По химическому составу вирус является
Вирусы, как и бактерии, можно обнаружить в каждой точке нашей планеты. Они встречаются в горячих источниках, на дне океанов и даже в арктических льдах. Химический состав вирусов долгое время удивлял ученых, так как он существенно отличается от состава всех ранее известных организмов: только вирусы способны хранить генетическую информацию на матрице РНК, транскрибировать ДНК на матрице РНК, встраивать свой геном в ДНК живой клетки под действием ферментов интеграз. В этой статье мы подробно разберем структуру, геном и химический состав вирусов.
Общие сведения о вирусах
Находясь вне живой клетки, вирусы не проявляют никаких признаков, характерных для живых организмов. Находящиеся в таком состоянии неактивные вирусы называют вирионами. В вирионе нет клеточных органелл, характерных для клеток других живых организмов, - плазматической мембраны, митохондрий, рибосом, ядрышка, ядра и других. Вирион включает оболочку из белковых субъединиц - капсид, дополнительную оболочку, которая есть не у всех вирусов, - суперкапсид и геном.
Генетический материал вируса реализуется только при попадании в живую клетку. В зависимости от типа вирусного генома, нуклеиновые кислоты реплицируются либо в ДНК клетки хозяина, либо на митохондриях в цитоплазме.
Структура простого вириона
Простой вирион состоит из генетического материала и внешней оболочки - капсида. Капсид состоит из белковых субъединиц, называемых капсомерами. Способ организации каспомеров определяет пространственную структуру вируса. Химический состав капсида представлен одним или несколькими видами белков. Форма капсида может быть икосаедрической (характерна для аденовирусов), спиральной (вирус табачной мозайки) или комплексной (встречается у проксивирусов и рабдовирусов). Капсид может состоять как из одного, так и из нескольких видов белков. Субъединицы капсида во многом определяют морфологию и химический состав вирусов.
Капсид защищает генетический материал вируса от механических повреждений, влияния перепадов температуры, рН, воздействия радиации и химических веществ. Капсид вместе с геномом вирусом называют нуклеокапсидом.
Структура сложного вириона
Сложно организованный вирион имеет в составе дополнительную структуру - суперкапсидную оболочку, которая находится над капсидом.
Строение и химический состав вирусов, содержащих суперкапсидную оболочку, существенно отличается от состава простых вирусов. Суперкапсидная оболочка формируется из клеточной мембраны клетки хозяина и состоит на 95 % из липидов и белков. В составе суперкапсида присутствует небольшое количество гликопротеинов - сложных белков, в которых белковая часть связана с углеводом ковалентными связями.
Суперкапсид, как и капсид, выполняет защитную функцию. Гликопротеины в составе суперкапсида служат для идентификации и связывания со специфическими рецепторами на поверхности клетки хозяина.
Вирусные белки
Бактериальные белки могут быть капсидными, суперкапсидными или геномными. Капсидные и суперкапсидные белки выполняют защитные функции. Геномные белки ковалентно связаны с геномом и образуют с молекулами вирусной РНК или ДНК рибо- или дезоксирибонуклеопротеины. Эти белки принимают участие в компактизации нуклеиновой кислоты, а также в репарации, транскрипции и трансляции.
Химический состав вирусов сложен. Особенно разнообразны по своей структуре и составу вирусные ферменты. В зависимости от выполняемой функции, их делят на два больших класса:
- ферменты, необходимые для репликации вирусного генома;
- ферменты, облегчающие проникновение вирусной нуклеиновой кислоты в клетку и обеспечивающие последующий выход вирионов из клетки.
К первому классу ферментов относится РНК- и ДНК-зависимая РНК-полимераза, ДНК-полимераза, обратная транскриптаза, интеграза, ДНК-бета-гликозилтрансфераза и многие другие.
Ко второму классу относится нейраминидаза, входящая в состав гликопротеинов, гемагглютинин-эстераза, эндолизин и некоторые другие.
Вирусные липиды
Липиды являются одним из основных компонентов химического состава вирусов и в большом количестве содержатся в суперкапсидной оболочке. Суперкапсид формируется из плазматической мембраны клетки хозяина, поэтому состав липидной композиции определяет химический состав этой мембраны. Вирусные липиды представлены в основном фосфолипидами (50-60 %) и холестерином (20-30 %), так как именно эти липиды в наибольших количествах представлены в плазмалемме. В следовых количествах может присутствовать фосфоинозитол.
Липиды являются обязательным компонентом состава суперкапсидной оболочки. Они вносят вклад в формирование поверхностного заряда клетки за счет заряженных групп в составе фосфолипидов, а также придают суперкапсиду гибкость, необходимую для противостояния внешним механическим повреждениям. Липиды также служат хорошим дополнительным изолятором для генетического материала вирусов в случае резких изменения температуры или кислотности среды, обеспечивают поддержание постоянного химического состава клетки. Вирусы с суперкапсидной оболочкой благодаря толстому слою липидов и белков более устойчивы к действию детергентов, чем простые вирионы.
Углеводы в составе вируса
Углеводы в составе вируса, как правило, связаны с липидами или белками капсида (при этом они называются гликолипидами или гликопротеинами соответственно). Гликопротеины образуют шиповатые выросты на поверхности клетки, которые обладают свойствами гемагглютининов (вызывают агглютинацию эритроцитов) или разрушают нейраминовую кислоту, входящую в состав клеточных стенок, с помощью нейраминидазы.
Генетический материал
Генетический материал вирусов может быть представлен как одно- или двуцепочечной ДНК, так и одно- или двуцепочечной РНК. Больше ни у каких живых организмов РНК не является основным носителем генетической информации. ДНК-вирусы реплицируются в ядре клетки, так как для этого процесса необходима клеточная ДНК-полимераза. РНК-вирусы реплицируются в цитоплазме, на рибосомах клетки хозяина.
Существуют вирусы, способные превращать молекулу РНК в молекулу ДНК с помощью обратной транскриптазы. Самым известным представителем этого класса вирусов является вирус иммунодефицита человека. Синтезированная на матрице РНК молекула вирусной ДНК под действием фермента интегразы страивается в хромосому клетки хозяина и транскрибируется вместе с нормальными участками ДНК.
Бактериальные вирусы: бактериофаги
Бактериофаги - особые вирусы, так как они поражают исключительно бактериальные клетки. Структура и химический состав вирусов и бактериофагов очень похожи. Однако у вторых есть дополнительный отросток из фибриллярных белков. Генетический материал бактериофагов может быть представлен как ДНК, так и РНК.
Проникновение бактериофага внутрь бактериальной клетки приводит к ее лизису. Таким образом бактериофаги регулируют численность бактериальной популяции. Кроме того, эти вирусы обеспечивают генетическое разнообразие бактерий. Благодаря бактериофагам осуществляется процесс трансдукции: фрагменты бактериальной хромосомы или плазмиды упаковываются в головку бактериофага, выходят в ее составе из исходной бактериальной клетки и подают в другую бактериальную клетку, где и реплицируются. Так в бактериальную клетку попадает новый для нее генетический материал.
Вирусы – неклеточная форма жизни, обладает собственным геномом, способностью к самовоиспроизведению (репродукции) в клетках живых организмов или клеточных культурах, адаптационными свойствами и изменчивостью.
Выделены в отдельное царство – Vira.
- нет клеточной организации: не имеют цитоплазмы и ядра, митохондрий, рибосом и других органелл
- содержат только одну из двух нуклеиновых кислот – ДНК или РНК, выполняющих функции генома.
- не имеют собственных белоксинтезирующих и генерирующих энергию систем и являются абсолютными внутриклеточными паразитами на генетическом уровне, полностью зависят от клетки-хозяина
- размножаются не обычным бинарным делением, а репродуцируются в чувствительной клетке, согласно генетической программе в нуклеиновой кислоте вируса, при этом используют биосинтетические системы и ресурсы
Различают две формы существования вирусов – внеклеточную и внутриклточную.
Внеклеточный вирус = вирион. Это покоящаяся (зрелая) форма вируса. Не проявляет жизедеятельности. Функции: сохранение вируса во внешней среде и перенос его из организма в другой организм или из клетки в другую клетку.
Внутриклеточный вирус - вегетативный вирус - репродуцируется в инфицированной клетке, вызывая репродуктивную инфекцию, заканчивающуюся образованием дочернего поколения вирионов и, как правило, гибелью клетки. Процесс репродукции может быть незавершенным, без образования вирионов – возникает абортивная инфекция.
Некоторые вирусы способны встраивать свой генетический материал в хромосомы клетки-хозяина в виде провируса, которые реплицируется вместе с этой хромосомой в процессе деления и переходит в дочерние клетки. Это – интегративная инфекция, она модет существовать длительное время или переходить обратно в продуктивную.
строение вирусов (вирионов). Размеры вирусов находятся в диапазоне 20-350 нм.
Могут иметь палочковидную, многогранную, пулевидную, сферическую, нитевидную, булавовидную формы.
Различают: простые (безоболочечные) и сложные (оболочечные) вирусы. У них в центре – молекула нуклеиновой кислоты (ДНК/РНК), окруженная белковой оболочкой – капсидом. Вся структура носит название – нуклокапсид.
Простые вирусы – нуклеиновая кислота, ассоциированная с внутренними белками и капсидом (т.е. представляют собой нуклеокапсид).
Защитная белковая оболочка – капсид – состоит из множества однородных белковых субъединиц. Т.к. на такое строение капсида расходуется мало генетической информации, оно важно для вирусов, обладающих небольшим геномом. Капсиды построены по спиральному или кубическому типу симметрии, в зависимости от расположения белковых субъединиц.
Химический состав вируса.Основные компоненты вируса – нуклеиновая кислота и белки. Простые вирусы состоят только из них. В состав сложных вирусов входят углеводы и липиды клеточного происхождения.
В зависимости от типа нуклеиновой кислоты вирусы делят на ДНК- и РНК-геномные.
Вирусные ДНК – обычно двунитевые, редко – однонитевые.
Двунитевые ДНК: линейные с незамкнутыми концами, линейные с замкнутыми концами, кольцевидные, кольцевидные с одной неполной цепью ДНК.
Вирусные РНК – однонитевые, бывают двунитевые с фрагментированным геномом.
Однонитевые РНК: цельные линейные, фрагментированные (сегментированные) линейные, кольцевые сегментированные.
Различают РНК с положительным геномом – +РНК (одновременно геном и информационная РНК (и-РНК), служит матрицей для дочерних геномов);
и РНК с отрицательным геномом – –РНК (только геномная функция, т.е. матрица для синтеза генома и и-РНК).
Важнейшая особенность вирусных нуклеиновых кислот – инфекционность (способность инициировать в клетке –хозяине продуктивную инфекцию без участия других компонентов вируса). Ей обладает большинство вирусных ДНК и +РНК.
Вирусные белки.
# структурные – входят в состав вириона:
- капсидные белки- формируют капсид
- внутренние белки – геномные белки и ферменты (полимеразы), участвующие в процессе репродукции и ассоциации генома с капсидом.
- матриксные белки сложных вирусов, образуют М-слой под суперкапсидом. Участвуют в заключительных этапах самосборки вирионов и их стабилизации.
- суперкапсидные поверхностные белки – гликопротеины, протективные Аг, участвуют в прикреплении вирионов к клеточным рецепторам и их проникновении в клетку.
# Неструктурные белки – синтезируются в инфицированной клетке для обеспечения процессов репродукции, в состав вирусов не входят.
- вирусиндуцированные ферменты, обслуживают транскрипцию и трансляцию вирусного генома.
- регуляторные белки
- нестабильные белки – предшественники, из которых формируются структурные белки вириона
- ферменты, модифицирующие вирусные белки (протеазы, протеинкиназы)
Липиды. Переходят в состав вирионов из клеточных, ядерных, других внутренних мембран инфицированной клетки при почковании. Являются основным компонентом суперкапсид, способствуют стабильности вириона. При обработке эфиром суперкапсид разрушается из-за потери липидов.
Углеводы. Клеточное происхождение. Входят в состав поверхностных белков – гликопротеинов. Их гликолизирование осуществляется клеточными ферментами во время транспортировки белков на наружную поверхность суперкапсида, при этом клеточные белки вытесняются из мембран.
В основу классификации вирусов положены следующие категории:
• тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особенности воспроизводства вирусного генома;
• размер и морфология вирионов, количество капсомеров и тип симметрии;
• чувствительность к эфиру и дезоксихолату;
• место размножения в клетке;
• антигенные свойства и пр.
Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК- содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом. Минус-нить РНК этих вирусов выполняет только наследственную функцию.
Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.
Простые, или безоболочечные, вирусысостоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.
Сложные, или оболочечные, вирусыснаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.
Последнее изменение этой страницы: 2017-01-19; Нарушение авторского права страницы
1. Морфология вирусов.
2. Химический состав вирусов.
3. Структура вирусов.
Вирусы имеет в своем составе белки, нуклеиновые кислоты, обладают способностью воспроизводить себе подобных и подвержены изменчивости, что является признаками живых существ. Однако по строению, составу и размножению они имеют значительные отличия от большинства живых существ.
Основные чертами вирусов являются неклеточное строение, наличие собственного генома и способность воспроизводить себе подобных.
Существуют внеклеточные и внутриклеточные формы существования вирусов. Внеклеточные формы представляют собой зрелые вирусные частицы, обладающие инфекционностью и называемые вирионами. Вирионы характеризуются определенной устойчивостью, постоянной структурой и химическим составом, а также имеют определенные размеры.
Внутриклеточная форма (или вегетативная) вируса представляет собой реплицирующийся внутри клетки хозяина геном вируса. При этом составные части вируса разобщены и находятся в тесном взаимодействии с компонентами клетки.
Большинство вирусов имеют размеры в пределах от 10 до 400 нм. Таким образом, мельчайшие вирусы (вирусы ящура, полиомиелита и др.) сопоставимы по размерам с рибосомами клеток и, следовательно, визуально могут быть обнаружены только в электронном микроскопе. Крупные вирусы (большинство вирусов оспы млекопитающих) имеют размеры мелких бактерий и поэтому могут быть увидены в световом микроскопе.
По размерам вирионы разделяются на группы:
- мелкие вирусы (10-30 нм)
- средние вирусы (30-150 нм)
- крупные вирусы (150-400 нм).
Строение вириона
Вирусы очень просто организованы – состоят из центральной части геномной части (нуклеоид) и белковой части (капсид), которая окружает нуклеоид.
Нуклеоид содержит в своем составе нуклеиновую кислоту, а также некоторое количество белка, поэтому его еще называют нуклеопротеид.
Капсид представляет собой каркас, построенный из отдельных похожих друг на друга структур – капсомеров. Они в свою очередь состоят из отдельных единиц – белковых субъединиц (протомеров). Все капсомеры построены из большого числа копий белков нескольких типов, кодируемых ограниченным числом генов (от 4 у пикорнавирусов до 111 у поксвирусов, что зависит от размеров вирусов и их нуклеиновой кислоты). Обычно в состав одного капсомера входит по одному белку различных типов. Подобное строение свидетельствует о максимальном использовании вирусной генетической информации.
Капсомеры находятся в тесной связи с нуклеиновой кислотой, поэтому часто их вместе называют нуклеокапсидом, который защищает вирусную нуклеиновую кислоту, а также способствует переходу ее от одной клетки-хозяина в другую. Вирусы, которые имеют в своем строении только нуклеокапсид называют простоорганизованными (вирус ящура и др.).
У некоторых вирусов вирион имеет еще и дополнительную оболочку – суперкапсид (или пеплос). Вирусы, содержащие суперкапсид как обязательную структуру, называются сложноорганизованными (вирус бешенства, оспы, лейкоза и др.). По строению суперкапсид похож на цитоплазматическую мембрану клеток, что обусловлено его клеточным происхождением, так как он формируется в момент выхода вириона из пораженной клетки. Суперкапсид содержит в своем составе углеводы и липиды, а также небольшое количество белков, которые в отличие от углеводов и липидов кодируются геномом вируса и выполняют в основном адресную функцию, то есть обеспечивают прикрепление вириона к поверхности клетки-хозяина. У некоторых вирусов имеется промежуточная оболочка – белковая мембрана.
При многих вирусных инфекциях вирусы могут вызывать появление внутриклеточных включений (телец-включений). Они представляют собой вирусный материал, а также реакцию клетки на этот материал.
Внутриклеточные включения классифицируются на:
1. Цитоплазматические (при бешенстве). Характеризуются размерами от 1 до 30 мкм, обычно лежат по несколько у ядра; вызываются обычно крупными вирусами.
2. Внутриядерные (аденовирусная инфекция). Вызываются крупными и мелкими вирусами, они отличны от ядра.
По содержанию вирусной нуклеиновой кислоты, заключенной внутри включений различают:
1. ДНК- содержащие.
2. РНК- содержащие.
По способности окрашиваться они могут разделены на:
В составе всех вирусов обязательно присутствуют белки и одна из нуклеиновых аминокислот. У сложноорганизованных вирусов есть также липиды, углеводы и другие соединения.
Белки составляют от 49 до 89% по массе, нуклеиновые кислоты от 3 до 40%.
Нуклеиновая кислота и небольшое количество белка сосредоточены в центре вириона и большая часть белка – в капсиде.
В состав белков входят те же аминокислоты, что и в состав остальных кислот и построены по тому же принципу.
Белки вирусов выполняют различные функции. Они могут находиться на поверхности вириона, выполняя функцию рецепторов к чувствительным клеткам. Кроме того, капсид всех вирусов состоит из белков, выполняющих структурную функцию. Наконец, репликация вирусной нуклеиновой кислоты невозможна без участия белков-ферментов. Молекулярная масса вирусных белков варьирует от 10·10 3 до 15·10 4 Д.
Учитывая разнообразие вирусных белков, их принято разделять на две группы: структурные и неструктурные (функциональные).
Структурными белками являются все те белки, которые входят в состав капсида и поэтому придают вирусу определенную форму. Количество структурных белков у разных вирусов различно, что зависит от степени организации и размеров вируса.
Неструктурными белками являются все те белки, которые участвуют в процессе репродукции вирусов. Это главным образом, ферменты, регулирующие репродукцию, а также их предшественники.
Основная часть полипептидов являются вирусоспецифическими белками (синтезированы по программе генома вируса). Их можно разделить на классы:
Снаружи вириона обычно располагаются высокомолекулярные белки, внутри – низкомолекулярные, тесно связанные с нуклеиновой кислотой. Основная роль наружных белков – защита нуклеиновой кислоты.
Функции вирусных белков
1. Защитная – защищает нуклеиновую кислоту от воздействия внешней среды.
2. Адресная – белки имеют рецепторы определенной чувствительной клетке.
3. Белки вирусов облегчают проникновение вируса в клетке.
Ферменты
В составе вириона присутствуют ферменты:
а) кодируемые вирусом;
б) индуцируемые вирусом.
Ген, кодирующий определенный фермент, входит в состав нуклеиновой кислоты вируса, а ген индуцируемых ферментов входит в состав клеточной ДНК. Иначе, кодируемые вирусом ферменты есть все те ферменты, синтезированные по программе вирусного генома. Индуцируемые вирусом ферменты представляют собой ферменты клетки, переподчиненные вирусом для его собственной репродукции.
В зависимости от стадии развития ферменты делятся на:
1. Ферменты внутриклеточной формы вируса. Это ферменты, которые синтезируются на вирусной нуклеиновой кислоты только внутри пораженной клетки.
2. Ферменты внеклеточной формы вируса. Сюда относят транскриптаза (РНК-полимераза), обратная транскриптаза (ревертаза) – все они заключены в состав вириона.
Нуклеиновые кислоты
Это сложные полимерные соединения, хранящие генетическую информацию вируса. Состоят из несколько сотен тысяч нуклеотидов.
Отличительные свойства вирусов:
У них только одна нуклеиновая кислота в составе вириона, а в клетках может присутствовать оба типа. По присутствию определенного типа нуклеиновой кислоты в вирионе вирусы делятся на ДНК- и РНК-содержащие. Обычно нуклеиновая кислота вирусов в 10-100 раз меньше по массе, чем нуклеиновая кислота животных и растительных клеток. Нуклеиновая кислота вируса занимает центральное положение в вирионе и упакована в белковый чехол.
По строению генома вирусы делятся на:
1. Одноцепочечная нефрагментированная РНК (парамиксовирусы и др.).
2. Одноцепочечная фрагментированная РНК (аренавирусы и др.).
3. Двухцепочечная фрагментированная РНК (реовирусы, бирнавирусы).
4. Одноцепочечная линейная ДНК (парвовирусы).
5. Двухцепочечная линейная ДНК (герпесвирусы и др.).
6. Двухцепочечная циркулярная ДНК (гепаднавирусы).
Функции нуклеиновой кислоты
1. Программирует наследственность.
2. Участвует в синтезе вирусного белка.
3. Отвечает за информационные свойства вируса.
Липиды
Имеют клеточное происхождение. Они включаются в оболочку при выходе вируса из клетки и присутствуют в составе суперкапсида. Если вирус имеет липиды, то он быстро разрушается под действием эфира, и поэтому такой вирус называют чувствительным к эфиру и хлороформу.
Углеводы
В составе вириона это рибоза и дезоксирибоза, которые являются обязательными составными частями нуклеиновых кислот. Также присутствует галактоза, манноза. Все углеводы участвуют в упаковке капсомера. Кроме того, в составе суперкапсида присутствует определенное количество углеводов.
Компоненты клеток хозяина
В составе некоторых вирионов могут присутствовать компоненты клеток хозяина, которые вирус включает в свой состав в процессе репродукции, а также при выходе из клетки. Однако во всех случаях эти компоненты не являются обязательными и их зачастую обнаруживают только в отдельных вирионах. Например, паповавирусы могут содержать клеточные гистоны, а аренавирусы – рибосомы клеток.
Минеральные элементы
В составе вириона присутствуют ионы калия, натрия, кальция, железа и ряд других. Они участвуют в формировании связей белка с нуклеиновой кислоты.
Структура вируса – это характер расположения капсомеров относительно нуклеиновой кислоты.
У одной группы вирусов капсомеры находятся в тесной связи со спирально скрученной нуклеиновой кислотой и поэтому расположены по спирали. Такой вид симметрии вирусов называют спиральным (вирус гриппа, бешенства и др.). Чаще такой вид симметрии наблюдают у РНК-геномных вирусов средних и крупных размеров.
У другой группы вирусов капсомеры расположены в виде многогранника, образуя капсид икосаэдрной формы (икосаэдр – многогранник, состоящий из 20 равносторонних треугольников, объединенных 12 вертикальными линиями). Подобный вид симметрии называют кубическим. Кубический тип симметрии присутствуют у большинства ДНК-геномных вирусов (герпесвирусы, аденовирусы и т.д.) и мелких РНК-геномных вирусов (вирус ящура, реовирусы, бирнавирусы и др.). У вирусов с кубическим типом симметрии имеется строгое число капсомеров, характерное для каждого рода вируса (например, у герпесвирусов имеется 162 капсомера, аденовирусы – 252, реовирусы и бирнавирусы – 92.
У третьей группы вирусов присутствуют оба типа симметрии. Такой тип симметрии называют смешанным и свойственен исключительно бактериофагам.
Вирусы оспы имеют сложное строение, включающее наличие многослойной мембраны, покрывающей капсид вириона. Такой вид симметрии называется сложным и обнаружен только у поксвирусов.
Тип симметрии вирусов и характер расположения капсомеров придают вирусам определенную форму, которую можно наблюдать в электронном микроскопе.
Когда капсомеры расположены в виде многогранника они придают вирусу сферическую форму. Поэтому вирусы с кубическим типом симметрии в электронном микроскопе имеют округлую форму.
Спиральный тип симметрии наблюдают у крупных вирусов. У них сама нуклеиновая кислота располагается в виде спирали, а капсомеры закрывают ее. Капсомеры придают вирусу палочковидную форму, поэтому вирионы со спиральным типом симметрии в электронном микроскопе имеют вытянутую форму.
Наличие суперкапсида у сложноорганизованных вирусов придает им округлую форму вне зависимости от типа симметрии капсида. Чаще всего суперкапсид большинства вирионов (кроме вируса оспы) имеет гибкую структуру, поэтому может придавать вириону измененную форму. Такие вирусы называются плеоморфными.
Смешанный тип симметрии наблюдают у бактериофагов, у которых головка с заключенной нуклеиновой кислотой имеет кубический тип симметрии, а прикрепляющийся к головке хвостик имеет спиральный тип симметрии. В этой связи бактериофаги в электронном микроскопе имеют форму сперматозоидов.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Способность вирусов проходить через бактериальные фильтры служит показателем малых размеров их частиц.
Вирусные частицы настолько малы, что их нельзя увидеть в обычные оптические микроскопы. Их можно видеть только при помощи электронного микроскопа, дающего увеличение в десятки и сотни тысяч раз. При помощи электронного микроскопа, ультрафильтров, ультрацентрифугирования и других современных средств исследования установлено, что вирусы очень разнообразны по форме, размерам и химическом составу.
По форме частиц одни вирусы представляют собой более или менее сферические образования (вирус верхушечного хлороза махорки), иногда угловатые (вирус кольцевой пятнистости табака). Многие вирусы представлены палочковидными частицами (вирус табачной мозаики). Реже встречаются нитевидные, изогнутые вирусные частицы (вирус полосатости гороха) и в виде головки с хвостиком (у многих бактериофагов).
Размеры вирусных частиц измеряют обычно в миллимикронах. Диаметр шарообразных вирусных частиц составляет: вируса желтой мозаики турнепса 20 ммк, вируса столбура пасленовых — до 40 ммк, а вируса бронзовости томата— 90 ммк. Размеры палочковидных частиц больше: вируса мозаики редиса 25×105 ммк, вируса мозаики табака — 15×280 ммк, вируса желтухи свеклы— 10×1250 ммк.
Когда научились выделять вирусы в форме определенных химических веществ из пораженных растений, стало возможным изучение химического состава, физических свойств и химической природы их активности. В настоящее время многие из этих вопросов хорошо изучены.
Химические анализы очищенных вирусов показали, что многие из них как растительные, так и животные являются нуклеопротеидами. В качестве компонентов некоторых вирусов, особенно животных, были обнаружены липидные вещества; в некоторых вирусах удалось обнаружить в небольших количествах и другие компоненты различной химической природы. Однако главной особенностью химического состава всех вирусов является постоянное присутствие в них нуклеиновой кислоты и белка, по-видимому, в специфических комбинациях. Белки и нуклеиновые кислоты различных вирусов имеют характерный состав, который отличает их от других вирусов. В последнее время американским ученым удалось показать, что белковая часть вируса состоит из большого числа мелких структурных субъединиц, расположенных в определенном порядке.
В составе вирусов находится рибонуклеиновая (РНК) или дезоксирибонуклеиновая (ДНК) кислота. РНК характерна для вирусов, встречающихся в высших растениях (фитопатогенных вирусов); ДНК содержится в вирусах, поражающих бактерии, и в некоторых вирусах, поражающих животных. Относительное содержание их в разных вирусах неодинаково и постоянно. Например, в вирусе табачной мозаики РНК составляет около 6% общей массы вируса (Р. Г. Вильямс, 1963), в вирусе мозаики озимой пшеницы РНК содержится 1,3% (Р. М. Вагер и др., 1962).
В настоящее время с помощью электронного микроскопа и рентгеноструктурного анализа стало возможным выяснение особенностей тонкого строения вирусных частиц, расположение компонентов вирусов и создание модели строения отдельных вирусов. Особенно хорошо в этом отношении изучен вирус табачной мозаики, для которого сконструирована модель, дающая представление о его строении.
Палочковидная частица вируса табачной мозаики представляет собой цилиндр (15×300 ммк), стенка которого образована большим числом мелких субъединиц белковой части, расположенных по спирали вокруг оси. Структура повторяется через каждые 69 А в осевом направлении, и каждый осевой период содержит 49 субъединиц, распределенных на протяжении трех витков спирали с шагом, равным 23А. В центре спирального расположения имеется полый канал диаметром 35—40 А, и каждая субъединица является выростом внутренней и внешней его поверхности. Рибонуклеиновая кислота расположена во внутренней области цилиндра на расстоянии 43 А от центра оси сечения и погружена глубоко в массу белков.
Одним из свойств вирусов является их способность образовывать кристаллы в естественных условиях внутриклеточной жизни или в искусственной среде. Первые кристаллические включения обнаружены в клетках листа табака, пораженного мозаичной болезнью (Д. И. Ивановский, 1902), а позднее У. Стенли (1935) выделил вирус табачной мозаики в виде паракристаллического препарата. Современные биохимические методы позволяют выделять вирусы из сока больного растения, очищать и получать их даже в кристаллическом виде.
В настоящее время кристаллические и паракристаллические (имеющие только два измерения) включения найдены у многих вирусов, поражающих растения. Например, у вируса некроза табака кристаллы имеют форму бипирамиды, а у вируса кустистой карликовости томата они в виде додекаэдра. Часто вирусные кристаллы имеют форму восьмигранников, тонких игл, шестиугольных пластинок и даже образуют веретеновидные кристаллы.
Способность вирусов при известных условиях переходить в кристаллическое состояние не снижает их паразитическую активность. Полученные в кристаллическом виде вирусы не теряют вирулентности и при введении их в здоровые растения вызывают ту болезнь, которой было заражено растение, послужившее источником для получения сока и кристаллов.
Важнейшим свойством вирусов является способность воспроизводить свои собственные специфические структуры при существовании в определенных живых клетках, способность к размножению. Размножаются фитопатогенные вирусы только в живых клетках восприимчивых растений-хозяев, а также в изолированных тканях растений, растущих на питательных средах. Попав в восприимчивый организм, вирус размножается в нем с колоссальной быстротой. Например, через четыре недели после заражения табака вирусом табачной мозаики количество этого вируса в табаке увеличивается в миллион раз.
Фитопатогенные вирусы при размножении в живых клетках растения-хозяина претерпевают цикл развития, включающий качественно различные фазы. У хорошо изученного вируса табачной мозаики выделяется вегетативная фаза, в течение которой происходит размножение вируса, и фаза покоя, когда прекращается размножение и частицы приобретают свойство к сохранению и распространению в природе. В вегетативной фазе вирус неинфекционен или слабо инфекционен, а в фазе покоя вирус является высоко инфекционным (Сухов, 1956).
Не обладая способностью размножаться вне живого растения, некоторые вирусы могут длительное время сохраняться в мертвых, сухих остатках растений и в почве, не теряя жизнеспособности. Так, например, вирус табачной мозаики сохраняет свою активность в сухих листьях и стеблях больных растений в полевых условиях в течение 3—4 лет, а в сухом табаке — до 50 лет. В то же время отдельные вирусы обладают слабой устойчивостью и сохраняют свою инфекционность в выжатом соке растений всего несколько минут и быстро теряют активность при высушивании растений. Например, вирусы бобовых растении, закукливаиия злаков, скручивания листьев картофеля.
По отношению к температуре различные вирусы обладают различной стойкостью и различным порогом инактивации. Одни вирусы характеризуются малой устойчивостью к высоким температурам и теряют инфекционные свойства уже при 60—75° С (вирус огуречной мозаики, вирус мозаики фасоли). Другие вирусы отличаются большей стойкостью к нагреванию. Например, вирус обыкновенной табачной мозаики сохраняет активность при нагревании до 90° С; низкую температуру (даже ниже 0°) все вирусы переносят очень легко, не утрачивая прежних свойств.
Важное свойство вирусов — способность не терять активности при высоких степенях разбавления. При определенной степени разведения вируса водой порядка 1 : 10 -9 он сохраняет свою активность. Вирус обыкновенной мозаики табака выдерживает предельное разведение в 1 : 10 -9 , вирус кольцевой пятнистости томата — 1 : 10 -7 , некроза табака — 1 : 10 -7 . Более высокие степени разбавления приводят к ослаблению вируса, к снижению количества заразившихся растений. Большая устойчивость к неблагоприятным условиям способствует сохранению вируса, когда он находится вне организма хозяина.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Читайте также: