысловых кодонов, распределены по всему геному. Интересно, что ни одна из многочисленных тРНК туберкулеза не узнает аденин в первой позиции антикодона, что в конечном итоге влияет на ход трансляции. Помимо большого количества гуанина и цитозина в геноме M. tuberculosis имеется множество вставок, повторяющихся по всему геному: IS 6110 — 16 раз, IS 1081 — 6 раз, а также другие повторы с меньшим числом копий. Устойчивость бактериальных клеток к лизису в культуральной среде определяют две профаговые последовательности. Выяснилось, что бактериальная клетка синтезирует все необходимые для своего обмена компоненты — незаменимые аминокислоты, витамины, ферменты и кофакторы. В ее геноме представлены гены самых разных ферментов: липидного обмена, гликолиза, цикла трикарбоновых кислот и глиоксилатного пути. По сравнению с другими видами бактерий у M. tuberculosis повышена активность ферментов липогенеза. Имеются два гена, которые кодируют гемоглобинподобные белки, играющие роль антиокислительных протекторов или ловушек избытка клеточного кислорода. Эти особенности способствуют быстрой адаптации туберкулезных бацилл к резким изменениям окружающей среды.
Несмотря на полную расшифровку структуры генома палочки Коха, пока не ясен механизм ее патогенности. Понятно только, что в патогенезе играют роль не единичные гены и даже не согласованное действие двух или же нескольких факторов. Ранее было известно, что за вирулентность микобактерий туберкулеза ответственны: ферменты каталаза и пероксидаза, нейтрализующие действие активного кислорода, который продуцируют фагоциты; ген mce , кодирующий макрофаг-колониобразующий фактор и sigma -фактор sig A ( aka rpoV ), мутация которого может привести к ослаблению жизнеспособности бактерий, а кроме того, клеточная стенка бактерии. Сложность ее состава не позволила пока выяснить механизм вирулентности. Анализ секрета микобактерий показал, что помимо протеаз патогенными свойствами могут обладать фосфолипаза С, липаза и эстераза — ферменты, атакующие клеточные и вакуолярные мембраны тканей человека.