К сложноорганизованным вирусам относятся
Вопрос 1. Как устроены вирусы?
Вирусы — это неклеточная форма жизни. Они имеют очень простое строение. Каждый вирус состоит из нуклеиновой кислоты (РНК или ДНК) и белка. Нуклеиновая кислота представляет собой генетический материал вируса; она окружена защитной оболочкой — капсидом. Капсид состоит из белковых молекул и обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Кроме нуклеиновой кислоты внутри капсида могут находиться собственные ферменты вируса. Примером может служить вирус табачной мозаики
(рис. 3).
Рис.3. Вирус табачной мозаики
Его оболочка содержит всего один вид белка с небольшой молекулярной массой.
Сложно организованные вирусы имеют дополнительную оболочку, белковую или липопротеиновую. Иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы. Примером сложно организованных вирусов служат возбудители гриппа (рис. 4) и герпеса (рис. 5).
Рис.4. Вирус гриппа и вирус герпеса
Рис.5. Вирус герпеса
Их наружная оболочка является фрагментом ядерной или цитоплазмптической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду. К сложноорганизованным вирусам относятся вирусы гриппа и ВИЧ, они также имеют дополнительную оболочку, образованную из клеточной мембраны хозяина.
Вопрос 2. Каков принцип взаимодействия вируса и клетки?
Вирус функционирует как внутриклеточный паразит. Он внедряется в клетку, блокирует в ней обмен веществ и использует ее ресурсы (ферменты, запасные вещества) для собственного размножения. Некоторые вирусы способны встраиваться в ДНК хозяина и переходить в скрытое состояние, в течение длительного времени никак не выдавая своего присутствия. В такой форме вирусы даже способны передаваться потомству хозяина.
Вопрос 5. Используя знания о путях распространения вирусных и бактериальных инфекций, предложите пути предотвращения инфекционных заболеваний.
Если заболевание широко распространено на данной территории, целесообразно провести вакцинацию населения. Необходим постоянный медицинский контроль, чтобы быстро обнаружить вспышку заболевания и предотвратить его распространение. Многие инфекции передаются воздушно-капельным путем (например, вирус гриппа). Во время вспышек таких заболеваний имеет смысл использовать ватномарлевые повязки или респираторы.
Есть возбудители заболеваний, которые передаются через предметы обихода, пищу и воду. К ним относятся вирус гепатита А, холерный вибрион, чумная палочка и многие другие. Чтобы избежать заражения, необходимо соблюдать правила личной гигиены: мыть руки перед едой, не пользоваться чужими личными вещами (полотенцем, зубной щеткой), мыть фрукты и овощи, избегать контакта с больными. Необходим постоянный санитарный контроль состояния источников воды и пищевых продуктов, а также дезинфекция помещений, стерилизация инструментов и перевязочного материала.
Существуют заболевания, передающиеся через кровь и другие жидкости тела, в частности ВИЧ и вирус гепатита С. В группы риска по таким заболеваниям попадают наркоманы (часто шприцы используются больше одного раза) и лица, практикующие беспорядочные незащищенные половые контакты. Пока не существует эффективных методов лечения таких заболеваний, поэтому лучшим способом защиты является соблюдение следующих мер предосторожности:
• следует избегать случайных половых связей, а при контактах изолировать себя при помощи презерватива;
• в медицине и косметологии необходимо использовать одноразовые шприцы и тщательно стерилизовать инструменты многоразового использования;
• донорскую кровь следует обязательно проверять на наличие вирусов.
Вирусы относятся к царству Vira.Это
2.не имеющие клеточного строения, белоксинтезирующей системы,
3.содержащие один тип нуклеиновой кислоты (только ДНК или РНК).
4.Вирусы, являясь облигатными внутриклеточными паразитами, размножаются в цитоплазме или ядре клетки.
5.Они являются автономными генетическими структурами и отличаются особым, разобщенным (дизъюнктивным), способом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы.
6.Сформированная вирусная частица называется вирионом.
Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий.
Форма вирионов может быть различной (рис.):
1.палочковидной (вирус табачной мозаики),
2.пулевидной (вирус бешенства),
3.сферической (вирусы полиомиелита, ВИЧ),
4.нитевидной (филовирусы),
5.в виде сперматозоида (многие бактериофаги).
Размеры вирусов определяют:
1. с помощью электронной микроскопии,
2. методом улырафильтрации через фильтры с известным диаметром пор,
3. методом ультрацентрифугирования.
Наиболее мелкими вирусами являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее крупным — вирус натуральной оспы (около 350 нм).
Различают ДНК- и РНК-содержащие вирусы.Они обычно гаплоидны, т. е. имеют один набор генов. Исключением являются ретро-вирусы, имеющие диплоидный геном. Геном вирусов содержит от шести до нескольких сотен генов и представлен различными видами нуклеиновых кислот:
1.двунитевыми,
2.однонитевыми,
3.линейными,
4.кольцевыми,
5.фрагментированными.
Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
Имеются также РНК-содержащие вирусы с отрицательным(минус-нить РНК) геномом.Минус-нить РНК этих вирусов выполняет только наследственную функцию.
Геном вирусов способен включаться в геном клетки в виде провируса, проявляя себя генетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов, например, вирусов герпеса, могут находиться в цитоплазме инфицированных клеток, напоминая плазмиды.
Различают:
1. просто устроенные вирусы (например, вирусы полиомиелита, гепатита А) и
2. сложно устроенные вирусы (например, вирусы кори, гриппа, герпеса, коронавирусы).
Упросто устроенных вирусов (рис.) нуклеиновая кислота связана с белковой оболочкой, называемой капсидом(от лат. capsa—футляр). Капсид состоит из повторяющихся морфологических субъединиц— капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом и вместе называются нуклеокапсидом.
Таким образом, просто устроенные вирусы состоят из нуклеиновой кислоты и капсида. Сложно устроенные вирусысостоят из нуклеиновой кислоты, капсида и липопротеиновой оболочки.
Вирионы имеют:
1.спиральный,
2.икосаэдрический (кубический) или сложный тип симметрии капсида (нуклеокапсида).
Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов). Икосаэдрический типсимметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вируса герпеса).
Капсид и оболочка (суперкапсид) защищают вирионы от воздействия окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с определенными клетками, а также антигенные и иммуногенные свойства вирионов.
Внутренние структуры вирусов называют сердцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, уреовирусов — из белков внутреннего капсида.
В вирусологии используют следующие таксономические категории:
1.семейство (название оканчивается на viridae),
2.подсемейство (название оканчивается на virinae),
3.род (название оканчивается на virus).
Однако названия родов и особенно подсемейств даны не для всех вирусов. Вид вируса не получил биноминального названия, как у бактерий.
В основу классификации вирусов положены следующие категории:
1. тип нуклеиновой кислоты (ДНК илиРНК), ее структура, количество нитей (одна или две), особенности воспроизводства вирусного генома (табл. 2.3),
2. размер и морфология вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (суперкапсида).
3. чувствительность к эфиру и дезоксихолату,
4. место размножения в клетке,
5. антигенные свойства и др.
Вирусы поражают позвоночных и беспозвоночных животных, а также бактерии и растения. Являясь основными возбудителями инфекционных заболеваний человека, они также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирусы краснухи, цитомегалии и др.), поражая плод человека. Они могут приводить и к постинфекционным осложнениям — развитию миокардитов, панкреатитов, иммунодефицитов и др.
Другими необычными агентами, близкими к вирусам, являются вироиды— небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие
Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства. Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию. Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.
В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака. А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия. Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.
Строение вирусов
Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.
Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам. С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.
Формы вирусов
Вирусы встречаются в трех основных формах. Они бывают:
- Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
- Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
- Сложными. Например, бактериофаги.
Проникновение вирусов в клетку-хозяина
Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента. Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки. Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.
Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:
Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.
Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.
Проникновение вирусов в клетку достигается за счет:
Размножение вирусов
После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).
Механизм репликации зависит от вирусного генома.
- ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
- РНК-вирусы обычно используют ядро РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.
Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.
Вироиды
Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.
30 известных вироидов были классифицированы в две семьи.
- Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
- Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.
В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.
Бактериофаги
Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:
Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.
Существует три основных структурных формы фага:
- Икосаэдрическая (20-сторонняя) головка с хвостом
- Икосаэдрическая головка без хвоста
- Нитевидная форма
Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).
Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.
Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.
Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция. При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда. Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.
При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.
Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.
Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.
Покажите ножницы которыми вирусы разрезают молекулу РНК что бы встроиться для мутации.Может что нибудь придумаете другое.К примеру деление цепочка аминокислот получив энергию из вне как одноименные заряды распадается на две. К каждой соединятся только те какие были ранее (другие проскочат мимо),казалось бы копии,но внутренняя энергия разная(уменьшается увеличивается) поэтому распад и создание. Вся химия углерода на этом построена 1000 орган соединений создает у других хим элементов этого свойства нет. Иммунная система делает накладку(интерференция)с помощью энергии интерферонов пытаясь разрушить цепочку РНК вируса.Надо помочь организму но не вакциной(вирус быстро мутирует)
Открытие вирусов
В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.
Рис. 1. Д.И. Ивановский
Рис. 2. Мозаичная болезнь табака
В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.
Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.
Строение вирусов
Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.
Рис. 3. Строение вируса
Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.
Размножение вирусов
Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.
Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).
Рис. 4. Схема репродукции вируса
При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.
При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).
Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.
ДНК- и РНК-содержащие вирусы
В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
Одноцепочные РНК-содержащие вирусы подразделяются на:
1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выполняет только наследственную функцию.
К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.
Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).
ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.
Вирус гепатита С
По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).
В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.
Рис. 5. Гепатит С
Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.
В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.
Бактериофаги
Рис. 6. Бактериофаг (Источник)
Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.
Рис. 7. Схема размножения бактериофага (Источник)
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Вирусы, как и бактерии, можно обнаружить в каждой точке нашей планеты. Они встречаются в горячих источниках, на дне океанов и даже в арктических льдах. Химический состав вирусов долгое время удивлял ученых, так как он существенно отличается от состава всех ранее известных организмов: только вирусы способны хранить генетическую информацию на матрице РНК, транскрибировать ДНК на матрице РНК, встраивать свой геном в ДНК живой клетки под действием ферментов интеграз. В этой статье мы подробно разберем структуру, геном и химический состав вирусов.
Общие сведения о вирусах
Находясь вне живой клетки, вирусы не проявляют никаких признаков, характерных для живых организмов. Находящиеся в таком состоянии неактивные вирусы называют вирионами. В вирионе нет клеточных органелл, характерных для клеток других живых организмов, - плазматической мембраны, митохондрий, рибосом, ядрышка, ядра и других. Вирион включает оболочку из белковых субъединиц - капсид, дополнительную оболочку, которая есть не у всех вирусов, - суперкапсид и геном.
Генетический материал вируса реализуется только при попадании в живую клетку. В зависимости от типа вирусного генома, нуклеиновые кислоты реплицируются либо в ДНК клетки хозяина, либо на митохондриях в цитоплазме.
Структура простого вириона
Простой вирион состоит из генетического материала и внешней оболочки - капсида. Капсид состоит из белковых субъединиц, называемых капсомерами. Способ организации каспомеров определяет пространственную структуру вируса. Химический состав капсида представлен одним или несколькими видами белков. Форма капсида может быть икосаедрической (характерна для аденовирусов), спиральной (вирус табачной мозайки) или комплексной (встречается у проксивирусов и рабдовирусов). Капсид может состоять как из одного, так и из нескольких видов белков. Субъединицы капсида во многом определяют морфологию и химический состав вирусов.
Капсид защищает генетический материал вируса от механических повреждений, влияния перепадов температуры, рН, воздействия радиации и химических веществ. Капсид вместе с геномом вирусом называют нуклеокапсидом.
Структура сложного вириона
Сложно организованный вирион имеет в составе дополнительную структуру - суперкапсидную оболочку, которая находится над капсидом.
Строение и химический состав вирусов, содержащих суперкапсидную оболочку, существенно отличается от состава простых вирусов. Суперкапсидная оболочка формируется из клеточной мембраны клетки хозяина и состоит на 95 % из липидов и белков. В составе суперкапсида присутствует небольшое количество гликопротеинов - сложных белков, в которых белковая часть связана с углеводом ковалентными связями.
Суперкапсид, как и капсид, выполняет защитную функцию. Гликопротеины в составе суперкапсида служат для идентификации и связывания со специфическими рецепторами на поверхности клетки хозяина.
Вирусные белки
Бактериальные белки могут быть капсидными, суперкапсидными или геномными. Капсидные и суперкапсидные белки выполняют защитные функции. Геномные белки ковалентно связаны с геномом и образуют с молекулами вирусной РНК или ДНК рибо- или дезоксирибонуклеопротеины. Эти белки принимают участие в компактизации нуклеиновой кислоты, а также в репарации, транскрипции и трансляции.
Химический состав вирусов сложен. Особенно разнообразны по своей структуре и составу вирусные ферменты. В зависимости от выполняемой функции, их делят на два больших класса:
- ферменты, необходимые для репликации вирусного генома;
- ферменты, облегчающие проникновение вирусной нуклеиновой кислоты в клетку и обеспечивающие последующий выход вирионов из клетки.
К первому классу ферментов относится РНК- и ДНК-зависимая РНК-полимераза, ДНК-полимераза, обратная транскриптаза, интеграза, ДНК-бета-гликозилтрансфераза и многие другие.
Ко второму классу относится нейраминидаза, входящая в состав гликопротеинов, гемагглютинин-эстераза, эндолизин и некоторые другие.
Вирусные липиды
Липиды являются одним из основных компонентов химического состава вирусов и в большом количестве содержатся в суперкапсидной оболочке. Суперкапсид формируется из плазматической мембраны клетки хозяина, поэтому состав липидной композиции определяет химический состав этой мембраны. Вирусные липиды представлены в основном фосфолипидами (50-60 %) и холестерином (20-30 %), так как именно эти липиды в наибольших количествах представлены в плазмалемме. В следовых количествах может присутствовать фосфоинозитол.
Липиды являются обязательным компонентом состава суперкапсидной оболочки. Они вносят вклад в формирование поверхностного заряда клетки за счет заряженных групп в составе фосфолипидов, а также придают суперкапсиду гибкость, необходимую для противостояния внешним механическим повреждениям. Липиды также служат хорошим дополнительным изолятором для генетического материала вирусов в случае резких изменения температуры или кислотности среды, обеспечивают поддержание постоянного химического состава клетки. Вирусы с суперкапсидной оболочкой благодаря толстому слою липидов и белков более устойчивы к действию детергентов, чем простые вирионы.
Углеводы в составе вируса
Углеводы в составе вируса, как правило, связаны с липидами или белками капсида (при этом они называются гликолипидами или гликопротеинами соответственно). Гликопротеины образуют шиповатые выросты на поверхности клетки, которые обладают свойствами гемагглютининов (вызывают агглютинацию эритроцитов) или разрушают нейраминовую кислоту, входящую в состав клеточных стенок, с помощью нейраминидазы.
Генетический материал
Генетический материал вирусов может быть представлен как одно- или двуцепочечной ДНК, так и одно- или двуцепочечной РНК. Больше ни у каких живых организмов РНК не является основным носителем генетической информации. ДНК-вирусы реплицируются в ядре клетки, так как для этого процесса необходима клеточная ДНК-полимераза. РНК-вирусы реплицируются в цитоплазме, на рибосомах клетки хозяина.
Существуют вирусы, способные превращать молекулу РНК в молекулу ДНК с помощью обратной транскриптазы. Самым известным представителем этого класса вирусов является вирус иммунодефицита человека. Синтезированная на матрице РНК молекула вирусной ДНК под действием фермента интегразы страивается в хромосому клетки хозяина и транскрибируется вместе с нормальными участками ДНК.
Бактериальные вирусы: бактериофаги
Бактериофаги - особые вирусы, так как они поражают исключительно бактериальные клетки. Структура и химический состав вирусов и бактериофагов очень похожи. Однако у вторых есть дополнительный отросток из фибриллярных белков. Генетический материал бактериофагов может быть представлен как ДНК, так и РНК.
Проникновение бактериофага внутрь бактериальной клетки приводит к ее лизису. Таким образом бактериофаги регулируют численность бактериальной популяции. Кроме того, эти вирусы обеспечивают генетическое разнообразие бактерий. Благодаря бактериофагам осуществляется процесс трансдукции: фрагменты бактериальной хромосомы или плазмиды упаковываются в головку бактериофага, выходят в ее составе из исходной бактериальной клетки и подают в другую бактериальную клетку, где и реплицируются. Так в бактериальную клетку попадает новый для нее генетический материал.
Читайте также: