Оглавление темы "Методы обнаружения вирусов. Методы диагностики микозов ( грибковых заболеваний ). Методы обнаружения простейших.": 1. Биологические методы диагностики бактерий. Животные при диагностике инфекций. Какие животные используются для диагностики инфекций?. 2. Методы обнаружения вирусов. Лабораторные методы при диагностике вирусных инфекций. Забор материала для выявления вирусов. Культуры клеток для выявления вирусов. 3. Культуры органов для обнаружения вирусов. Куриные эмбрионы при диагностике вирусных инфекций. Заражение вирусом куриного эмбриона. Методы заражения вирусом куриного эмбриона. 4. Животные модели для обнаружения вирусов. Идентификация вирусов. Качественное определение вирусов. Цитопатические эффекты вирусов. Бляшкообразование вируса. Тельца включений вирусов. 5. Отсутствие цитопатического эффекта вируса. Феномен гемадсорбции вирусов. Цветная реакция. Экспресс-диагностика вирусной инфекции. 6. Количественное определение вирусов. Определение инфекционности вирусов. Выявление вирусных антигенов ( Аг ). Выявление вирусных частиц. Морфология вирусов. 7. Серологические методы диагностики вирусных инфекций. Торможение гемагглютинации. Торможение цитопатического эффекта интерференцией вирусов. Прямая иммунофлюоресценция. Иммуноэлектронная микроскопия. 8. Выявление противовирусных антител ( AT ) в сыворотке крови. РТГА. РСК. РИФ. Иммуносорбционные методы выявления противовирусных антител. 9. Выявление вирусных антигенов ( Аг ). ИФА. Гибридизация ДНК. ПЦР. Методы диагностики микозов ( грибковых заболеваний ). 10. Выделение грибов. Неселективные среды для грибов. Селективные среды для грибов. Выявление противогрибковых антител ( AT ). Выявление грибковых антигенов ( Аг ). 11. Методы обнаружения простейших. Микроскопия простейших. Материал для выявления простейших. Выделение простейших. Серологические исследования при диагностике простейших.
Методы обнаружения вирусов. Лабораторные методы при диагностике вирусных инфекций. Забор материала для выявления вирусов. Культуры клеток для выявления вирусов.
Лабораторные методы при диагностике вирусных инфекций включают: • выделение и идентификацию возбудителя; • обнаружение и определение титров противовирусных AT; • обнаружение Аг вирусов в образцах исследуемого материала; • микроскопическое исследование препаратов исследуемого материала.
При заборе материала для исследований необходимо выполнять следующие условия: • образцы следует отбирать как можно раньше либо с учётом ритма циркуляции возбудителя; • материал следует отбирать в объёме, достаточном для всего комплекса исследований; • образцы следует доставлять в лабораторию незамедлительно (!), при относительно кратковременной транспортировке (не более 5 сут) образцы сохраняют на льду, при более длительной — при температуре -50 С.
Выделение и идентификация возбудителя — золотой стандарт в диагностике вирусных инфекций.
Вирусы размножаются только в живых клетках, и выделение возбудителя в заражённой культуре клеток — один из основных методов диагностики вирусных инфекций. Поскольку большинство патогенных вирусов отличает тканевая и типовая специфичность, то почти к каждому вирусу можно подобрать соответствующие клеточные или тканевые чультуры, а также создать стандартные условия культивирования (наличие клеток одного типа). Размножение вируса обеспечивают чувствительные (пермиссивные) клетки. Поэтому при выделении неизвестного возбудителя проводят одномоментное заражение 3
4 культур клеток, предполагая, что одна из них может оказаться пермиссивной. Культуры клеток получают диспергированием соответствующих органов и тканей, но чаще используют эмбриональные ткани (человека и животных) либо трансформированные опухолевые клетки. При помещении на соответствующую плоскую поверхность клеточные культуры обычно растут в виде монослоя. Первично-трипсинизированные культуры. Суспензии клеток получают гомогенизированием соответствующих тканей, предварительно обработанных трипсином. Культуры часто представлены клетками смешанного типа и не подлежат повторному культивированию. Жизнеспособность таких культур составляет 2-3 нед.
Полуперевиваемые линии клеток представлены диплоидными клетками человека и животных. Культуры ограниченно пригодны к повторному диспергированию и росту (как правило, не более 20-30 пересевов), сохраняя при этом жизнеспособность и не подвергаясь спонтанной трансформации.
Перевиваемые линии клеток (гетероплоидные культуры) представлены клетками, подвергнутыми длительному культивированию и спонтанным трансформациям. Культуры способны к многократному диспергированию и перевиванию. Работа с ними менее трудоёмка по сравнению с приготовлениями первичных культур; перевиваемые клетки относительно одинаковы по своей морфологии и стабильны по свойствам.
Многие вирусы могут очень долго присутствовать в организме и циркулировать в крови, до поры до времени не вызывая никаких неприятностей. Однако это вовсе не значит, что они безопасны. Лабораторные анализы на вирусы позволяют выявить наличие последних, даже если никаких симптомов нет.
Анализы на вирусы: какие инфекции они выявляют
Для выявления вирусов лаборатории проводят исследования крови несколькими методами. Наибольшее распространение на сегодня получили ПЦР и иммуноферментный (ИФА) анализы.
Иммуноферментный анализ крови определяет наличие антител к вирусам (или антигенов к ним) в крови — иммуноглобулины (lgA, lgG, lgM) вырабатываются при заражении вирусами и являются своеобразными маркёрами инфекции.
Анализ на ДНК вируса, или ПЦР-исследование, позволяет выявить тип инфицирующего агента.
В качестве биоматериала для исследования обычно берут кровь. Анализ крови может подтвердить гепатит, герпес и вирус Эпштейна-Барра, аденовирус, различные половые инфекции (в том числе и сифилис), вирус иммунодефицита человека (ВИЧ) и другие инфекции. Однако кровь не единственный биоматериал, пригодный для выявления вирусных поражений. В зависимости от заболевания и симптомов, для анализа на вирусы сдают соскоб слизистой оболочки, кал, мочу, мазок, слюну.
Как мы уже отмечали, исследование крови на вирусы можно проводить двумя разными способами. Расскажем о них подробнее.
Иммуноферментный метод анализа на вирусы позволяет установить форму болезни, вызванной вирусом (хроническая, острая или бессимптомная), а также оценить эффективность противовирусной терапии. Это один из самых распространенных и точных методов для выявления половых инфекций, в частности ВИЧ и ВПЧ, гепатита В.
Для анализа на вирусы чаще всего сдается кровь. Обязательно предупредите врача, если вы недавно проводили вакцинацию, — этот факт может отразиться на точности анализов. Рекомендуется не принимать пищу на протяжении 8-ми часов перед забором биоматериала, а также воздержаться от употребления алкоголя и от курения.
Время ожидания результатов зависит от типа вируса, на который проводится анализ, и от методики работы лаборатории. Обычно результаты готовы через 1–3 дня, но иногда приходится ждать и 2 недели.
Рассказать о том, каким образом следует трактовать результаты анализов на все виды вирусов, в рамках одной статьи невозможно. Далее мы поговорим лишь о наиболее известных заболеваниях и о часто назначаемых исследованиях.
В случае проведения анализа методом ИФА наличие IgG в крови на гепатит говорит о том, что этот вирус в организме присутствовал, но иммунная система выработала к нему антитела. Присутствие одновременно антител класса IgM и IgG говорит о заболевании в острой форме. Иммуноглобулины только класса IgM — признак первичного инфицирования.
При проведении исследования методом ПЦР определяется РНК вируса. Результаты могут быть приведены в следующем формате:
РНК вируса не выявлена.
РНК вируса выявлена в концентрации ниже предела количественного определения (менее15 МЕ/мл). Сомнительный результат.
РНК вируса гепатита С выявлена (от 15 и выше 100000000 МЕ/мл).
Для выявления этого вируса гепатита чаще всего назначается ИФА. Если в крови присутствуют антитела IgG и IgM, это значит, что вирус очень активен или же заражение произошло недавно.
В случае проведения ПЦР-анализа определяется концентрация фрагментов ДНК вируса гепатита В. Пациент получает результат с одной из приведенных трактовок:
Не обнаружено.
Сомнительный результат (результат положительный с концентрацией ДНК вируса гепатита В на границе точности метода).
Обнаружено.
Если говорить о трактовке ИФА, то наличие антител, обозначаемых как Anti-HSV-IgG, говорит не об иммунитете к вирусу, а о том, что вы уже были когда-то инфицированы. Этот маркёр наблюдается у большинства пациентов. Если показатель anti-HSV-IgG в пробах, взятых в динамике за 2-недельный период, заметно растет, это значит, что заражение произошло недавно. О рецидиве говорит высокий показатель IgG.
Расшифровка анализа крови на ВИЧ очень проста — если результат отрицательный, это значит, что вирус не обнаружен, если положительный — увы, вирус в крови есть. Но следует знать, что сегодня даже самые надежные методы точны лишь на 98–99%, то есть всегда остается шанс, что результат будет, например, ложноположительным.
При анализе на аденовирус, вызывающий респираторные заболевания, применяется в основном ИФА. В ходе анализа подсчитываются IgG-антитела. Если показатель менее 0,8 условных единиц — результат отрицательный, более 0,8 — положительный.
Не пренебрегайте профилактическими анализами на вирусы. Раннее выявление инфекции позволяет отсрочить или подавить развитие заболевания. В случае же беременности сдача биоматериала на анализ с целью выявления вирусных инфекций является обязательной процедурой. Поводом для прохождения исследования также может стать повышенный уровень лейкоцитов в крови, сдвиг лейкоцитарной формулы, увеличение количества нейтрофилов (палочкоядерных), миелоцитов и метамиелоцитов, снижение числа лимфоцитов при высокой СОЭ в результатах клинического анализа крови.
Лабораторные исследованияпри проведении идентификации вирусов и диагностике вирусных инфекций включают следующие этапы: выделение, культивирование, индикация (выявление) и идентификация вирусов.
2.3.1 Культивирование вирусов
Вирусы не растут на искусственных питательных средах, а размножаются только внутриклеточно. Крупным достижением было предложение Р. Гудпасчура в 1932 г. использовать для культивирования вирусов куриные эмбрионы. Окончательное решение проблемы культивирования вирусов оказалось возможным лишь после того, как были разработаны основные способы культивирования клеток вне организма.
Использование куриных эмбрионов. Куриные эмбрионы – практически идеальные модели для культивирования некоторых вирусов (например, гриппа и кори). Замкнутая полость эмбриона препятствует проникновению микроорганизмов извне, а также развитию спонтанных вирусных инфекций. Эмбрионы применяют для первичного выделения вирусов из патологического материала; для пассирования и сохранения их, а также для получения необходимых количеств вируса. Некоторые возбудители (например, герпесвирусы) вызывают характерные изменения (по ним можно распознавать заболевание).
Для заражения обычно используют куриные эмбрионы 7–12-дневного возраста. Перед заражением определяют жизнеспособность эмбриона путем овоскопирования (просматривают в проходящем свете). Живые эмбрионы при овоскопировании проявляют двигательную активность, хорошо виден сосудистый рисунок. Простым карандашом очерчивают границы воздушной камеры.
Куриные эмбрионы заражают вируссодержащим материалом в асептических условиях стерильными инструментами, предварительно обработав скорлупу над воздушным пространством йодом и спиртом. Заражение проводят на хорион-аллантоисную оболочку, в амниотическую или аллантоисную полость, либо в желточный мешок (рисунок 29). Выбор метода заражения зависит от биологических свойств вируса.
Культура клеток. Вначале был использован метод переживающих тканей. Он заключался в том, что в колбу, содержащую питательную среду, вносили кусочек ткани. Клетки некоторых тканей в таких условиях могут переживать (но не размножаться) до 30 дней, а в них могут размножаться вирусы. Однако этот способ давал очень небольшой выход вирусов. Необходимо было разработать условия, при которых клетки ткани могли бы свободно размножаться.
Для получения культур клеток необходимо было решить четыре главных задачи:
– получить в необходимом количестве свободные (т. е. изолированные друг от друга) клетки;
– создать такие питательные среды и условия, в которых клетки могли бы активно размножаться;
– обеспечить условия, при которых в культурах клеток не могли бы размножаться бактерии;
– определить методы, с помощью которых можно было бы распознавать рост вируса в культуре клеток и идентифицировать его.
Для выделения изолированных (разобщенных), но жизнеспособных клеток из разрушенных тканей, стали использовать обработку их слабым раствором трипсина, разрушающего межклеточные мостики. Для культивирования клеток были предложены различные среды, содержащие все необходимые для размножения клеток питательные вещества (аминокислоты, основания, витамины и другие), минеральные соли, имеющие оптимальную рН и т. д. К питательным средам добавляли индикатор, по изменению цвета которого можно было судить о метаболизме клеток и их размножении. Было установлено, что в качестве основы, на которой клетки размножаются и образуют монослой, может быть использовано хорошо обработанное стекло пробирок и колб. Для подавления возможного роста бактерий вируссодержащий материал перед посевом его в культуры клеток стали обрабатывать антибиотиками.
В 1949 г. Дж. Эндерс, Т. Веллер и Ф. Роббинс показали, что вирус полиомиелита хорошо размножается в первично-трипсинизированных культурах клеток, полученных из почек обезьян. Основной недостаток первично-трипсинизированных клеток заключается в том, что после нескольких пересевов они перестают размножаться. Поэтому предпочтением стали пользоваться культуры таких клеток, которые способны размножаться in vitro бесконечно долго. Такие перевиваемые культуры клеток (клеточные линии характеризуются бессмертием и гетероплоидным кариотипом) получают из опухолевых тканей (HeLa получена из карциномы шейки матки, НЕр-2 – из карциномы гортани; Детройт-6 – из метастаза рака легкого в костный мозг; RН – из опухоли почки человека) или из мутантных клеток с полиплоидным набором хромосом. Однако опухолевые клетки нельзя применять для получения вакцин. Для этих целей используют только культуры таких клеток, которые не содержат никаких контаминантных вирусов и не обладают злокачественностью. Лучше всего этим требованиям отвечают культуры диплоидных клеток.
Полуперевиваемые (диплоидные) культуры клеток – клетки одного генотипа, способные in vitro выдерживать 50–100 пассажей, сохраняя при этом свой исходный диплоидный набор хромосом. Диплоидные линии фибробластов эмбриона человека используются как для диагностики вирусных инфекций, так и при производстве вирусных вакцин. Как оказалось, вирусы могут размножаться не только в культурах клеток, образующих монослой на стекле пробирок, но и в суспензиях живых клеток.
Для обеспечения жизнедеятельности культивируемых клеток необходимы питательные среды. По назначению они делятся на ростовые и поддерживающие. В ростовых питательных средах должно содержаться больше питательных веществ, обеспечивающих активное размножение клеток и формирование монослоя. Поддерживающие среды обеспечивают переживание клеток в уже сформированном монослое в период размножения в них вирусов.
2.3.2 Выделение вирусов
Выделение вирусов в культурах клеток. При выделении вирусов из различных инфекционных материалов (кровь, моча, слизистые отделяемые, смывы из органов) применяют культуры клеток, обладающих наибольшей чувствительностью к предполагаемому вирусу. Для заражения используют культуры в пробирках с хорошо развитым монослоем клеток. Перед заражением клеток питательную среду удаляют и в каждую пробирку вносят по 0,1–0,2 мл взвеси исследуемого материала, предварительно обработанного антибиотиками для уничтожения бактерий и грибов. После 30-60 мин контакта вируса с монослоем клеток удаляют избыток материала, в культуру вносят поддерживающую среду и пробы оставляют в термостате до выявления признаков размножения вируса.
Выделение вирусов на лабораторных животных. При невозможности выделить и идентифицировать вирус стандартными методами in vitro инфекционный материал вводят чувствительным к возбудителю животным, и после развития типичного инфекционного процесса проводят повторное заражение чувствительных клеточных культур. Наиболее часто используют мышей, кроликов и обезьян; для выделения некоторых вирусов (например, вирусов Коксаки) заражают мышат-сосунков. Вследствие дороговизны и сложности содержания лабораторных животных, практически повсеместно их вытеснили клеточные культуры. Тем не менее животные модели активно используют для изучения особенностей патогенеза и формирования иммунных реакций при вирусных инфекциях.
Таким образом, для выделения чистых культур вирусов в лабораторных условиях в настоящее время используются следующие живые объекты (биологические модели): 1) культура клеток (тканей, органов); 2) куриные эмбрионы; 3) лабораторные животные.
2.3.3 Индикация вирусов
Индикация вирусов в культурах клеток. Индикатором наличия вируса в зараженных культурах клеток может служить:
1) развитие специфической дегенерации клеток – цитопатическое действие вируса (ЦПД), имеющее три основных типа: крупно- или мелкоклеточная дегенерация; образование многоядерных гигантских клеток (симпластов); развитие очагов клеточной пролиферации, состоящих из нескольких слоев клеток (гроздевидная дегенерация клеток).
Различают два механизма гибели клеток, вызываемой вирусами, – некроз и апоптоз. Некроз происходит из-за необратимых нарушений целостности клеточных мембран, апоптоз – вследствие фрагментации ядерной ДНК под действием клеточной эндонуклеазы.
Цитопатические эффектыоценивают при микроскопии клеточных культур. По степени поражения клеток выделяют вирусы с высокой или умеренной цитопатогенностью:
2) обнаружение внутриклеточных включений, располагающихся в цитоплазме и/или в ядрах пораженных клеток;
3) положительная реакция гемагглютинации (РГА) или гемадсорбции (РГАдс). Некоторые вирусы, в частности, вирус гриппа, обладают особыми рецепторами (гемагглютининами), с помощью которых они адсорбируются на эритроцитах и вызывают их склеивание (гемагглютинацию). Такие вирусы легко обнаруживаются с помощью реакции гемагглютинации или гемадсорбции (эритроциты адсорбируются на инфицированных вирусами клетках культуры тканей);
4) феномен бляшкообразования. Широкое распространение получил предложенный в 1952 г. Р. Дюльбекко метод бляшек (негативных колоний), позволяющий производить количественное определение вирусов. Для выделения вирусов монослой клеток после удаления питательной среды заражают вируссодержащим материалом и покрывают слоем агара, содержащего индикатор нейтральный красный. Чашки (флаконы) инкубируют при 37 °С. Через 48–96 ч выявляются пятна – бляшки. Они имеют диаметр 1–3 мм и выглядят неокрашенными на розовом фоне. Пятна возникают за счет цитопатического действия вируса;
5) цветная реакция Солка. О росте вирусов в клетках можно судить с помощью индикатора, добавляемого к питательной среде. Если клетки активно осуществляют метаболизм, рН среды сдвигается в кислую сторону, и среда окрашивается в желтый цвет. В случае размножения вируса клетки погибают, рН среды мало меняется, и она сохраняет первоначальный (малиновый) цвет или (при нейтральной рН) приобретает оранжевый;
6) реакция интерференции (используется при отсутствии ЦПД, гемагглютинации и гемадсорбции): исследуемая культура повторно заражается вирусом, вызывающим ЦПД. В положительном случае ЦПД будет отсутствовать (реакция интерференции положительна). Если в исследуемом материале вируса не было, наблюдается ЦПД.
Кроме того, для обнаружения вируса в культурах клеток могут быть использованы различные серологические реакции.
Индикация вирусов на лабораторных животных. Индикация вируса основана на обнаружении у животных признаков инфекционного заболевания, регистрации их гибели, изучении характера патоморфологических и патогистологических изменений в тканях и органах, выявлении положительной реакции гемагглютинации.
2.3.4 Методы идентификации вирусов
Определение типа вируса (его идентификация) основано на нейтрализации биологической активности вируса с помощью типоспецифических сывороток. Конечный результат ее может быть установлен на основании следующих признаков:
1) нейтрализация цитопатического действия: в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неё), инкубируют и заражают вторую культуру; через 1–2 дня в неё вносят известный цитопатогенный вирус. При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим антителам примененной сыворотки;
2) нейтрализация реакции гемадсорбции;
3) изменение проявления цветной пробы;
4) задержка (торможение) реакции гемагглютинации: смешивают культуральную среду, содержащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при её отсутствии делают заключение о несоответствии вируса антисыворотке.
5) нейтрализация в опытах на животных.
Таким образом РН (реакция нейтрализации) основана на подавлении соответствующей реакции, феномена, развития инфекционного процесса после внесения в культуру или введения в организм животного смеси вируса со специфичными AT, содержащимися в диагностической сыворотке.
Вопросы для самоконтроля
1 Назовите основные принципы классификации вирусов.
2 Приведите русские и латинские названия основных семейств вирусов человека и животных.
3 Назовите типовых представителей основных семейств вирусов и заболевания, вызываемые ими.
4 Каковы особенности морфологии и ультраструктуры вирусов человека и животных (основных семейств)?
5 Назовите РНК-геномные и ДНК-геномные фитовирусы.
6 Какие этапы включают в себя лабораторные исследования при идентификации вирусов и диагностике вирусных инфекций?
7 Какие биологические модели используются для выделения и культивирования вирусов человека и животных?
8 Как происходит заражение куриных эмбрионов в лабораторных условиях?
9 Какие методы получения культуры клеток вы знаете?
10 Как проводят идентификацию вирусов в курином эмбрионе и на лабораторных животных?
11 Какие существуют методы индикации вирусов на культуре клеток?
12 В чем заключается назначение и сущность реакций нейтрализации вирусов?
Диагностика вирусных инфекций дыхательных путей (грипп и ОРВИ) 2380 руб. 123 Заказать
Заказать
В составе комплекса дешевле
Указанный срок не включает день взятия биоматериала
Мазок из носа и зева. Перед взятием мазка из носа очистить носовые ходы от слизи (высморкаться). Материал из ротоглотки (зева) желательно брать не ранее, чем через 4 часа после приёма пищи. Если взятие биоматериала производится ранее, нужно прополоскать рот (не горло!) кипячёной водой комнатной температуры для удаления остатков пищи.
Аспират. Условия подготовки определяются лечащим врачом.
Мокрота. Прополоскать рот кипячёной водой комнатной температуры.
Бронхоальвеолярный лаваж. Условия подготовки определяются лечащим врачом.
Острую респираторную инфекцию (ОРВИ) помимо гриппа чаще вызывают представители 3-х семейств РНК-содержащих вирусов – парамиксовирусов (респираторно-синцитиальный вирус, метапневмовирус человека, вирусы парагриппа 1-4), коронавирусы и пикорнавирусы (риновирусы) и 2-х семейств ДНК-содержащих вирусов – аденовирусы (виды B, C, E), парвовирусы (бокавирус человека). Все вышеперечисленные вирусы, за исключением бокавируса человека, вызывают заболевания верхних и нижних дыхательных путей у всех возрастных групп, но наиболее тяжело протекают ОРВИ, вызванные респираторно-синцитиальным вирусом, метапневмовирусом, вирусами парагриппа и коронавирусами, у детей в возрасте до 5 лет, пожилых и у лиц с иммунодефицитом. В 2005 г. был описан бокавирус человека, который обнаруживается в назофарингеальных мазках и мокроте у детей, страдающих ОРЗ. Основной восприимчивой группой являются дети до 3 лет.
Коронавирусы – обширное семейство, которое включает в себя несколько различных типов. Обычно коронавирусы вызывают острые респираторные инфекции (ОРВИ), протекающие в легкой форме. Данное исследование предназначено для выявления наиболее распространенных возбудителей ОРВИ и помогает выбрать наилучшую тактику лечения пациента в период эпидемического распространения гриппа и ОРВИ.
Внимание! Это исследование НЕ ПРЕДНАЗНАЧЕНО для проведения специфической диагностики новой коронавирусной инфекции COVID-19 (2019-nCov)!
Наличие у пациента остро возникшего заболевания с локальными симптомами поражения верхних или нижних дыхательных путей при наличии обще-интоксикационного синдрома
Лабораторное подтверждение ОРВИ вызванных: респираторно-синцитиальным вирусом, метапневмовирусом, вирусом парагриппа 1, 2, 3 и 4 типов, коронавирусами, риновирусами, аденовирусами групп B, C и E, бокавирусами
Дифференциальная диагностика острых бронхитов, пневмоний, бронхиолитов, вызванных этими вирусами, с заболеваниями, вызванными другими вирусными возбудителями ОРЗ, бактериальными пневмониям и с коклюшной инфекцией с целью обоснования назначения специфической терапии
Эпидемиологические исследования
Референсные значения: не обнаружено
Обнаружение РНК/ДНК возбудителей ОРВИ в рекомендованном клиническом материале при наличии клинических симптомов ОРЗ/ОРВИ свидетельствует о том, что обнаруженный вирус является одним из этиологических факторов этого заболевания и является обоснованием для назначения специфической терапии. Опасности самолечения гриппа и ОРВИ.
ДНК hAdv - Adenovirus B, C, E (аденовирус человека групп B, C и E)
ДНК hBv - Bocavirus (бокавирус человека)
РНК hPiv - Parainfluenza virus (вирус парагриппа человека 1, 2, 3 и 4 типов)
Подготовка к исследованию:
Мазок из носа и зева. Перед взятием мазка из носа очистить носовые ходы от слизи (высморкаться). Материал из ротоглотки (зева) желательно брать не ранее, чем через 4 часа после приёма пищи. Если взятие биоматериала производится ранее, нужно прополоскать рот (не горло!) кипячёной водой комнатной температуры для удаления остатков пищи.
Аспират. Условия подготовки определяются лечащим врачом.
Мокрота. Прополоскать рот кипячёной водой комнатной температуры.
Бронхоальвеолярный лаваж. Условия подготовки определяются лечащим врачом.
Острую респираторную инфекцию (ОРВИ) помимо гриппа чаще вызывают представители 3-х семейств РНК-содержащих вирусов – парамиксовирусов (респираторно-синцитиальный вирус, метапневмовирус человека, вирусы парагриппа 1-4), коронавирусы и пикорнавирусы (риновирусы) и 2-х семейств ДНК-содержащих вирусов – аденовирусы (виды B, C, E), парвовирусы (бокавирус человека). Все вышеперечисленные вирусы, за исключением бокавируса человека, вызывают заболевания верхних и нижних дыхательных путей у всех возрастных групп, но наиболее тяжело протекают ОРВИ, вызванные респираторно-синцитиальным вирусом, метапневмовирусом, вирусами парагриппа и коронавирусами, у детей в возрасте до 5 лет, пожилых и у лиц с иммунодефицитом. В 2005 г. был описан бокавирус человека, который обнаруживается в назофарингеальных мазках и мокроте у детей, страдающих ОРЗ. Основной восприимчивой группой являются дети до 3 лет.
Коронавирусы – обширное семейство, которое включает в себя несколько различных типов. Обычно коронавирусы вызывают острые респираторные инфекции (ОРВИ), протекающие в легкой форме. Данное исследование предназначено для выявления наиболее распространенных возбудителей ОРВИ и помогает выбрать наилучшую тактику лечения пациента в период эпидемического распространения гриппа и ОРВИ.
Внимание! Это исследование НЕ ПРЕДНАЗНАЧЕНО для проведения специфической диагностики новой коронавирусной инфекции COVID-19 (2019-nCov)!
Наличие у пациента остро возникшего заболевания с локальными симптомами поражения верхних или нижних дыхательных путей при наличии обще-интоксикационного синдрома
Лабораторное подтверждение ОРВИ вызванных: респираторно-синцитиальным вирусом, метапневмовирусом, вирусом парагриппа 1, 2, 3 и 4 типов, коронавирусами, риновирусами, аденовирусами групп B, C и E, бокавирусами
Дифференциальная диагностика острых бронхитов, пневмоний, бронхиолитов, вызванных этими вирусами, с заболеваниями, вызванными другими вирусными возбудителями ОРЗ, бактериальными пневмониям и с коклюшной инфекцией с целью обоснования назначения специфической терапии
Эпидемиологические исследования
Референсные значения: не обнаружено
Обнаружение РНК/ДНК возбудителей ОРВИ в рекомендованном клиническом материале при наличии клинических симптомов ОРЗ/ОРВИ свидетельствует о том, что обнаруженный вирус является одним из этиологических факторов этого заболевания и является обоснованием для назначения специфической терапии. Опасности самолечения гриппа и ОРВИ.
Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; с какого сайта или по какой рекламе; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения ретаргетинга и проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.
Copyright ФБУН Центральный НИИ Эпидемиологии Роспотребнадзора, 1998 - 2020
! Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; с какого сайта или по какой рекламе; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения ретаргетинга и проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.