Проектная деятельность вирусы днк и рнк
Презентация содержит материал о строении, функциях нуклеиновых кислот.
Скачать:
Вложение | Размер |
---|---|
nukleinovye_kisloty._dnk._rnk.pptx | 1.27 МБ |
Подписи к слайдам:
Содержание: Что это? Строение (Азотистые основания, пентоза) Разновидности ДНК (Структура, принцип комплементарности , свойства) РНК (Структура, рРНК , иРНК , тРНК ) Механизм передачи генетической информации Источники
Что это? НУКЛЕИНОВЫЕ КИСЛОТЫ - биологические полимерные молекулы, хранящие всю информацию об отдельном живом организме, определяющие его рост и развитие, а также наследственные признаки, передаваемые следующему поколению. Нуклеиновые кислоты есть ядрах клеток всех растительных и животных организмов, что определило их название (лат . nucleus – ядро).
Строение Азотистое основание Пентоза Остаток фосфорной кислоты Нуклеозид Нуклеотид Азотистое основание + Углевод = Нуклеозид Нуклеозид + Остаток фосфорной кислоты = Нуклеотид, т.е. структурное звено полимерной цепи нуклеиновых кислот.
Азотистые основания Основу структуры азотистых оснований составляют ароматические гетероциклические соединения – пиримидин или пурин Пиримидин Пурин В составе нуклеиновых кислот встречаются: три пиримидиновых основания: цитозин (Ц), урацил (У), тимин (Т) два пуриновых основания: аденин (А), гуанин(Г)
пентоза В качестве пентозы в молекуле нуклеиновых кислот выступает рибоза или дезоксирибоза . Это создает основу для нахождения различий между ДНК и РНК…
разновидности Нуклеиновые кислоты Рибонуклеиновая кислота(РНК) Дезоксирибонуклеиновая кислота(ДНК)
ДНК Аденин / Гуанин/ Тимин/ Цитозин Дезоксирибоза Остаток фосфорной кислоты Состав нуклеотида ДНК ДНК – главная молекула в организме. Она хранит генетическую информацию, которая передаётся из поколения в поколение. В закодированном виде в ДНК записан состав всех белков организма. Каждой аминокислоте, входящей в состав белка, соответствует свой код – определенная последовательность из трёх азотистых оснований.
Структура ДНК ДНК представляет собой две параллельные неразветвленные полинуклеотидные цепи, закрученные вокруг общей оси в двойную спираль. Такая пространственная структура удерживается множеством водородных связей, образуемых азотистыми основаниями, направленными внутрь спирали. Образование водородных связей проходит по принципу комплементарности …
Принцип комплементарности Состоит в возникновении водородных связей между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи Образование связей обусловлено пространственным соответствием между комплементарными парами. ТИМИН (Т) комплементарен АДЕНИНУ (А) ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г) Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранение и передачи наследственных признаков.
Свойства , определяющие способность ДНК не только хранить, но и использовать генетическую информацию: Молекулы ДНК способны к репликации(удвоению), т.е. могут обеспечить возможность синтеза других молекул ДНК, идентичных исходным, поскольку последовательность оснований в одной из цепей двойной спирали контролирует их расположение в другой цепи. Молекулы ДНК могут направлять совершенно точным и определенным образом синтез белков, специфичных для организмов данного вида.
РНК Молекулы РНК состоят из одной полинуклеотидной цепи и не имеют строго определенной пространственной формы. Основная роль РНК – непосредственное участие в биосинтезе белка. Известны три вида клеточных РНК, которые отличаются по местоположению в клетке, составу, размерам и свойствам, определяющим их специфическую роль – рРНК , иРНК , тРНК . Аденин / Гуанин/ Урацил / Цитозин Рибоза Остаток фосфорной кислоты Состав нуклеотида РНК
Рибосомные РНК Составляют 85% всей РНК клетки. Входят в состав рибосом и выполняют структурную функцию. Участвуют в формировании активного центра рибосомы, где происходит образование пептидных связей между молекулами аминокислот в процессе биосинтеза белка.
Информационные РНК Занимают около 5% клетки. Считывают информацию с участка ДНК о первичной структуре белка и несут эту информацию к рибосомам . Каждый белок кодируется своей специфической иРНК . Это обусловлено тем, что в процессе своего синтеза иРНК получает информацию о структуре белка от ДНК в форме скопированной последовательности нуклеотидов. Программируют синтез белков молекулы.
Транспортные РНК Занимают примерно 10% клетки. Каждая тРНК присоединяет и переносит определенную аминокислоту к рибосомам – месту синтеза белка. В соответствии с 20 видами аминокислот существует 20 различных тРНК . Основная функция тРНК – транспортировка аминокислот.
Механизм передачи генетической информации транскрипция трансляция Транскрипция. Генетическая информация, записанная в последовательности оснований в молекуле ДНК, передается на молекулу РНК. При этом происходит локальное расплетение цепей ДНК в транскрибируемом участке и присоединение рибонуклеотидных остатков к растущей цепи РНК. По окончании транскрипции каждого очередного участка молекулы ДНК ее двухспиральная структура восстанавливается. Трансляция. Передача генетической информации с РНК на белок. Биосинтез белка происходит на рибосомах. Рибосома, продвигается вдоль РНК, последовательно выбирая из среды те аминокислоты, соединенные с тРНК , которые соответствуют кодирующим последовательностям нуклеотидов. При этом последовательность кодонов в зрелой молекуле РНК определяет последовательность аминокислот в полипептидной цепи.
Сайт СТУДОПЕДИЯ проводит ОПРОС! Прими участие :) - нам важно ваше мнение.
Организация генома митохондрий.
Существуют два типа цитоплазматических ДНК: одни находятся в митохондриях эукариот, другие -в хлоропластах зеленых растений и водорослей. Как и все цитоплазматические элементы, они наследуются по материнской линии, а не по законам Менделя! Большая часть белков этих органелл, закодированная в ядерной ДНК, синтезируется в цитоплазме и затем переходит в органеллу. Однако некоторые белки митохондрий и хлоропластов и все их РНК кодируется в ДНК самих органелл и в них же синтезируются. Таким образом, органеллы — это результат объединенных усилий двух геномов и двух трансляционных аппаратов. РНК-компоненты рибосом органелл, а также тРНК, использующиеся при трансляции, кодируются геномами митохондрий и хлоропластов.
Размеры генома хлоропластов у всех исследованных организмов сходны, тогда как митохондриальные геномы у растений намного больше, чем у животных.
Все митохондрии и хлоропласты содержат по несколько копий собственной геномной ДНК. Эти молекулы ДНК обычно распределены в виде отдельных групп в матриксе митохондрий и в строме хлоропластов, где они прикреплены к внутренней мембране. Способ упаковки ДНК неизвестен. По структуре геном более сходен с бактериальным геномом: например, как и у бактерий, у них нет гистонов.
Геном вирусов включает:
– Структурные гены, которые кодируют белки. Занимают примерно 95 % вирусной хромосомы. Белки вирусов можно разделить на несколько групп: структурные, ферменты, регуляторы.
– Регуляторные последовательности, которые не кодируют белки: промоторы, операторы и терминаторы.
– Прочие некодирующие участки (сайты), в том числе:
– участок attP, обеспечивающий интеграцию вирусной хромосомы в хромосому клетки–хозяина;
– участки cos – липкие концевые участки линейных вирусных хромосом, обеспечивающие замыкание линейной хромосомы в кольцевую форму.
Гены, кодирующие рРНК и тРНК, в геноме вирусов обычно отсутствуют. Однако в геноме крупного фага Т4 имеются гены, кодирующие несколько тРНК.
Геном вирусов отличается высокой плотности упаковки информации. Например, у фага φХ174 в пределах одного гена может располагаться еще один ген. В частности, ген В находится в пределах гена А, а ген Е – в пределах гена D. У мелкого РНК-содержащего фага f2 ген регуляторного белка, блокирующего лизис (созревание вирионов и разрушение клетки), перекрывается с двумя другими генами, удаленными друг от друга.
Особенности вирусов эукариот
У вирусов эукариот обнаружены следующие особенности:
1. Интрон-экзонная структура генов.
2. Модификация белков после синтеза полипротеинов: весь геном транскрибируется в виде одной молекулы мРНК, которая служит матрицей для синтеза полипротеина – одного гигантского инертного белка, и лишь затем происходит расщепление полипротеина на белки, выполняющие определенные функции.
3. Перекрывание генов (обезьяний вирус SV 40, вирус гриппа).
Вирионы ДНК-содержащих вирусов содержат ДНК. Объемом ДНК определяется количество белков в вирионе: один полипептид кодируется отрезком ДНК длиной примерно 1 тысяча нуклеотидов (нуклеотидных пар). После проникновения в клетку вирусная ДНК становится матрицей для синтеза ДНК и РНК.
Примеры организации генома ДНК-содержащих вирусов
1. Кольцевая двухцепочечная ДНК длиной около 5 тпн.
– Обезьяний вирус SV 40. Мелкий эукариотический вирус. Вирионы в виде икосаэдра. Капсид белковый. Используется в генной инженерии как вектор переноса генов. Кодирует 5 белков.
– Вирусы бородавок человека.
2. Кольцевая одноцепочечная ДНК длиной около 5 тн; может быть как кодирующей, так и антикодирующей.
– Мелкие бактериофаги типа М13. Не разрушают клетку. Капсид включает 8 белков.
– Вирус золотистой мозаики фасоли.
3. Линейная двухцепочечная ДНК длиной 30-150 тпн.
– Бактериофаги типа Т4. Вирионы крупные. Белковый капсид из 130 белков включает: головку, хвостовой отдел и хвостовые нити. Эти вирусы могут существовать в виде профага длительное время.
– Аденовирусы млекопитающих и человека. Вирионы средних размеров в виде икосаэдра. Капсиды белковые. Вызывают ОРВИ, конъюнктивиты, желудочно-кишечные заболевания, иногда обладают онкогенными свойствами.
– Вирусы оспы, герпеса и им подобные. Вирионы крупные. Имеется липопротеиновая оболочка.
4. Линейная одноцепочечная ДНК длиной около 5 тн; ДНК может быть как кодирующей, так и антикодирующей. У человека известны как спутники аденовирусов.
5. Двухцепочечная ДНК, замкнутая в кольцо из перекрывающихся сегментов. Длина ДНК – 3-8 тн.
– Вирус гепатита В. Вирион сферический, средних размеров. Имеется дополнительная оболочка из вирусных и клеточных белков. Кодирует 5 белков.
– Вирус мозаики цветной капусты (CaMV). Промотор 35S-RNA (CaMV35S) этого вируса широко используется в традиционной генной инженерии для создания генетических конструкций.
К РНК-содержащим вирусам относятся многие вирусы растений, возбудители заболеваний человека и животных: вирус полиомиелита, вирусы гриппа А, В и С, вирусы паротита (свинки), кори, чумы плотоядных животных (чумки), бешенства, вирус иммунодефицита человека (ВИЧ). В отдельную группу выделяются арбовирусы, которые переносятся членистоногими (клещами, москитами), например, вирусы клещевого энцефалита, желтой лихорадки. Многие РНК-содержащие вирусы вызывают ОРВИ (например, коронавирусы), желудочно-кишечные заболевания (реовирусы птиц, млекопитающих и человека). Некоторые РНК-содержащие вирусы используются в биотехнологии, например, вирусы полиэдроза насекомых.
Вирионы РНК-содержащих вирусов содержат РНК. После проникновения в клетку вирусная РНК становится матрицей для синтеза ДНК и РНК.
Примеры организации генома РНК-содержащих вирусов
1. Линейная одноцепочечная мРНК (плюс–цепь) длиной около 4 тн; в виде единой молекулы или в виде нескольких разных молекул. Плюс-цепь сразу же может использоваться для трансляции. Вегетативно-репродуктивная фаза этих вирусов протекает в цитоплазме. В плюс-цепи закодирована РНК-репликаза (РНК-зависимая РНК-полимераза). Представители:
– Вирус табачной мозаики (ВТМ) – сегментированная РНК. Вирион нитевидный (18х300 нм). ВТМ открыт Д.И. Ивановским в 1982 г.
– Вирус полиомиелита – несегментированная РНК. Вирионы мелкие, в виде икосаэдра. Капсид белковый.
– Вирус бешенства. Нитевидный вирион. Имеется дополнительная липопротеиновая оболочка.
– Арбовирусы (переносятся членистоногими: клещами, москитами) – вирусы клещевого энцефалита, желтой лихорадки. Морфология и размеры вирионов разнообразны, например, вирус энцефалита содержит 9 белков. Имеется дополнительная липопротеиновая оболочка.
– Мелкие бактериофаги (с несегментированной РНК).
2. Линейная одноцепочечная кРНК (минус–цепь, порядок нуклеотидов комплементарен по отношению к мРНК). Минус–цепь не может служить для трансляции и используется как матрица для синтеза плюс–цепи. Плюс-цепь служит для трансляции вирусных белков и используется как матрица для синтеза вирусной кРНК. Вегетативно-репродуктивная фаза этих вирусов также протекает в цитоплазме.
– Вирусы гриппа А, В, С. Вирус гриппа А содержит минус-цепь РНК, состоящую из 8 фрагментов. Фрагменты РНК связаны с вирусными белками и образуют спиральный нуклеокапсид. Поверх нуклеокапсида располагается гликолипопротеиновый суперкапсид. В составе вириона 10 белков. В состав суперкапсида входит два белка, определяющих антигенные свойства вируса: гемагглютинин и нейраминидаза. Кроме того, в состав вириона входит уже готовая РНК-репликаза, обеспечивающая синтез плюс-цепи на матрице минус-цепи.
– Вирусы паротита (свинки), кори, чумы плотоядных животных (чумки). Сферический вирион средних размеров. Имеется дополнительная липопротеиновая оболочка.
3. Линейная двухцепочечная РНК
– Мелкие бактериофаги. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый.
– Вирусы полиэдроза насекомых. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый. Используются в биотехнологии (для синтеза интерферона).
– Реовирусы птиц, млекопитающих и человека. Вирионы мелкие, сферические или в виде икосаэдра. Капсид белковый. Вызывают ОРВИ, желудочно-кишечные заболевания. РНК фрагментированная (10. 11 фрагментов), кодирует 11 белков.
4. Две линейные одноцепочечные одинаковые молекулы мРНК длиной около 10 тн. Ретровирусы. Способны интегрироваться в ДНК. В состав вирионов входит фермент обратная транскриптаза (ревертаза). Имеется дополнительная липопротеиновая оболочка. Многие ретровирусы вызывают онкологические заболевания: лейкозы, саркомы, опухоли молочных желез. К ретровирусам относится и вирус иммунодефицита человека, вызывающий СПИД.
– Вирус иммунодефицита человека (ВИЧ). Содержит одну плюс-цепь РНК, кодирует 13 белков. Сферический вирион. Имеется дополнительная липопротеиновая оболочка, включающая фрагменты мембран человека. Избирательно поражает Т–лимфоциты.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АМУРСКОЙ ОБЛАСТИ
ГОСУДАРСТВЕННОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ АМУРСКОЙ ОБЛАСТИ
Студентка группы ПК-6
Скубиёва Наталья Викторовна
Роль вирусов в биосфере.
Положение вирусов в системе живого.
Болезни, вызываемые вирусами.
Список использованной литературы
Актуальность темы: Задумываясь над тем, что человечеству с самого начала его существования угрожали серьезные враги. Являлись они неожиданно, коварно, не бряцая оружием. Враги разили без промаха и часто сеяли смерть. Их жертвами стали миллионы людей, погибших от оспы, гриппа, энцефалита, кори, атипичной пневмонии, СПИДа и других болезней. Так возникла идея исследовать Вирусы как неклеточные формы жизни.
Объект исследования в данной работе: Вирусы.
Цель исследования: Сформировать представление о вирусах как о неклеточной форме жизни, их строении, жизнедеятельности, значении.
познакомиться с гипотезами происхождения вирусов и историей их открытия;
изучить строение и классификацию вирусов;
продолжить формирование умения работать с учебником, дополнительной литературой, Интернет-ресурсами, компьютерными средствами;
продолжить развитие логического мышления через умения сравнивать, анализировать, делать выводы;
Изучение и анализ литературы;
Сбор фактических данных;
Систематизация и обобщение собранного материала.
Вирус (от лат. virus — яд) — простейшая форма жизни на нашей планете, микроскопическая частица, представляющая собой молекулы нуклеиновых кислот (ДНК или РНК, некоторые, например, мимивирусы, имеют оба типа молекул), заключённые в защитную белковую оболочку и способные инфицировать живые организмы. Наличие капсида отличает вирусы от других инфекционных агентов. Вирусы содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые белки и не содержат нуклеиновых кислот. Вирусы являются облигатными паразитами — они не способны размножаться вне клетки. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы-сателлиты) — вирусы тоже болеют вирусными заболеваниями.
В 1901 году было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.
В 1911 году Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 г., спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).
В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Так, эксперимент Херши-Чейз стал решающим доказательством роли ДНК в передаче наследственных свойств. В разные годы еще как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.
В 2002 году, в университете Нью-Йорка был создан первый синтетический вирус (вирус полиомиелита).
Роль вирусов в биосфере.
Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов частиц на миллилитр воды), их общая численность в океане — около 4×1030, а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены. Вирусы играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования раз в несколько лет сокращает численность песцов в несколько раз).
Положение вирусов в системе живого.
Вирусы имеют генетические связи с представителями флоры и фауны Земли. Согласно последним исследованиям, геном человека более чем на 32 % состоит из информации, кодируемой вирусоподобными элементами и транспозонами. С помощью вирусов может происходить так называемый горизонтальный перенос генов (ксенология), то есть передача генетической информации не от непосредственных родителей к своему потомству, а между двумя неродственными (или даже относящимися к разным видам) особями. Так, в геноме высших приматов существует белок синцитин, который, как считается, был привнесён ретровирусом. Иногда вирусы образуют с животными симбиоз. Так, например, яд некоторых паразитических ос содержит структуры, называемые поли-ДНК-вирусами (Polydnavirus, PDV), имеющие вирусное происхождение.
Вирусы — сборная группа, не имеющая общего предка. В настоящее время существует несколько гипотез, объясняющих происхождение вирусов.
Считается, что крупные ДНК-содержащие вирусы происходят от более сложных (и, возможно, клеточных, таких как современные микоплазмы и риккетсии), внутриклеточных паразитов, утративших значительную часть своего генома. И действительно, некоторые крупные ДНК-содержащие вирусы (мимивирус, вирус оспы) кодируют функционально избыточные, на первый взгляд, ферменты, по-видимому, оставшиеся им в наследство от более сложных форм существования. Следует также отметить, что некоторые вирусные белки не обнаруживают никакой гомологии с белками бактерий, архей и эукариот, что свидетельствует о сравнительно давнем обособлении этой группы.
ДНК-содержащие бактериофаги и некоторые ДНК-содержащие вирусы эукариот, возможно, происходят от мобильных элементов — участков ДНК, способных к самостоятельной репликации в клетке.
Рис.1. Примеры структур икосаэдрических вирионов.
А. Вирус, не имеющий липидной оболочки (например, пикорнавирус).
B. Оболочечный вирус (например, герпесвирус).
Цифрами обозначены: (1) капсид, (2) геномная нуклеиновая кислота, (3) капсомер, (4) нуклеокапсид, (5) вирион, (6) липидная оболочка, (7) мембранные белки оболочки.
Рис.2.Палочковидная частица вируса табачной мозаики.
Цифрами обозначены: (1) РНК-геном вируса, (2) капсомер, состоящий всего из одного протомера, (3) зрелый участок капсида.
Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих, в свою очередь, из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 (пикорнавирусы) до 500 (мимивирусы) и более нанометров. Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.
Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:
Присоединение к клеточной мембране — так называемая адсорбция. Обычно для того, чтобы вирион адсорбировался на поверхности клетки, она должна иметь в составе своей плазматической мембраны белок (часто гликопротеин) — рецептор, специфичный для данного вируса. Наличие рецептора нередко определяет круг хозяев данного вируса, а также его тканеспецифичность.
Проникновение в клетку . На следующем этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы переносят также собственные белки, необходимые для её реализации (особенно это характерно для вирусов, содержащих негативные РНК). Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза, попадают в кислую среду лизосом, где происходит их окончательное созревание (депротеинизация вирусной частицы), после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различаются по локализации их репликации, часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) в её ядре.
Персистенция. Некоторые вирусы могут переходить в латентное состояние (так называемая персистенция для вирусов эукариот или лизогения для бактериофагов — вирусов бактерий), слабо вмешиваясь в процессы, происходящие в клетке, и активироваться лишь при определённых условиях. Так построена, например, стратегия размножения некоторых бактериофагов — до тех пор, пока заражённая клетка находится в благоприятной среде, фаг не убивает её, наследуется дочерними клетками и нередко интегрируется в клеточный геном. Однако при попадании заражённой лизогенным фагом бактерии в неблагоприятную среду, возбудитель захватывает контроль над клеточными процессами так, что клетка начинает производить материалы, из которых строятся новые фаги (так называемая литическая стадия). Клетка превращается в фабрику, способную производить многие тысячи фагов. Зрелые частицы, выходя из клетки, разрывают клеточную мембрану, тем самым убивая клетку. С персистенцией вирусов (например, паповавирусов) связаны некоторые онкологические заболевания.
Создание новых вирусных компонентов. Размножение вирусов в самом общем случае предусматривает три процесса — 1) транскрипция вирусного генома — то есть синтез вирусной мРНК, 2) её трансляция, то есть синтез вирусных белков и 3) репликация вирусного генома (в некоторых случаях, когда генетическая информация вируса закодирована в виде РНК геномная РНК одновременно играет роль мРНК, и, следовательно, процесс транскрипции в паразитируемой клетке не происходит за ненадобностью). У многих вирусов существуют системы контроля, обеспечивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной м -РНК накоплено достаточно, транскрипция вирусного генома подавляется, а репликация напротив — активируется.
Созревание вирионов и выход из клетки . В конце концов, новосинтезированные геномные РНК или ДНК одеваются соответствующими белками и выходят из клетки. Следует сказать, что активно размножающийся вирус не всегда убивает клетку-хозяина. В некоторых случаях (например, ортомиксовирусы) дочерние вирусы отпочковываются от плазматической мембраны, не вызывая её разрыва. Таким образом, клетка может продолжать жить и продуцировать вирус.
В таксономии живой природы вирусы выделяются в отдельный таксон Vira, образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria, Archaea и Eukaryota корневой таксон Biota. В течение XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни (Aphanobionta Novak, 1930; надцарство Acytota Jeffrey, 1971; Acellularia), однако такие предложения не были кодифицированы.
Систематику и таксономию вирусов кодифицирует и поддерживает Международный Комитет по Таксономии Вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и таксономическую базу The Universal Virus Database ICTVdB.
Международным Комитетом по Таксономии Вирусов в 1966 году была принята система классификации вирусов основанная на различии типа (РНК и ДНК), количества молекул нуклеотических кислот (одно- и двух-цепочечные) и на наличии или отсутствии оболочки ядра. Система классификации представляет собой серию иерархичных таксонов:
Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК. Эта система включает в себя семь основных групп:
(I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).
(II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
(III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
(IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
(V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
(VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
(VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).
В настоящее время, для классификации вирусов используются обе системы одновременно, как дополняющие друг друга.
Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.
Болезни, вызываемые вирусами.
Наряду с вирусами растений существует опасные возбудители болезней животных и человека. Это - оспа, полиомиелит, бешенство, вирусный гепатит, грипп, СПИД и т.д. Многие вирусы, к которым чувствителен человек, поражает животных и наоборот. Кроме того, некоторые животные являются переносчиками вирусов человека, при этом не болея.
О том, что растения болеют, люди узнали в те далекие времена, когда перешли на оседлое земледелие. Земледельцы как могли, лечили растения, старались предотвратить массовое поражение. Один из возбудителей болезней растений - вирус табачной мозаики. Подобный вирус встречается у картофеля, томатов, цветов, плодовых и ягодных культур. Одним из признаков вирусного поражения является изменение окраски цветов в поколения (например, тюльпанов) и изменения окраски листьев (желтуха растений).
Семейство клостеровирусов объединяет около 20 нитевидных вирусов растений, переносимых тлями. Хотя клостеровирусы вызывают экономически важные заболевания культурных растений (например, желтуху сахарной свеклы и тристецу цитрусовых), их молекулярная биология начала изучаться недавно. Вирус желтухи свеклы (ВЖС) стал первым клостеровирусом, геном которого удалось секвенировать и проанализировать, причем, несмотря на трудные времена, работа была предпринята и завершена на Кафедре вирусологии и НИИ физико-химической биологии им. А.Н. Белозерского МГУ. Выяснилось, что в больших РНК геномах ВЖС и других представителей клостеровирусов закодированы белковые последовательности, гомологии которых отражают несколько уровней консервации. Во-первых, это домен РНК полимеразы, который универсален для всех (+) РНК вирусов; во-вторых, белки, гены которых есть только у клостеровирусов; и, наконец, в-третьих, это белки, которые индивидуальны для каждого клостеровируса. Наиболее вероятным эволюционным сценарием наращивания больших РНК геномов следует признать дупликацию собственных последовательностей и захват чужих генов в результате РНК рекомбинации. В этой связи интересна судьба и функция 65К белка, ген которого мог быть захвачен геномом предка клостеровирусов из м-РНК клетки-хозяина.
Безвирусные и вирусоустойчивые растения.
Разработка эффективных противовирусных мероприятий основаны на характерной особенности каждого вируса растений, на передаче заболевания от одних растений другим. Применяется термическая обработка, химиотерапия, сочетание этих способов (опрыскивание растений или насыщения атмосферы термокамеры ингибиторами вируса).
Используется также метод, названный культурой меристемы. Метод, основан на том, что в различных тканях растений вирусы распространены не равномерно, а некоторых частях отсутствует (например, в клетках меристемы, в точках роста). Данный участок в стерильных условиях вырезается и является материалом для получения здорового потомства.
В 2008 году В. Д. Зорькин отмечал, что популярные правозащитники, выступая в европейских парламентах, требовали законодательной защиты прав вирусов, там же им было отмечено, что рядом со сторонниками прав вирусов находились ультраэкстремисты, убеждённые в том, что человек — это враждебный вирус, который следует уничтожать во имя сохранения природы.
Все вирусы отличаются следующими особенностями:
1) они имеют очень малые размеры тела;
2) не имеют клеточного строения;
3) отличаются относительно простым химическим составом (мельчайшие вирусы состоят только из белка и нуклеиновой кислоты);
4) все вирусы проходят особый цикл развития в организме хозяина;
5) не способны репродуцироваться на искусственных питательных средах;
6) в определенных условиях некоторые вирусы способны кристаллизоваться. Размеры и форма вирусных частиц очень разнообразны. Следует, однако, подчеркнуть их сложное строение и организацию.
1. Отличие вирусов от живых организмов:
- не имеют клеточного строения
- нет обмена веществ
- не размножаются половым способом
2. Отличие вирусов от неживой материи:
- способность воспроизводить себе подобные формы
- наследственность и изменчивость.
Список использованной литературы
Агол В.И. Сюрпризы вируса полиомиелита. Природа. 1993. Вып.11.
Агол В.И. Генетически запрограммированная смерть клетки. Соросовский образовательный журнал. 1996, №6, с. 20-24.
Абелев Г.И. Основы иммунитета. Соросовский образовательный журнал. 1996, №5, с.4-10.
Вирусология: в 3 т. Под ред. Б.Филдса, Д.Найпа. М.: Мир, 1989.
Кетлинский С.А., Симбирцев А.С., Воробьев А.А. Эндогенные иммуномодуляторы.СПб.: Гиппократ, 1992.
Ройт А. Основы иммунологии. М.: Мир, 1991.
Фрейдлин И.С. Цитокины и межклеточные контакты в противоинфекционной защите организма. Соросовский образовательный журнал. 1996, №7, с.19-25.
Читайте также: