Портал Mz-Don

Меню
  • Контакты
  • Статьи
  • Блог

Способы увеличения генетической информации у вирусов

Вирусы являются одним из излюбленных объектов молекулярной генетики благодаря простому строению и малой молекулярной массе их геномов, которая в 10 6 раз меньше массы генома эукариотической клетки. Органи­зация генетического аппарата у ряда вирусов, например у SV40, настолько сходна с таковой генов эукариотичес­кой клетки, что получила название минихромосомы. Минихромосома широко используется для изучения орга­низации и репликации ДНК.

Число генов у вирусов значительно варьирует: от 3—4 генов у просто устроенных вирусов (парвовирусы) до 150 генов и больше у сложно устроенных (вирус оспы). Геном вирусов животных является гаплоидным, за ис­ключением ретровирусов, которые имеют диплоидный геном, представленный двумя идентичными молекула­ми РНК. У вирусов с фрагментарным геномом (вирусы гриппа, реовирусы) каждый фрагмент обычно представ­ляет собой один ген.

Так же, как и геном эукариотической клетки, ДНК-геном ряда вирусов животных имеет мозаичную структуру, при которой смысловые последовательности чередуются с неинформативными последовательностями. Механизм сплайсинга при формировании иРНК широко распростра­нен и среди вирусов, имеющих ядерную локализацию тран­скрипции (адено-, папова-, герпесвирусы), поскольку фер­менты, осуществляющие сплайсинг, находятся в ядре. Одна­ко сплайсинг был обнаружен и у Р НК-содержащих вирусов* Например, у вирусов гриппа происходит сплайсинг транс- криптов 7-го и 8-го генов; в результате сплайсинга и сдви­га рамки трансляции продуктами каждого из этих генов являются по два уникальных белка.

В составе генов ДНК-содержащих вирусов есть ре- гуляторные участки, в том числе промотор, контролирую­щие функцию структурных генов. Сильными промоторами являются концы многих вирусных ДНК, представляющие собой длинные концевые повторы, сильный промотор име­ют гены тимидинкиназы вирусов оспы и герпеса. Эти промоторы используются в генной инженерии для усиле­ния транскрипции изучаемого гена.

СПОСОБЫ УВЕЛИЧЕНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ВИРУСНОГО ГЕНОМА

У многих вирусов молекулярная масса синтезирую­щихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механиз­мов, позволяющих получить развернутую генетическую информацию при максимальной экономии генетического Материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.

Способами увеличения генетической информации яв­ляются: 1) двукратное считывание одной и той же иРНК, но с другого инициирующего кодона; 2) сдвиг рамки трансляции; 3) сплайсинг; 4) транскрипция с перекрываю­щихся областей ДНК и др.

Трансляция может происходить без сдвига рамки и со сдвигом рамки. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет, или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изме­нился, то при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представ­ляющие собой укороченную копию первого полипептида (трансляция без сдвига рамки).

В том случае, если произошел сдвиг на один или два нуклеотида, образуются новые триплеты (кодоны) и появ­ляется новый генетический код. В этом случае одна мо­лекула иРНК может транслироваться с образованием двух уникальных белков, т. е. таких белков, у которых нет идентичных аминокислотных последовательностей.

Сплайсинг со сдвигом рамки широко используется у ряда вирусов (вирусы гриппа, парамиксовирусы, буньяви- русы, аденовирусы, паповавирусы, парвовирусы и др.). Например, все три иРНК аденоассоциированного вируса образуются при транскрипции одного гена и имеют общий З'-конец; самая короткая иРНК образуется путем сплайсинга и транслируется с образованием трех струк­турных белков, остальные две иРНК транслируются с образованием неструктурных белков, В результате сплай­синга и сдвига рамки иРНК 7-го и 8-го генов вируса гриппа транслируются с образованием двух белков: поли­пептидов М! и М2 (продукты 7-го гена) и N81 и И82 (продукты 8-го гена). Белки N81 и N82 имеют лишь первые 10 идентичных аминокислот, а затем — уникаль­ные аминокислотные последовательности* Один и тот же ген парамиксовирусов (вирус Сендай) кодирует два уни­кальных белка: структурный белок Р и неструктурный белок С.

Одним из способов экономии генетического материала является нарезание полипептида-предшественника на участки разной длины, в результате чего образуются раз­ные полипептиды с перекрывающимися аминокислотными последовательностями. Подобный механизм нарезания имеет место у аденоассоциированных вирусов и у 8У40.

Таким образом, число реальных генов превосходит молекулярную массу генома. Основанный на длине генома расчет числа генов неизменно приведет к ошибочным ре­зультатам. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.

У вирусов роль хромосом выполняет нить нуклеиновой кислоты (ДНК или РНК), у одних она цельная, у других (грипп, рео- ареновирус) – фрагментированная. Отдель­ные участки нуклеиновой кислоты, ответственные (детерминирующие) за синтез определенного белка, получили название генов. Простейшие из известных вирусов содержат от трех до пяти генов (например, ДНК-содержащий вирус полиомы; у пикорнавирусов 6—8 генов). Однако у более сложного вируса (например, крупного бактериофага Т4) более 30 генов контролируют синтез белков оболочки и не менее 15 — синтез нуклеотидных предшественников; для размножения этого фага тре­буется участие примерно сотни генов.

Ген не является неделимым. У него имеются более мелкие участки (мутоны, реконы), несущие определенные функции. Как известно, ген является носителем одновременно трех свойств:

1) контролирует тот или иной признак организма (функция),

2) обменивается в скрещиваниях (рекомбинация) и

3) изменяется (мутация).

Понятие цистрон соответствует понятию ген - единице функции, т. е. соответствует инфор­мации об одном белке.

Синтез ферментов у вирусов закодирован в генах. Любой фермент (белок) может синтезироваться только в том слу­чае, если в нуклеиновой кислоте имеется соответствующий ген, кодирующий синтез данного фермента. Последовательность работы цистронов определяется индукцией или репрессией.

Под геномом вируса понимают совокупность всех генов данного вируса. У од­них вирусов геном образован одной молекулой нуклеиновой кислоты (ДНК или РНК), у других — несколькими молекулами (вирусы гриппа, рео- и аренавирусы).

Фенотип — это совокупность всех внешних и внутренних признаков и функции данного вируса. Генотип же определяется только структурой наследственного материала — ДНК или РНК, т. е. последовательностью нуй-леотидов в их молекулах или кодом белкового синтеза. Фенотип вируса не является его постоянным свойством. Генотип же — это постоянное свойство вируса, и меняется он в результате мутаций, происходящих в-геноме. Мутационные измене­ния в геноме вируса влекут за собой и изменения его фенотипа.

У многих вирусов молекулярная масса синтезирующихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механизмов, позволяющих получить развернутую информацию при максимальной экономии генетического материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.

Способами увеличения информации являются:

1) двукратное считывание одной и той же иРНК, но с другого иницирующено кодона;

2) сдвиг рамки трансляции;

Трансляция может происходить без сдвига рамки и со сдвигом ее. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изменился, при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представляющие собой укороченный участок первого полипептида (трансляция без сдвига рамки).

В том случае, если произошел сдвиг на один или два нуклеотида, меняется смысл всех кодонов (триплетов), стоящих за местом сдвига. В этом случае одна молекула иРНК может транслироваться с образованием двух уникальных белков, т.е. таких, у которых нет идентичных аминокислотных последовательностей.

Таким образом, общее число триплетов в составе молекулы нуклеиновой кислоты может быть меньше суммы числа триплетов, входящих в состав всех генов. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.

5) сплайсинг со сдвигом рамки широко распространен у ряда вирусов. В результате сплайсинга и сдвига рамки иРНК генов транслируются с образованием двух белков

Одним из способов экономии генетического материала является нарезание полипептида - предшественника на участки разной длины, в результате чего образуются разные полипептиды с перекрывающимся аминокислотными последовательностями.

4)транскрипция с перекрывающихся областей ДНК и и др.

Наследственность у вирусов

Наследственность — это свойство организмов обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать спе­цифический характер индивидуального развития. Изменчивость — свойство, про­тивоположное наследственности. Изменчивость вирусов может быть обусловлена мутацией генов.

Мутации у вирусов

В основе наследственного изме­нения свойств вирусов могут лежать два процесса:

1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства, и

2) рекомбинация, т. е. обмен генетическим материалом меж­ду двумя близкими, но отличающимися по наследственным свойствам вирусами.

Мутация — изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводит к стойким изменениям наследственных свойств вирусов.

Все мутации вирусов делятся на две группы:

По протяженности их делят на:

-аберрационные (изменения, затрагивающие значительный участок генома).

Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих виру­сов) или одной пары комплементарных нуклеотидов (для ДНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.

Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклео­тидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокации) целых участков и даже повороты участ­ков на 180° (так называемые инверсии). Это будут уже более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.

Следует отметить, что не всегда точечные мутации реализуются. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них — вырожденность генетического кода. Как уже указывалось, код белкового синтеза вырожден, т, е. некоторые аминокислоты могут кодироваться несколь­кими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.

Другое дело, когда какая-то аминокислота кодируется всего одни триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеет. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.

Как спонтанные, так и индуцированные мутации делят также на прямые и обратные (реверсии). Прямые мутации меняют фенотип, а обратные его восстанавливают.

Спонтанные мутации

Спонтанные мутации у виру­сов возникают в популяции без искусственного вмешательства со стороны экспериментатора. Не может быть абсолютно однородных популяций. Однородность относительна, поэтому в вирусной популя­ции в процессе ее развития спонтанные мутанты возникают с опреде­ленной вероятностью.

Частота мутаций одного и того же признака может быть различной в зависимости от штамма. Так, частота мутаций по признаку rсt 40° у штамма W-Fox вируса полиомиелита составляла 2,4´10 -5 , тогда как у штамма.Ch-AT она была на порядок ниже — 2,0´10 -6 .

Каковы причины и механизмы возникновения спонтанных мутаций? По мнению Уотсона и Крика, спонтанные мутации могут возни­кать вследствие таутомерного (таутомерия – один из видов изомерии, при которой изомеры легко переходят друг в друга) превращения оснований, входящих в состав ДНК. Так, например, таутомерный сдвиг в положении атома водорода у аденина приводит к тому, что аденин при репликации спари­вается не с тимином, а с гуанином. Такая ошибка при спаривании осно­ваний приводит при последующих репликациях к замене пары AT и ГЦ.

Изучение мутационной изменчивости того или иного вируса состоит в определении физико-химических и биологических свойств мутанта. (вирулентностью, реактогенностью, иммуногенностью, способность репродукции в той или иной системе, термо-резистентность, гемагглютинирующие, гемолизирующие и другие свойства).

Мутации у вирусов могут возникать и в результате адаптации их к необычным биологическим системам in vitro (культуры клеток) и in vivo (животные, куриные эмбрионы).

Мутации при пассажах на животных. Стабильные высокоиммуногенные штаммы вирусов получают методом длительной адаптации к лабораторным, естественно-восприимчивым или невосприимчивым животным. Так, был по­лучен вакцинный штамм (virus fixe) бешенства.

При адаптации вирусов к естественно-невосприимчивым видам животных или к гетерогенным тканям экспериментально-восприимчивых животных решающее зна­чение имеют вид и возраст животного, способ введения вируса и его свойства, а также свойства штамма.

Для успеха адаптации вирусов к организму лабораторных животных сущест­венное значение имеет ослабление резистентное их путем воздействия кортизоном, температурой, облучением g-лучами и т. п.

Мутации при пассажах в культурах клеток. В культурах клеток и тканей успешно выращиваются и аттенуируются многие вирусы.

Причины возникновения мутаций в процессе адаптации. Изменение свойств вируса в процессе пассажей происходит ступенчато. В первых пассажах обнаруживают главным образом вирионы, изменившие ка­кой-либо один генетический признак; с увеличением пассажей в попу­ляции выявляют вирионы, изменившие два и более генетических признака; по мере пассирования количество таких частиц постоянно возрастает, и в дальнейшем у подавляющего большинства вирусных частиц наблюдают изменение многих генетических признаков.

В основе механизма наследственной изменчивости вирусной популяции при пассажах лежат два процесса: мутация и селекция, причем и в том, и в другом процессе важную роль играет внешняя среда, являющаяся одновременно индуктором мутации и се­лективным фактором.

Если гетерогенную вирусную популяцию, имеющую в своем составе измененные и исходные вирусные частицы, культивировать в обычных условиях, то это приводит к ее реверсии.

Наконец, накопилось большое число фактов об изменчивости вируса, вызываемой хозяином (host-controlled variation). Эти измене­ния заключаются в том, что клетка влияет на характер синтезирующих в ней компонентов вируса. Такие модификации не затрагивают нуклеотидную последовательность вирусного генома.

Таким образом, клетка хозяина может существенно влиять на фенотип вируса или блокировать (частично или полностью) его репро­дукцию.

Индуцированные мутации

Возникают при действии на вирус (на его вегетатив­ную или покоящуюся форму) различными химическими и физическими мутагенами, а также в процессе адаптации его к необычным биологическим системам (при адап­тационной изменчивости).

Применение искусственных мутагенов имеет два преимущества. Во-первых, они вызывают мутации в десятки и сотни раз эффективнее, чем природные факторы, и, во-вторых, действие некоторых искусственных мутагенов имеет известную напра­вленность, что позволяет заранее предвидеть, на какие элементы структуры нуклеи­новых кислот и каким образом действует тот или иной мутаген и какие изменения в них вызовет.

Химические мутагены. Предложено разделить мутагены на две основные группы:

1) мутагены, реагирующие с нуклеиновой кислотой только во время ее репликации (аналоги пуриновых и пиримидиновых оснований);

2) мутагены вступающие в реакцию с покоящейся молекулой нуклеиновой кислоты, но требующие для формирования мутаций последующих ее репликаций (азотистая кислота, гидроксиламин, алкилирующие соединения).

В последние годы синтезирован и изучен целый ряд химических соединений — супермутагенов (нитрозопроизводных мочевины — нитрозогуанидин и его производ­ные)

Молекулярные механизмы мутагенного действия химических соединений. В основе молекулярных изменений вирусной нуклеиновой кислоты, приводящих к мутации, лежат два основных процесса за­мена основания и выпадение или вставка основания. Различает два типа за­мены оснований, входящих в состав вирусной нуклеиновой кислоты: простую (транзиция) и сложную (трансверсия). При простой замене на место одного пуринового основания встает другое (например, вместо аденина — гуанин) или вместо одного пиримидинового основания — другое пиримидиновое основание (вместо цитозина — урацил).

При сложной замене — трансверсии вместо пуринового основания появляется пиримидиновое или пиримидиновое основание заменяется пуриновым.

Другой процесс — выпадение (делеция) или вставка оснований— ведет к более глубоким изменениям генетического кода, чем простая - замена оснований. Мутационные повреждения в одном участке генома нередко приводят к изме­нению нескольких генетических признаков, имеющих различное фенотипическое проявление (плейотропия).

Мутагенное действие аналогов азотистых оснований (5-бромурацила, 5-фторурацила, 5-йодурацила, 2-аминопурина, 2,6-диаминопурина). Аналоги основании индуцируют мутации только при воздействии на реплицирующиеся молекулы ДНК и РНК. Из этой группы соединений наиболее хорошо изучены 5-бромурацил и 2-аминопурин. Tимин (Т) является урацилом (У), в котором атом водорода (Н) в одной из СН - групп заменен метильной группой (СН3). Другими словами, тимин — это метилурацил. Однако в урациле этот атом водорода можно заменить и другим атомом, например брома (Вr). В результате такой замены получается новое соединение — бромурацил (БУ), который является аналогом тимина, так как структура основного ядра (кольца) у обоих соединений совершенно одинакова, а различие заключается лишь в одной группе (Вr вместо СН3).

Мутации, индицируемые алкирующими соединениями. К веществам, под дей­ствием которых основания удаляются из нуклеиновой кислоты, относятся алкирующие соединения — иприт и его аналоги, этиленимин и его аналоги - этилметансульфонат и этилэтансульфонат и др. Они непосредственно взаимодействуют с нуклеи­новыми кислотами, пуринами и главным образом с гуанином, вызывая простые (транзиции) и сложные (трансверсии) замены; из ДНК удаляются пурины (в основ­ном гуанин) и, в зависимости от того, какой нуклеотид встретится напротив бреши при репликации, либо возникает мутация типа замены, либо не возникает ее совсем.

Кроме простых замен (пурин на пурин), алкилирующие агенты способны инду­цировать сложные замены — пурин на пиримидин.

Мутагенное действие гидроксиламина. Гидроксиламин индуцирует мутации по типу образования простых замен оснований в нуклеиновой кислоте, направление которых зависит от типа нуклеиновой кислоты, которую содержит вирус. У ДНК-содержащих вирусов этот мутаген реагирует исключительно с цитозином. При воз­действии на РНК-содержащие вирусы он вступает в реакцию как с цитозином, так и с урацилом, что обусловливает замены цитозина на урацил и наоборот.

Мутагенное действие азотистой кислоты. Среди веществ, химически изменяю­щих основания в покоящейся молекуле нуклеиновой кислоты, наиболее хорошо изучены азотистая кислота и гидроксиламин. Механизм действия азотистой кислоты (HNO2) как мутагена на нуклеиновые кислоты вирусов заключается в дезаминировании органических оснований, т. е. отщеплении от их молекул аминогруппы (NH2). В результате действия азотистой кислоты аденин (А) превращается в гипоксантин (Гк), гуанин (Г) — в ксантин (К), а цитозин (Ц) — в урацил (У). Вследствие этой реакции у дезаминированных органических основа­нии возникают новые свойства.

Мутагенное действие повышенной температуры. Влияние повышенной температуры (40—50 °С) обнаружил Фриз в опытах с фагом Т4 и Ю. 3. Гендон при обработке РНК вируса полиомиелита. Температура способ­ствует удалению пуринов (преимущественно гуанина) из ДНК. При репликации такой ДНК напротив бреши, вызванной утратой пурина могут быть включены в реплицирующую нить любые нуклеотиды. Если включится новый тип основания, которого ранее в этом участке не было, может произойти мутация (транзиция или трансверсия).

Мутагенное действие ультрафиолетовых лучей. Действие ультрафиолетовых лучей (УФ) как мутагенов состоит в том, что они взаи­модействуют с молекулами нуклеиновых кислот и поглощаются ими, особенно лучи с длиной волны 260—280 им. Попадая в молекулу нуклеиновой кислоты, они погло­щаются входящими в ее состав органическими основаниями. Оказалось, что тимин (Т), урацил (У) и цитозин-(Ц) более чувствительны к ультрафиолетовым лучам, чем аденин (А) и гуанин (Г). В результате облучения структура указанных пиримидинов изменяется. При облучении УФ-лучами две соседние, молекулы тиминов соединяются друг с другом в пары, образуя так называемые димеры.

Репарации


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Лекция 7

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ ГЕНОМА ВИРУСА

Вирусы являются одним из излюбленных объектов молекулярной генетики благодаря простому строению и малой молекулярной массе их геномов, которая в 10 6 раз меньше массы генома эукариотической клетки. Организация генетического аппарата у ряда вирусов, например у SV40, настолько сходна с таковой генов эукариотичес­кой клетки, что получила название минихромосомы. Минихромосома широко используется для изучения орга­низации и репликации ДНК.

Число генов у вирусов значительно варьирует: от 3—4 генов у просто устроенных вирусов (парвовирусы) до 150 генов и больше у сложно устроенных (вирус оспы). Геном вирусов животных является гаплоидным, за ис­ключением ретровирусов, которые имеют диплоидный геном, представленный двумя идентичными молекула­ми РНК. У вирусов с фрагментарным геномом (вирусы гриппа, реовирусы) каждый фрагмент обычно представ­ляет собой один ген.

Так же, как и геном эукариотической клетки, ДНК-геном ряда вирусов животных имеет мозаичную структуру, при которой смысловые последовательности чередуются с неинформативными последовательностями. Механизм сплайсинга при формировании иРНК широко распростра­нен и среди вирусов, имеющих ядерную локализацию тран­скрипции (адено-, папова-, герпесвирусы), поскольку фер­менты, осуществляющие сплайсинг, находятся в ядре. Одна­ко сплайсинг был обнаружен и у РНК-содержащих вирусов. Например, у вирусов гриппа происходит сплайсинг транскриптов 7-го и 8-го генов; в результате сплайсинга и сдви­га рамки трансляции продуктами каждого из этих генов являются по два уникальных белка.

В составе генов ДНК-содержащих вирусов есть регуляторные участки, в том числе промотор, контролирую­щие функцию структурных генов. Сильными промоторами являются концы многих вирусных ДНК, представляющие собой длинные концевые повторы, сильный промотор име­ют гены тимидинкиназы вирусов оспы и герпеса. Эти промоторы используются в генной инженерии для усиле­ния транскрипции изучаемого гена.

СПОСОБЫ УВЕЛИЧЕНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ВИРУСНОГО ГЕНОМА

У многих вирусов молекулярная масса синтезирую­щихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механиз­мов, позволяющих получить развернутую генетическую информацию при максимальной экономии генетического материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.

Способами увеличения генетической информации яв­ляются: 1) двукратное считывание одной и той же иРНК, но с другого инициирующего кодона; 2) сдвиг рамки трансляции; 3) сплайсинг; 4) транскрипция с перекрываю­щихся областей ДНК и др.

Трансляция может происходить без сдвига рамки и со сдвигом рамки. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет, или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изме­нился, то при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представ­ляющие собой укороченную копию первого полипептида (трансляция без сдвига рамки).

В том случае, если произошел сдвиг на один или два нуклеотида, образуются новые триплеты (кодоны) и появ­ляется новый генетический код. В этом случае одна мо­лекула иРНК может транслироваться с образованием двух уникальных белков, т. е. таких белков, у которых нет идентичных аминокислотных последовательностей.

Сплайсинг со сдвигом рамки широко используется у ряда вирусов (вирусы гриппа, парамиксовирусы, буньявирусы, аденовирусы, паповавирусы, парвовирусы и др.). Например, все три иРНК аденоассоциированного вируса образуются при транскрипции одного гена и имеют общий З'-конец; самая короткая иРНК образуется путем сплайсинга и транслируется с образованием трех струк­турных белков, остальные две иРНК транслируются с образованием неструктурных белков. В результате сплай­синга и сдвига рамки иРНК 7-го и 8-го генов вируса гриппа транслируются с образованием двух белков: поли­пептидов М, и М2 (продукты 7-го гена) и NSi и NS2 (продукты 8-го гена). Белки NSt и NS2 имеют лишь первые 10 идентичных аминокислот, а затем — уникаль­ные аминокислотные последовательности. Один и тот же ген парамиксовирусов (вирус Сендай) кодирует два уникальных белка: структурный белок Р и неструктурный белок С.

Одним из способов экономии генетического материала является нарезание полипептида-предшественника на участки разной длины, в результате чего образуются раз­ные полипептиды с перекрывающимися аминокислотными последовательностями. Подобный механизм нарезания имеет место у аденоассоциированных вирусов и у SV40.

Таким образом, число реальных генов превосходит молекулярную массу генома. Основанный на длине генома расчет числа генов неизменно приведет к ошибочным ре­зультатам. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.

ОСНОВНЫЕ ПРОЦЕССЫ, КОНТРОЛИРУЮЩИЕ НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ ВИРУСОВ

Модификации. Модификациями называются не насле­дуемые (фенотипические) изменения у вирусов, обуслов­ленные клеткой-хозяином. Эти изменения лежат в основе адаптации вируса к новому хозяину и преодоления зави­симого от хозяина ограничения. Модификации нуклеино­вых кислот вирусов осуществляют клеточные ферменты, ответственные за ограничение (рестрикцию) репродукции вируса.

Мутации. В основе изменчивости вирусов лежат му­тации, т. е. изменения состава и последовательностей нуклеотидов вирусного генома. Мутации происходят у всех вирусов, независимо от того, является ли их ге­нетическим аппаратом ДНК или РНК. В результате мутаций отдельные вирионы могут приобретать новые свой­ства. Дальнейшая судьба таких вирусов зависит от естественного отбора, сохраняющего популяцию, наиболее приспособленную к условиям существования.

Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических прояв­лений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покры­тием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. п.

В других случаях мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.

В некоторых случаях мутации являются условно ле­тальными, так как вирусспецифический белок сохраняет свои функции в определенных, оптимальных для него, условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные (tempe­rature sensitive) — ts-мутации, при которых вирус теряет способность размножения при повышенных температурах (39—42° С), сохраняя эту способность при обычных температурах выращивания (36—37° С).

По своему механизму мутации могут быть тоже раз­ными. В одних случаях происходит делеция, т. е. выпа­дение одного или нескольких нуклеотидов, в других слу­чаях происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях — замена одного нуклеотида другим.

Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные мутации — ревер­сии — его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит в месте первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия) или в другом гене (экстрагенная супрессия). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэто­му при получении мутантов с заданными свойствами, например вакцинных штаммов, приходится считаться с воз­можной их реверсией к дикому типу.

Мутации носят случайный характер и объясняются статистическими законами.

В качестве физических мутагенов наиболее часто при­меняется ультрафиолетовое облучение, так как его энергия сопоставима с энергией химических связей. Реже приме­няются более жесткие виды облучения — рентгеновское и γ-облучение, а также обработка вирусных суспензий нейтронами, протонами, электронами и ядрами гелия, так как они вызывают сильные разрушения вирусных геномов и их инактивацию.

В качестве химических мутагенов применяют аналоги оснований (бромурацил, бромдезоксиуридин, 2-аминопурин, нитрозогуанидин и пр.), алкилирующие и флуорес­цирующие соединения (профлавин), интеркалирующие агенты (актиномицин, этидий бромид), азотистую кислоту, гидроксиламин и многие другие.

ГЕНЕТИЧЕСКИЕ И НЕГЕНЕТИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ МЕЖДУ ВИРУСАМИ

Как в естественных, так и в экспериментальных усло­виях одна клетка может быть заражена не одним, а несколькими вирусами. В процессе такой смешанной инфекции могут иметь место различные формы взаимо­действия как между вирусными геномами, так и между продуктами генов. При взаимодействии геномов могут наблюдаться такие формы генетических взаимодействий, как множественная реактивация, рекомбинация, пересортировка генов, кросс-реактивация, гетерозиготность. При взаимодействии на уровне продуктов генов могут иметь место негенетические взаимодействия: комплементация, интерференция, фенотипическое смешивание и др.

Множественная реактивация. Вирусная инфекция мо­жет возникнуть при заражении клетки несколькими ви-рионами с поврежденными геномами вследствие того, что функцию поврежденного гена может выполнять вирус, у которого этот ген не поврежден. Этот феномен был вна­чале обнаружен на бактериофагах и получил название множественной реактивации. В основе множественной реактивации лежит кооперативный процесс, при котором вирионы с поражением разных генов дополняют друг друга путем генетической рекомбинации, в результате чего репродуцируется исходный неповрежденный вирус. Эффективность множественности реактивации зависит от многих причин: степени повреждения генома вирионов, числа проникших в клетку вирионов, концентраций их в определенных участках клетки, аутоинтерференции поврежденных вирионов. Для множественной реактивации важное значение имеет расстояние между вирионами с поврежденными геномами внутри клетки. Обработка ви­рионов двухвалентными ионами металлов, ведущая к их агрегации, усиливает множественную реактива­цию.

Рекомбинация. Генетической рекомбинацией называют обмен генетическим материалом, происходящий между родительскими вирусами. Возможен обмен полными ге­нами (межгенная рекомбинация), так и участками одного и того же гена (внутригенная рекомбинация). Образую­щийся вирус-рекомбинант обладает свойствами, унаследо­ванными от разных родителей.

Обычно рекомбинируемые штаммы обладают харак­терными признаками, которые обозначаются как маркеры. Например, были получены рекомбинанты между вирусами полиомиелита, обладающие повышенной устойчивостью и повышенной чувствительностью к гуанидину, разной нейровирулентностью, разной устойчивостью к повышенной температуре, разной чувствительностью к ингибиторам сы­вороток лошадей и коров и т. п. Для получения рекомбинантов используют штаммы, содержащие два или боль­шее число маркеров.

Тест рекомбинации применяют для генетических иссле­дований вирусов. С его помощью возможно построение генетических карт вирусов, в которых определяется, в ка­ких участках генома произошли мутации, а также в услов­ных единицах измеряется расстояние между разными мутациями.

Пересортировка генов. Вариантом рекомбинации явля­ется феномен, получивший название пересортировки генов. Она наблюдается при генетических взаимодействиях меж­ду вирусами, имеющими сегментированный геном. Обра­зующиеся при этом гибридные формы вирусов называют реассортантами. Реассортанты вирусов гриппа получают при совместном культивировании вирусов с разными гена­ми гемагглютинина и нейраминидазы. В этом случае из общего потомства путем нейтрализации соответствующих антигенов можно выделить интересующие исследователя варианты.

Существуют определенные группировки (констелляции или созвездия) генов, которые в данной системе клеток более стойки и делают вирус более жизнеспособным.

Сходные процессы пересортировки генов имеют место у вирусов гриппа типов А, В и С и у других вирусов с фрагментарным геном — у буньявирусов, аренавирусов (однонитчатые РНК) и реовирусов (ротавирусов) (двунитчатая РНК). Однако эти процессы не столь интенсивны и доступны изучению, как у вирусов гриппа.

Гетерозиготность. При совместном культивировании двух штаммов вируса может происходить формирование вирионов, содержащих в своем составе два разных генома или по крайней мере один полный геном и часть второго генома. Это явление названо гетерозиготностью.

Комплементация. Комплементация (дополнение) явля­ется таким видом негенетического взаимодействия при смешанной инфекции двумя вирусами, которое стимули­рует репродукцию обоих партнеров или одного из них, но не изменяет генотипы вирусов. Принцип комплементации заключается в том, что вирус снабжает партнера недоста­ющими компонентами, обычно белками, структурными или неструктурными.

Комплементация широко распространена среди вирусов и встречается как между родственными, так и неродствен­ными вирусами. Феномен тесно связан с проблемой де­фектности вирусов.

Поскольку в вирусной популяции помимо стандартных обычно присутствуют дефектные неинфекционные вирус­ные особи, в частности дефектные частицы, утратившие часть генетического материала, комплементация имеет место в инфекционном цикле многих вирусов и заключа­ется в том, что члены популяции снабжают друг друга продуктами генов, которые дефектны у партнеров. Отличие комплементации от генетической рекомбинации заключается в отсутствии обмена генетическим материалом.

Комплементация встречается и у неродственных ви­русов, принадлежащих к разным семействам. Одним из семейств, вирусы которого наиболее часто участвуют в комплементации, является семейство аденовирусов. В од­них системах аденовирусы могут действовать как дефект­ные вирусы, в других — как помощники. Например, в культуре клеток почек макак резусов аденовирусы могут репродуцироваться только в присутствии SV40, который является в данном случае вирусом-помощником. В других системах сами аденовирусы действуют как вирусы-по­мощники, а вирусом-сателлитом является аденоассоци-ированный вирус, относящийся к семейству парвовирусов. Репродукция этого вируса полностью зависит от комплементирующего действия аденовирусов. Вирус гепатита В является помощником для дельта-агента, который по­крывается его наружным белком — HBs-антигеном. Соче­тание обоих вирусов обнаружено при наиболее тяжелых формах гепатита.

Возможна не только межцистронная, но и внутрицистронная комплементация в том случае, когда один ген кодирует несколько белков.

Фенотипическое смешивание. При совместном культиви­ровании двух вирусов может наблюдаться феномен фенотипического смешивания, когда геном одного вируса бывает заключен в капсид, состоящий частично или пол­ностью из белков другого вируса.

Фенотипическое смешивание наблюдается при смешан­ной инфекции,многими вирусами, причем эти вирусы мо­гут быть как близкими друг другу (например, вирусы гриппа А и В или разные серологические подтипы вируса гриппа А), так и весьма далекими (онковирусы и рабдовирусы).

РЕСТРИКТАЗЫ И ФИЗИЧЕСКИЕ КАРТЫ ВИРУСОВ

Подлинную революцию в физическом картировании ге­номов вирусов произвело применение рестриктаз и секвенирование вирусных геномов. Рестриктазы имеют иск­лючительное значение в молекулярной генетике вообще и генетической инженерии в частности. Их открытие (1968—1970 гг.) впервые дало возможность специфически расщеплять ДНК на строго определенные фрагменты, дос­тупные для препаративного выделения и анализа.

Рестриктазы или эндодезоксирибонуклеазы — это прос­то организованные белки, являющиеся ферментами, ши­роко распространенными среди прокариотов и участву­ющими в генетических процессах. В отличие от экзонук-леаз, отщепляющих концевые нуклеотиды или свободные остатки фосфорной кислоты, эндонуклеазы расщепляют молекулу ДНК изнутри, обычно — в местах, где преобла­дают пиримидиновые основания. Рестриктазы характери­зуются высоковыраженной специфичностью, распознавая строго определенные последовательности нуклеотидов в двунитчатой ДНК.

Число новых рестриктаз стремительно нарастает и со временем, по-видимому, будут обнаружены рестриктазы, узнающие любую последовательность нуклеотидов.

Использование разных рестриктаз позволяет получать фрагменты разной величины, которые затем разделяются и анализируются путем электрофореза в агарозных или полиакриламидных гелях. Сочетание рестрикционного ана­лиза с другими методами позволяет составить физические карты геномов вирусов. Физические карты вирусных геномов обозначают взаимное расположение генов, их границы, локализацию начала репликации, промоторов, лидеров, экзонов и интронов, сигнальных последователь­ностей и других генетических элементов.

Генетический код для синтеза белков вируса SV-40 записан не на одной, а на обеих нитях ДНК, а транскрипция разных генов идет в разных направлениях.

В настоящее время полностью расшифрованы нуклеотидные последовательности отдельных генов и целых ге­номов методом секвенирования (от англ. sequence — последовательность). Если речь идет о РНК-содержащих вирусах, то предварительным условием для дальнейшего их анализа является переписка РНК на ДНК с помощью РНК-зависимой ДНК-полимеразы (обратной транскриптазы), после чего генетический материал может быть под­вергнут рестрикционному анализу.

Проектное задание к модулю

В качестве проектного задания студентам предлагается написание рефератов по следующим темам:

1. Природа дефектных вирусных геномов. Вирусы-сателлиты.

2. Вирусная интерференция

3. Необычные свойства ретровирусов

4. Трансформация клетки опухолеродными ДНК-вирусами

5. Классификация и основные свойства вирусов гриппа

6. Индукция специфического иммунного ответа на вирусы

7. Особенности репродукции пикорнавирусов

8. Семейство тогавирусов. Особенность репродукции и инфекционного процесса.

9. Вирус клещевого энцефалита.

10. Вирус бешенства

11. Вирусная персистенция

12. Основные свойства парамиксовирусов

13. Вирус кори. Биология возбудителя. Особенности патогенеза

14. Аденовирусы, их репликация и связь с другими вирусами

16. Пути распространения вирусных болезней растений.

17. Прионы. Возбудители или провокаторы или….

18. Вироиды как вирусоподобные инфекционные агенты.

19. Вирусы, вызывающие респираторные инфекции. Сравнительная характеристика

20. Место вирусов в биосфере.

21. Бактериофаги. Их морфологическое многообразие и взаимодействие с бактериями.

22. Атипичная пневмония и возможность происхождения новых вирусов

23. Роль вирусов в возникновении злокачественных опухолей

24. Особенности транскрипции РНК- содержащих вирусов.

25. Морфогенез вирусов или морфологические превращения в процессе репродукции.

Тест рубежного контроля

Читайте также:

  • По эстонии ходит вирус
  • Капли для глаз противовирусные для детей офтальмоферон
  • Нужно ли давать ребенку противовирусные препараты при насморке
  • Вирус не работает dvd
  • Папилломавирус у зайцев нет
  • Контакты
  • Политика конфиденциальности