Гуморальный иммунный ответ на вирусы
У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.
Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.
Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств - количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.
Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию - лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.
Если лихорадка - общий ответ организма на вирусную инфекцию, то воспаление - это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.
Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше "задается" клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул - нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.
При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов.
Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.
Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.
Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.
Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.
Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин - рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.
Пик продукции цитокинов после стимуляции макрофагов наблюдается через 1-2,6,18-48 ч, а пик продукции интерферон-гамма наступает через 20 ч после первого выхода цитокина из клетки. Поскольку интерферон-гамма ингибирует миелопоэз, то нормализация числа нейтрофилов после элиминации инфекта связана с системой регуляции нейтропоэза. Через 6 ч после стимуляции интерферон-альфа для выполнения своих функций NK-rклетки (активность которых регулируется ИЛ-1, 4, 2) продуцируют гамма-интерферон, в результате чего происходит лизис инфицированных клеток.
При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.
Первый ответ клеток на цитокин - это быстрая индукция генов раннего ответа ("immediate early" генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.
Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа - это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма - естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител - иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.
Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).
ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.
Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов - низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.
В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.
Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.
Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.
- Грипп и другие респираторные вирусные инфекции / под ред. О.И. Киселева, И.Г. Мариничева, А.А. Сомининой. - СПб, 2003.
- Дриневский В.П., Осидак Л.В., Цыбалова Л.М. Острые респираторные инфекции у детей и подростков // Практическое руководство под редакцией О.И. Киселева. - СПб, 2003.
- Железникова Г.Ф., Иванова В.В., Монахова Н.Е. Варианты иммунопатогенеза острых инфекций у детей. СПб, 2007. - 254 с.
- Ершов Ф.И. Грипп и другие ОРВИ // Антивирусные препараты. Справочник. - М., 2006. - С.226-247.
- Ершов Ф.И., Романцов М.Г. Антивирусные средства в педиатрии. - М., 2005. - С.159-175.
- Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы (от молекул до лекарств). М., 2005. - С.287-292.
- Иванова В.В. Острые респираторно-вирусные заболевания // Инфекционные болезни у детей. - М., 2002.
- Онищенко Г.Г., Киселев О.И., Соминина А.А. Усиление надзора и контроля за гриппом как важнейший элемент подготовки к сезонным эпидемиям и очередной пандемии. - М., 2004. - С.5-9.
- Об утверждении стандарта медицинской помощи больным гриппом, вызванным идентифицированным вирусом гриппа (грипп птиц) // Приказ Минздравсоцразвития №460 от 07.06.2006 г.
- Романцов М.Г., Ершов Ф.И.Часто болеющие дети: Современная фармакотерапия. - М., 2006. - 192 с.
- Стандартизированные принципы диагностики, лечения и экстренной профилактики гриппа и других острых респираторных инфекций у детей / под ред. О.И. Киселева. - Санкт-Петербург. - 2004. - С.82-95.
- Лекарственные средства в фармакотерапии патологии клетки / под ред. Т.Г.Кожока. - М., 2007.
Гуморальный противовирусный иммунный ответ в основном рассматривают как благоприятный для организма процесс, который в сочетании с клеточными иммунными механизмами, как правило, способствует выздоровлению. Однако существуют вирусы (герпесвирусы, гепатита В и др.), которые, несмотря на иммунный статус, длительно персистируют в организме хозяина. При некоторых вирусных инфекциях возможны иммунопатологические реакции. Так, антитела против вируса денге способствуют повышению его вирулентности у частично иммунных особей. Опосредованное антителами усиление репликации вируса денге в макрофагах объясняется повышенным связыванием иммунных комплексов с Fc-рецепторами клеточной поверхности. Иммунокомплексная патология лежит в основе патогенеза ряда вирусных инфекций, в том числе при лимфоцитарном хориоменингите и алеутской болезни норок. Следовательно, одним из важных аспектов защиты от данных инфекций является разработка высокоиммуногенных вакцин.
Проникновение вирусов в организм, как правило, сопровождается образованием вируснейтрализующих антител. Исключение составляют ряд вирусов и прежде всего, вирус африканской чумы свиней. Инфицирование этим вирусом не индуцирует синтез вируснейтрализующих антител, хотя в сыворотке крови выявляют комплементсвязывающие, преципитирующие и задерживающие гемадсорбцию антитела. Отсутствие вируснейтрализующих антител обусловливает неспособность организма связывать и элиминировать циркулирующий вирус, что сопровождается высокой летальностью и сводит на нет попытки создания эффективной вакцины.
Важное значение антител в защите от заболевания можно продемонстрировать следующим примером. Дети с тяжелой агаммаглобулинемией выздоравливают нормально от кори, но очень плохо защищены от паралитического полиомиелита, несмотря на прививку живой полиовирусной вакциной. Такие дети имели нормальный, опосредованный клетками и интерфероном иммунитет, нормальный фагоцитоз и нормальную систему комплемента, но не могли образовывать антитела, которые особенно важны, чтобы вирус с током крови не попал в нервную систему. Следует отметить, что полиовирус имеет два органа-мишени: кишечник и центральную нервную систему, которые поражаются в указанной последовательности.
Кроме того, иммунизация живыми вакцинами через слизистые покровы может приводить и к выраженному местному синтезу антител, которые способны эффективно предотвращать локальную колонизацию (например, кишечника энтеропатогенными вирусами, а дыхательного тракта респираторными вирусами), блокируя таким образом развитие инфекции уже на уровне места проникновения и репликации вируса. С учетом указанной взаимосвязи, несомненный интерес представляют вирусы со строго дифференцированным тропизмом в отношении клеток слизистого покрова, в защите которых главенствующая роль принадлежит факторам иммунной системы слизистых покровов.
Среди секреторных и сывороточных антител наибольшее значение имеют вирусспецифические антитела к поверхностным гликопротеинам и, главным образом, к НА. Если антитела к НА нейтрализуют инфекционность вируса, то антитела к NA в основном ограничивают распространение инфекции, снижая ее интенсивность.
Помимо антител к гликопротеинам при респираторной инфекции образуются антитела к внутренним белкам вируса, в основном к нуклеопротеину (NP) и матриксному (М) белку. В отличие от поверхностных штаммоспецифических гликопротеинов, внутренние белки являются типоспецифическими антигенами, то есть индуцируют синтез антител, образующих иммунные комплексы со всеми штаммами вируса одного типа. Несмотря на индукцию гуморального и клеточного ответа, NP-белок вируса гриппа не создавал протективного иммунитета. Протективный эффект при пассивном переносе сывороточных IgG (особенно анти-НА) подтверждает их главную роль в гуморальном иммунитете при гриппе и других респираторных вирусных инфекциях.
Полагают, что свойством различать антигенные детерминанты обладает особый клон Тц-лимфоцитов, наделенный иммунологической памятью, которая усиливается при естественном инфицировании организма. Время полужизни вирусспецифических Тц-лимфоцитов у человека составляет 2—3 года. К специфическим факторам клеточного иммунитета относят также Тц-клетки с гиперчувствительностью замедленного типа. Антителозависимая цитотоксичность определяется всецело наличием антител и является своеобразным связующим звеном между клеточным и гуморальным иммунитетом. Это же положение подтверждается на примере Т-хелперов, которые способствуют продукции как Тц-лимфоцитов, так и антител.
При первичном инфицировании, когда еще не развились специфические факторы защиты, в борьбу с возбудителем включаются клеточные и гуморальные факторы неспецифической резистентности. Индуцируемая вирусом гриппа активность естественных киллеров (NK) обусловлена главным образом НА- и NA-антигенами.
Таким образом, иммунитет при гриппе ассоциируется с развитием гуморального ответа, а также формированием вирусспецифического клеточного иммунитета. Основные факторы гуморального иммунитета - вируснейтрализующие антитела секретов и сыворотки - обеспечивают защитный эффект в основном при реинфекции вирусом, проявляющейся даже спустя много лет после первичного инфицирования. Наибольшее значение для защиты имеют штаммспецифические антитела к НА вируса.
Иммунитет, индуцированный инактивированными гриппозными вакцинами, связывают с действием сывороточных антител. Живые вакцины обеспечивают длительный местный иммунитет слизистых оболочек с синтезом секреторных антител и, кроме того, транзиторный ответ сывороточных антител. Устойчивость организма к респираторным вирусам, как, впрочем, и ко многим другим вирусам, представляет собой многофакторный феномен, обусловленный как специфическими факторами иммунитета, так и неспецифической резистентностью.
- Вернуться в оглавление раздела "Микробиология."
Гуморальный иммунный ответ осуществляется путем выработки антител (иммуноглобулинов – Ig) к чужеродному антигену (от лат. humor – жидкость). Они циркулируют в жидкостях организма и обеспечивают нейтрализацию антигена.
Тимусзависимые антигены (TD – thymus depending-antigens) для выработки антител нуждаются в помощи Т-хелперных лимфоцитов.
Комплекс антигенный пептид+молекула МНС II класса распознается и связывается с Т-хелпером (Тh2) с помощью Т-клеточного рецептора (TcR или ТкР) и ко-рецепторных (CD4, CD28) молекул – адгезинов. Эти процессы сопровождаются активной секрецией цитокинов (ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-5, ИНФ и др.), которые стимулируют процесс размножения В-лимфоцита и образования клона плазматических клеток, вырабатывающих иммуноглобулины только на данный антиген.
Иммунный ответ на тимуснезависимые антигены (ЛПС, бактериальные полисахариды, высокополимерные белки и др.) осуществляется без участия CD4Т-хелперов. В этом процессе участвуют только В-клетки, имеющие антигенраспознающий иммуноглобулиновый рецептор. При этом иммунный ответ развивается быстро, обычно в ранние сроки инфекции, но является менее совершенным. Без участия Т-хелперных клеток продуцируются антитела только одного изотипа (IgM). Аффинность (сила связывания) этих антител низкая, и не образуются клетки памяти.
Процесс образования антител происходит в лимфоидной ткани.
Для гуморального иммунитета характерна выработка специфических антител (иммуноглобулинов).
Антитела – специфические белки гамма-глобулиновой природы, образующиеся в организме в ответ на антигенную стимуляцию и способные специфически взаимодействовать с антигеном (in vivo, in vitro). В соответствии с международной классификацией совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами (Ig).
Уникальность антител заключается в том, что они способны специфически взаимодействовать только с тем антигеном, который вызвал их образование.
Установлено, что Ig являются гликопротеинами сыворотки крови, сосредоточены в γ-глобулиновой фракции и имеют глобулярную вторичную структуру.
Ig характеризуются общим типом строения. Структурной единицей антител является мономер,состоящий из двух легких (L) и двух тяжелых (H) цепей, связанных дисульфидными мостиками. Мономерами являются IgG, IgA (сывороточный), IgD и IgE. У полимерных Ig имеется дополнительная джей-полипептидная цепь, которая объединяет (полимеризует) отдельные субъединицы (в составе пентамера IgM, ди- и тримера секреторного IgA).
По специфичности и способностисвязывать антиген в молекуле Ig выделяют 3 фрагмента:
При определенных условиях эти гипервариабильные области могут также выступать в роли антигенов (идиотипов).
В молекуле Ig меньше двух антигенсвязывающих центров быть не может, но один может быть завернут внутрь молекулы – это неполное антитело. Оно блокирует антиген, и тот не может связаться с полными антителами.
Легкие и тяжелые цепи состоят из отдельных блоков – доменов.В легких (L) цепях - два домена - один вариабельный (V) и один константный (С), в тяжелых (Н) цепях - один V и 3 или 4 (в зависимости от класса Ig) С домена.
Существуют легкие цепи двух типов - каппа и лямбда, они встречаются в различных пропорциях в составе различных (всех) классов иммуноглобулинов.
Выявлено пять классов тяжелых цепей - альфа (с двумя подклассами), гамма (с четырьмя подклассами), эпсилон, мю и дельта. Соответственно обозначению тяжелой цепи обозначается и класс молекул иммуноглобулинов - A, G, Е, М и D. Именно константные области Н-цепей, различаясь по аминокислотному составу у различных классов иммуноглобулинов, в конечном результате и определяют специфические свойства иммуноглобулинов каждого класса.
Видовые антигенные детерминанты характерны для Ig всех особей данного вида (например, кролика, собаки, человека). Они определяются строением легкой и тяжелой цепи, по этим детерминантам можно идентифицировать видовую принадлежность АТ.
Аллотипические антигенные детерминанты являются индивидуальными, т.е. присущими конкретному организму. Они располагаются в легкой и тяжелой полипептидных цепях. Позволяют различать особи внутри одного вида.
У антител, специфичных к антигенным детерминантам, конструкция активных центров неодинакова за счет наличия разнообразных аминокислот в гипервариабельных областях. Это обеспечивает уникальность антигенсвязывающего участка молекулы иммуноглобулина, названного идиотипом (idious – уникальный, не такой как все) антитела.
Следовательно, идиотип антитела – это отражение специфичности антитела по отношению к антигену.
Все молекулы Ig, выделяемые отдельными лимфоцитами и его потомками (клоном), имеют одинаковый идиотип и обозначаются как моноклональныеантитела. К этому уникальному участку также можно получить антитела, которые называются антиидиотипическими.Эти антитела образуются в норме и могут участвовать в регуляции иммунного ответа.
Таким образом, в молекуле Ig различают 3 типа антигенных детерминант – изотипические, аллотипические, идиотипические. Эти детерминанты определяют специфичность антител (около 10 16 –10 9 вариантов) по отношению к разнообразным антигенам. Антигенное разнообразие молекул Ig генетически детерминировано.
1. Специфичность - способность взаимодействия с определенным (своим) антигеном (соответствие эпитопа антигена и активного центра антител).
2. Валентность - количество способных реагировать с антигеном активных центров (это связано с молекулярной организацией – моно- или полимер). Иммуноглобулины могут быть двухвалентными (IgG) или поливалентными (пентамер IgM имеет 10 активных центров). Двух- и более валентные антитела называют полными антителами. Неполные антитела имеют только один участвующий во взаимодействии с антигеном активный центр (блокирующий эффект на иммунологические реакции, например, на агглютинационные тесты). Их выявляют в антиглобулиновой пробе Кумбса, реакции угнетения связывания комплемента.
3. Аффинность - (степень сродства) – это прочность связывания между одним антигенным эпитопом и одним активным центром антитела, зависит от их пространственного соответствия.
4. Авидностьсвязи антигена с антителом – это интегральная характеристика силысвязи цельной молекулы антигена (всех его эпитопов) со всеми активными антигенсвязывающими центрами цельной молекулы антитела. Поскольку антигены часто поливалентны, связь между отдельными молекулами антигена осуществляется с помощью нескольких антител Связывание антигена с антителом основывается на тесном контакте, который обеспечивается ван-дер-ваальсовыми силами (через облако электронов), водородными связями, электростатическим притяжением или гидрофобными связями.
Благодаря уникальной особенности специфически связываться с антигенными детерминантами, Ig выполняют в организме ряд важнейших функций, как форма иммунного реагирования (эффекторная) и фактор регуляции иммунореактивности (регуляторная). При этом необходимо дифференцировать эффекты специфического высокоаффинного взаимодействия и неспецифического (низкоаффинного). Прямые эффекты:
Молекулы Ig присутствуют в организме в растворимой форме в крови и других биологических жидкостях, а также на ЦПМ В-лимфоцита в составе трансмембранного антигенспецифического рецептора. Рецепторные Ig имеют те же изотип и специфичность, что и синтезируемые в межклеточную среду АТ. Структурное отличие от секретируемых АТ заключается в особом, дополнительном М-пептиде, благодаря которому молекула рецепторного Ig фиксируется в ЦПМ иммунокомпетентных клеток.
Читайте также: