Способы увеличения генетической информации у вирусов
Вирусы являются одним из излюбленных объектов молекулярной генетики благодаря простому строению и малой молекулярной массе их геномов, которая в 10 6 раз меньше массы генома эукариотической клетки. Организация генетического аппарата у ряда вирусов, например у SV40, настолько сходна с таковой генов эукариотической клетки, что получила название минихромосомы. Минихромосома широко используется для изучения организации и репликации ДНК.
Число генов у вирусов значительно варьирует: от 3—4 генов у просто устроенных вирусов (парвовирусы) до 150 генов и больше у сложно устроенных (вирус оспы). Геном вирусов животных является гаплоидным, за исключением ретровирусов, которые имеют диплоидный геном, представленный двумя идентичными молекулами РНК. У вирусов с фрагментарным геномом (вирусы гриппа, реовирусы) каждый фрагмент обычно представляет собой один ген.
Так же, как и геном эукариотической клетки, ДНК-геном ряда вирусов животных имеет мозаичную структуру, при которой смысловые последовательности чередуются с неинформативными последовательностями. Механизм сплайсинга при формировании иРНК широко распространен и среди вирусов, имеющих ядерную локализацию транскрипции (адено-, папова-, герпесвирусы), поскольку ферменты, осуществляющие сплайсинг, находятся в ядре. Однако сплайсинг был обнаружен и у Р НК-содержащих вирусов* Например, у вирусов гриппа происходит сплайсинг транс- криптов 7-го и 8-го генов; в результате сплайсинга и сдвига рамки трансляции продуктами каждого из этих генов являются по два уникальных белка.
В составе генов ДНК-содержащих вирусов есть ре- гуляторные участки, в том числе промотор, контролирующие функцию структурных генов. Сильными промоторами являются концы многих вирусных ДНК, представляющие собой длинные концевые повторы, сильный промотор имеют гены тимидинкиназы вирусов оспы и герпеса. Эти промоторы используются в генной инженерии для усиления транскрипции изучаемого гена.
СПОСОБЫ УВЕЛИЧЕНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ВИРУСНОГО ГЕНОМА
У многих вирусов молекулярная масса синтезирующихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механизмов, позволяющих получить развернутую генетическую информацию при максимальной экономии генетического Материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.
Способами увеличения генетической информации являются: 1) двукратное считывание одной и той же иРНК, но с другого инициирующего кодона; 2) сдвиг рамки трансляции; 3) сплайсинг; 4) транскрипция с перекрывающихся областей ДНК и др.
Трансляция может происходить без сдвига рамки и со сдвигом рамки. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет, или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изменился, то при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представляющие собой укороченную копию первого полипептида (трансляция без сдвига рамки).
В том случае, если произошел сдвиг на один или два нуклеотида, образуются новые триплеты (кодоны) и появляется новый генетический код. В этом случае одна молекула иРНК может транслироваться с образованием двух уникальных белков, т. е. таких белков, у которых нет идентичных аминокислотных последовательностей.
Сплайсинг со сдвигом рамки широко используется у ряда вирусов (вирусы гриппа, парамиксовирусы, буньяви- русы, аденовирусы, паповавирусы, парвовирусы и др.). Например, все три иРНК аденоассоциированного вируса образуются при транскрипции одного гена и имеют общий З'-конец; самая короткая иРНК образуется путем сплайсинга и транслируется с образованием трех структурных белков, остальные две иРНК транслируются с образованием неструктурных белков, В результате сплайсинга и сдвига рамки иРНК 7-го и 8-го генов вируса гриппа транслируются с образованием двух белков: полипептидов М! и М2 (продукты 7-го гена) и N81 и И82 (продукты 8-го гена). Белки N81 и N82 имеют лишь первые 10 идентичных аминокислот, а затем — уникальные аминокислотные последовательности* Один и тот же ген парамиксовирусов (вирус Сендай) кодирует два уникальных белка: структурный белок Р и неструктурный белок С.
Одним из способов экономии генетического материала является нарезание полипептида-предшественника на участки разной длины, в результате чего образуются разные полипептиды с перекрывающимися аминокислотными последовательностями. Подобный механизм нарезания имеет место у аденоассоциированных вирусов и у 8У40.
Таким образом, число реальных генов превосходит молекулярную массу генома. Основанный на длине генома расчет числа генов неизменно приведет к ошибочным результатам. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.
У вирусов роль хромосом выполняет нить нуклеиновой кислоты (ДНК или РНК), у одних она цельная, у других (грипп, рео- ареновирус) – фрагментированная. Отдельные участки нуклеиновой кислоты, ответственные (детерминирующие) за синтез определенного белка, получили название генов. Простейшие из известных вирусов содержат от трех до пяти генов (например, ДНК-содержащий вирус полиомы; у пикорнавирусов 6—8 генов). Однако у более сложного вируса (например, крупного бактериофага Т4) более 30 генов контролируют синтез белков оболочки и не менее 15 — синтез нуклеотидных предшественников; для размножения этого фага требуется участие примерно сотни генов.
Ген не является неделимым. У него имеются более мелкие участки (мутоны, реконы), несущие определенные функции. Как известно, ген является носителем одновременно трех свойств:
1) контролирует тот или иной признак организма (функция),
2) обменивается в скрещиваниях (рекомбинация) и
3) изменяется (мутация).
Понятие цистрон соответствует понятию ген - единице функции, т. е. соответствует информации об одном белке.
Синтез ферментов у вирусов закодирован в генах. Любой фермент (белок) может синтезироваться только в том случае, если в нуклеиновой кислоте имеется соответствующий ген, кодирующий синтез данного фермента. Последовательность работы цистронов определяется индукцией или репрессией.
Под геномом вируса понимают совокупность всех генов данного вируса. У одних вирусов геном образован одной молекулой нуклеиновой кислоты (ДНК или РНК), у других — несколькими молекулами (вирусы гриппа, рео- и аренавирусы).
Фенотип — это совокупность всех внешних и внутренних признаков и функции данного вируса. Генотип же определяется только структурой наследственного материала — ДНК или РНК, т. е. последовательностью нуй-леотидов в их молекулах или кодом белкового синтеза. Фенотип вируса не является его постоянным свойством. Генотип же — это постоянное свойство вируса, и меняется он в результате мутаций, происходящих в-геноме. Мутационные изменения в геноме вируса влекут за собой и изменения его фенотипа.
У многих вирусов молекулярная масса синтезирующихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механизмов, позволяющих получить развернутую информацию при максимальной экономии генетического материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.
Способами увеличения информации являются:
1) двукратное считывание одной и той же иРНК, но с другого иницирующено кодона;
2) сдвиг рамки трансляции;
Трансляция может происходить без сдвига рамки и со сдвигом ее. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изменился, при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представляющие собой укороченный участок первого полипептида (трансляция без сдвига рамки).
В том случае, если произошел сдвиг на один или два нуклеотида, меняется смысл всех кодонов (триплетов), стоящих за местом сдвига. В этом случае одна молекула иРНК может транслироваться с образованием двух уникальных белков, т.е. таких, у которых нет идентичных аминокислотных последовательностей.
Таким образом, общее число триплетов в составе молекулы нуклеиновой кислоты может быть меньше суммы числа триплетов, входящих в состав всех генов. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.
5) сплайсинг со сдвигом рамки широко распространен у ряда вирусов. В результате сплайсинга и сдвига рамки иРНК генов транслируются с образованием двух белков
Одним из способов экономии генетического материала является нарезание полипептида - предшественника на участки разной длины, в результате чего образуются разные полипептиды с перекрывающимся аминокислотными последовательностями.
4)транскрипция с перекрывающихся областей ДНК и и др.
Наследственность у вирусов
Наследственность — это свойство организмов обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать специфический характер индивидуального развития. Изменчивость — свойство, противоположное наследственности. Изменчивость вирусов может быть обусловлена мутацией генов.
Мутации у вирусов
В основе наследственного изменения свойств вирусов могут лежать два процесса:
1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства, и
2) рекомбинация, т. е. обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусами.
Мутация — изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводит к стойким изменениям наследственных свойств вирусов.
Все мутации вирусов делятся на две группы:
По протяженности их делят на:
-аберрационные (изменения, затрагивающие значительный участок генома).
Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих вирусов) или одной пары комплементарных нуклеотидов (для ДНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.
Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклеотидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокации) целых участков и даже повороты участков на 180° (так называемые инверсии). Это будут уже более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.
Следует отметить, что не всегда точечные мутации реализуются. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них — вырожденность генетического кода. Как уже указывалось, код белкового синтеза вырожден, т, е. некоторые аминокислоты могут кодироваться несколькими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.
Другое дело, когда какая-то аминокислота кодируется всего одни триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеет. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.
Как спонтанные, так и индуцированные мутации делят также на прямые и обратные (реверсии). Прямые мутации меняют фенотип, а обратные его восстанавливают.
Спонтанные мутации
Спонтанные мутации у вирусов возникают в популяции без искусственного вмешательства со стороны экспериментатора. Не может быть абсолютно однородных популяций. Однородность относительна, поэтому в вирусной популяции в процессе ее развития спонтанные мутанты возникают с определенной вероятностью.
Частота мутаций одного и того же признака может быть различной в зависимости от штамма. Так, частота мутаций по признаку rсt 40° у штамма W-Fox вируса полиомиелита составляла 2,4´10 -5 , тогда как у штамма.Ch-AT она была на порядок ниже — 2,0´10 -6 .
Каковы причины и механизмы возникновения спонтанных мутаций? По мнению Уотсона и Крика, спонтанные мутации могут возникать вследствие таутомерного (таутомерия – один из видов изомерии, при которой изомеры легко переходят друг в друга) превращения оснований, входящих в состав ДНК. Так, например, таутомерный сдвиг в положении атома водорода у аденина приводит к тому, что аденин при репликации спаривается не с тимином, а с гуанином. Такая ошибка при спаривании оснований приводит при последующих репликациях к замене пары AT и ГЦ.
Изучение мутационной изменчивости того или иного вируса состоит в определении физико-химических и биологических свойств мутанта. (вирулентностью, реактогенностью, иммуногенностью, способность репродукции в той или иной системе, термо-резистентность, гемагглютинирующие, гемолизирующие и другие свойства).
Мутации у вирусов могут возникать и в результате адаптации их к необычным биологическим системам in vitro (культуры клеток) и in vivo (животные, куриные эмбрионы).
Мутации при пассажах на животных. Стабильные высокоиммуногенные штаммы вирусов получают методом длительной адаптации к лабораторным, естественно-восприимчивым или невосприимчивым животным. Так, был получен вакцинный штамм (virus fixe) бешенства.
При адаптации вирусов к естественно-невосприимчивым видам животных или к гетерогенным тканям экспериментально-восприимчивых животных решающее значение имеют вид и возраст животного, способ введения вируса и его свойства, а также свойства штамма.
Для успеха адаптации вирусов к организму лабораторных животных существенное значение имеет ослабление резистентное их путем воздействия кортизоном, температурой, облучением g-лучами и т. п.
Мутации при пассажах в культурах клеток. В культурах клеток и тканей успешно выращиваются и аттенуируются многие вирусы.
Причины возникновения мутаций в процессе адаптации. Изменение свойств вируса в процессе пассажей происходит ступенчато. В первых пассажах обнаруживают главным образом вирионы, изменившие какой-либо один генетический признак; с увеличением пассажей в популяции выявляют вирионы, изменившие два и более генетических признака; по мере пассирования количество таких частиц постоянно возрастает, и в дальнейшем у подавляющего большинства вирусных частиц наблюдают изменение многих генетических признаков.
В основе механизма наследственной изменчивости вирусной популяции при пассажах лежат два процесса: мутация и селекция, причем и в том, и в другом процессе важную роль играет внешняя среда, являющаяся одновременно индуктором мутации и селективным фактором.
Если гетерогенную вирусную популяцию, имеющую в своем составе измененные и исходные вирусные частицы, культивировать в обычных условиях, то это приводит к ее реверсии.
Наконец, накопилось большое число фактов об изменчивости вируса, вызываемой хозяином (host-controlled variation). Эти изменения заключаются в том, что клетка влияет на характер синтезирующих в ней компонентов вируса. Такие модификации не затрагивают нуклеотидную последовательность вирусного генома.
Таким образом, клетка хозяина может существенно влиять на фенотип вируса или блокировать (частично или полностью) его репродукцию.
Индуцированные мутации
Возникают при действии на вирус (на его вегетативную или покоящуюся форму) различными химическими и физическими мутагенами, а также в процессе адаптации его к необычным биологическим системам (при адаптационной изменчивости).
Применение искусственных мутагенов имеет два преимущества. Во-первых, они вызывают мутации в десятки и сотни раз эффективнее, чем природные факторы, и, во-вторых, действие некоторых искусственных мутагенов имеет известную направленность, что позволяет заранее предвидеть, на какие элементы структуры нуклеиновых кислот и каким образом действует тот или иной мутаген и какие изменения в них вызовет.
Химические мутагены. Предложено разделить мутагены на две основные группы:
1) мутагены, реагирующие с нуклеиновой кислотой только во время ее репликации (аналоги пуриновых и пиримидиновых оснований);
2) мутагены вступающие в реакцию с покоящейся молекулой нуклеиновой кислоты, но требующие для формирования мутаций последующих ее репликаций (азотистая кислота, гидроксиламин, алкилирующие соединения).
В последние годы синтезирован и изучен целый ряд химических соединений — супермутагенов (нитрозопроизводных мочевины — нитрозогуанидин и его производные)
Молекулярные механизмы мутагенного действия химических соединений. В основе молекулярных изменений вирусной нуклеиновой кислоты, приводящих к мутации, лежат два основных процесса замена основания и выпадение или вставка основания. Различает два типа замены оснований, входящих в состав вирусной нуклеиновой кислоты: простую (транзиция) и сложную (трансверсия). При простой замене на место одного пуринового основания встает другое (например, вместо аденина — гуанин) или вместо одного пиримидинового основания — другое пиримидиновое основание (вместо цитозина — урацил).
При сложной замене — трансверсии вместо пуринового основания появляется пиримидиновое или пиримидиновое основание заменяется пуриновым.
Другой процесс — выпадение (делеция) или вставка оснований— ведет к более глубоким изменениям генетического кода, чем простая - замена оснований. Мутационные повреждения в одном участке генома нередко приводят к изменению нескольких генетических признаков, имеющих различное фенотипическое проявление (плейотропия).
Мутагенное действие аналогов азотистых оснований (5-бромурацила, 5-фторурацила, 5-йодурацила, 2-аминопурина, 2,6-диаминопурина). Аналоги основании индуцируют мутации только при воздействии на реплицирующиеся молекулы ДНК и РНК. Из этой группы соединений наиболее хорошо изучены 5-бромурацил и 2-аминопурин. Tимин (Т) является урацилом (У), в котором атом водорода (Н) в одной из СН - групп заменен метильной группой (СН3). Другими словами, тимин — это метилурацил. Однако в урациле этот атом водорода можно заменить и другим атомом, например брома (Вr). В результате такой замены получается новое соединение — бромурацил (БУ), который является аналогом тимина, так как структура основного ядра (кольца) у обоих соединений совершенно одинакова, а различие заключается лишь в одной группе (Вr вместо СН3).
Мутации, индицируемые алкирующими соединениями. К веществам, под действием которых основания удаляются из нуклеиновой кислоты, относятся алкирующие соединения — иприт и его аналоги, этиленимин и его аналоги - этилметансульфонат и этилэтансульфонат и др. Они непосредственно взаимодействуют с нуклеиновыми кислотами, пуринами и главным образом с гуанином, вызывая простые (транзиции) и сложные (трансверсии) замены; из ДНК удаляются пурины (в основном гуанин) и, в зависимости от того, какой нуклеотид встретится напротив бреши при репликации, либо возникает мутация типа замены, либо не возникает ее совсем.
Кроме простых замен (пурин на пурин), алкилирующие агенты способны индуцировать сложные замены — пурин на пиримидин.
Мутагенное действие гидроксиламина. Гидроксиламин индуцирует мутации по типу образования простых замен оснований в нуклеиновой кислоте, направление которых зависит от типа нуклеиновой кислоты, которую содержит вирус. У ДНК-содержащих вирусов этот мутаген реагирует исключительно с цитозином. При воздействии на РНК-содержащие вирусы он вступает в реакцию как с цитозином, так и с урацилом, что обусловливает замены цитозина на урацил и наоборот.
Мутагенное действие азотистой кислоты. Среди веществ, химически изменяющих основания в покоящейся молекуле нуклеиновой кислоты, наиболее хорошо изучены азотистая кислота и гидроксиламин. Механизм действия азотистой кислоты (HNO2) как мутагена на нуклеиновые кислоты вирусов заключается в дезаминировании органических оснований, т. е. отщеплении от их молекул аминогруппы (NH2). В результате действия азотистой кислоты аденин (А) превращается в гипоксантин (Гк), гуанин (Г) — в ксантин (К), а цитозин (Ц) — в урацил (У). Вследствие этой реакции у дезаминированных органических основании возникают новые свойства.
Мутагенное действие повышенной температуры. Влияние повышенной температуры (40—50 °С) обнаружил Фриз в опытах с фагом Т4 и Ю. 3. Гендон при обработке РНК вируса полиомиелита. Температура способствует удалению пуринов (преимущественно гуанина) из ДНК. При репликации такой ДНК напротив бреши, вызванной утратой пурина могут быть включены в реплицирующую нить любые нуклеотиды. Если включится новый тип основания, которого ранее в этом участке не было, может произойти мутация (транзиция или трансверсия).
Мутагенное действие ультрафиолетовых лучей. Действие ультрафиолетовых лучей (УФ) как мутагенов состоит в том, что они взаимодействуют с молекулами нуклеиновых кислот и поглощаются ими, особенно лучи с длиной волны 260—280 им. Попадая в молекулу нуклеиновой кислоты, они поглощаются входящими в ее состав органическими основаниями. Оказалось, что тимин (Т), урацил (У) и цитозин-(Ц) более чувствительны к ультрафиолетовым лучам, чем аденин (А) и гуанин (Г). В результате облучения структура указанных пиримидинов изменяется. При облучении УФ-лучами две соседние, молекулы тиминов соединяются друг с другом в пары, образуя так называемые димеры.
Репарации
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Лекция 7
СТРУКТУРНАЯ ОРГАНИЗАЦИЯ ГЕНОМА ВИРУСА
Вирусы являются одним из излюбленных объектов молекулярной генетики благодаря простому строению и малой молекулярной массе их геномов, которая в 10 6 раз меньше массы генома эукариотической клетки. Организация генетического аппарата у ряда вирусов, например у SV40, настолько сходна с таковой генов эукариотической клетки, что получила название минихромосомы. Минихромосома широко используется для изучения организации и репликации ДНК.
Число генов у вирусов значительно варьирует: от 3—4 генов у просто устроенных вирусов (парвовирусы) до 150 генов и больше у сложно устроенных (вирус оспы). Геном вирусов животных является гаплоидным, за исключением ретровирусов, которые имеют диплоидный геном, представленный двумя идентичными молекулами РНК. У вирусов с фрагментарным геномом (вирусы гриппа, реовирусы) каждый фрагмент обычно представляет собой один ген.
Так же, как и геном эукариотической клетки, ДНК-геном ряда вирусов животных имеет мозаичную структуру, при которой смысловые последовательности чередуются с неинформативными последовательностями. Механизм сплайсинга при формировании иРНК широко распространен и среди вирусов, имеющих ядерную локализацию транскрипции (адено-, папова-, герпесвирусы), поскольку ферменты, осуществляющие сплайсинг, находятся в ядре. Однако сплайсинг был обнаружен и у РНК-содержащих вирусов. Например, у вирусов гриппа происходит сплайсинг транскриптов 7-го и 8-го генов; в результате сплайсинга и сдвига рамки трансляции продуктами каждого из этих генов являются по два уникальных белка.
В составе генов ДНК-содержащих вирусов есть регуляторные участки, в том числе промотор, контролирующие функцию структурных генов. Сильными промоторами являются концы многих вирусных ДНК, представляющие собой длинные концевые повторы, сильный промотор имеют гены тимидинкиназы вирусов оспы и герпеса. Эти промоторы используются в генной инженерии для усиления транскрипции изучаемого гена.
СПОСОБЫ УВЕЛИЧЕНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ВИРУСНОГО ГЕНОМА
У многих вирусов молекулярная масса синтезирующихся белков превышает теоретически рассчитанную. Этот феномен объясняется наличием у вирусов механизмов, позволяющих получить развернутую генетическую информацию при максимальной экономии генетического материала; подобные механизмы выработаны в процессе эволюции вирусов как генетических паразитов.
Способами увеличения генетической информации являются: 1) двукратное считывание одной и той же иРНК, но с другого инициирующего кодона; 2) сдвиг рамки трансляции; 3) сплайсинг; 4) транскрипция с перекрывающихся областей ДНК и др.
Трансляция может происходить без сдвига рамки и со сдвигом рамки. Генетический код является триплетным, это означает, что три нуклеотида, составляющих триплет, или кодон, кодируют одну аминокислоту. В том случае, если триплеты сохранены и генетический код не изменился, то при трансляции с двух разных инициирующих кодонов будут синтезироваться полипептиды, представляющие собой укороченную копию первого полипептида (трансляция без сдвига рамки).
В том случае, если произошел сдвиг на один или два нуклеотида, образуются новые триплеты (кодоны) и появляется новый генетический код. В этом случае одна молекула иРНК может транслироваться с образованием двух уникальных белков, т. е. таких белков, у которых нет идентичных аминокислотных последовательностей.
Сплайсинг со сдвигом рамки широко используется у ряда вирусов (вирусы гриппа, парамиксовирусы, буньявирусы, аденовирусы, паповавирусы, парвовирусы и др.). Например, все три иРНК аденоассоциированного вируса образуются при транскрипции одного гена и имеют общий З'-конец; самая короткая иРНК образуется путем сплайсинга и транслируется с образованием трех структурных белков, остальные две иРНК транслируются с образованием неструктурных белков. В результате сплайсинга и сдвига рамки иРНК 7-го и 8-го генов вируса гриппа транслируются с образованием двух белков: полипептидов М, и М2 (продукты 7-го гена) и NSi и NS2 (продукты 8-го гена). Белки NSt и NS2 имеют лишь первые 10 идентичных аминокислот, а затем — уникальные аминокислотные последовательности. Один и тот же ген парамиксовирусов (вирус Сендай) кодирует два уникальных белка: структурный белок Р и неструктурный белок С.
Одним из способов экономии генетического материала является нарезание полипептида-предшественника на участки разной длины, в результате чего образуются разные полипептиды с перекрывающимися аминокислотными последовательностями. Подобный механизм нарезания имеет место у аденоассоциированных вирусов и у SV40.
Таким образом, число реальных генов превосходит молекулярную массу генома. Основанный на длине генома расчет числа генов неизменно приведет к ошибочным результатам. Более точные представления о числе генов можно получить путем биохимического и генетического анализов.
ОСНОВНЫЕ ПРОЦЕССЫ, КОНТРОЛИРУЮЩИЕ НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ ВИРУСОВ
Модификации. Модификациями называются не наследуемые (фенотипические) изменения у вирусов, обусловленные клеткой-хозяином. Эти изменения лежат в основе адаптации вируса к новому хозяину и преодоления зависимого от хозяина ограничения. Модификации нуклеиновых кислот вирусов осуществляют клеточные ферменты, ответственные за ограничение (рестрикцию) репродукции вируса.
Мутации. В основе изменчивости вирусов лежат мутации, т. е. изменения состава и последовательностей нуклеотидов вирусного генома. Мутации происходят у всех вирусов, независимо от того, является ли их генетическим аппаратом ДНК или РНК. В результате мутаций отдельные вирионы могут приобретать новые свойства. Дальнейшая судьба таких вирусов зависит от естественного отбора, сохраняющего популяцию, наиболее приспособленную к условиям существования.
Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических проявлений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покрытием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. п.
В других случаях мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.
В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции в определенных, оптимальных для него, условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные (temperature sensitive) — ts-мутации, при которых вирус теряет способность размножения при повышенных температурах (39—42° С), сохраняя эту способность при обычных температурах выращивания (36—37° С).
По своему механизму мутации могут быть тоже разными. В одних случаях происходит делеция, т. е. выпадение одного или нескольких нуклеотидов, в других случаях происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях — замена одного нуклеотида другим.
Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные мутации — реверсии — его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит в месте первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия) или в другом гене (экстрагенная супрессия). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэтому при получении мутантов с заданными свойствами, например вакцинных штаммов, приходится считаться с возможной их реверсией к дикому типу.
Мутации носят случайный характер и объясняются статистическими законами.
В качестве физических мутагенов наиболее часто применяется ультрафиолетовое облучение, так как его энергия сопоставима с энергией химических связей. Реже применяются более жесткие виды облучения — рентгеновское и γ-облучение, а также обработка вирусных суспензий нейтронами, протонами, электронами и ядрами гелия, так как они вызывают сильные разрушения вирусных геномов и их инактивацию.
В качестве химических мутагенов применяют аналоги оснований (бромурацил, бромдезоксиуридин, 2-аминопурин, нитрозогуанидин и пр.), алкилирующие и флуоресцирующие соединения (профлавин), интеркалирующие агенты (актиномицин, этидий бромид), азотистую кислоту, гидроксиламин и многие другие.
ГЕНЕТИЧЕСКИЕ И НЕГЕНЕТИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ МЕЖДУ ВИРУСАМИ
Как в естественных, так и в экспериментальных условиях одна клетка может быть заражена не одним, а несколькими вирусами. В процессе такой смешанной инфекции могут иметь место различные формы взаимодействия как между вирусными геномами, так и между продуктами генов. При взаимодействии геномов могут наблюдаться такие формы генетических взаимодействий, как множественная реактивация, рекомбинация, пересортировка генов, кросс-реактивация, гетерозиготность. При взаимодействии на уровне продуктов генов могут иметь место негенетические взаимодействия: комплементация, интерференция, фенотипическое смешивание и др.
Множественная реактивация. Вирусная инфекция может возникнуть при заражении клетки несколькими ви-рионами с поврежденными геномами вследствие того, что функцию поврежденного гена может выполнять вирус, у которого этот ген не поврежден. Этот феномен был вначале обнаружен на бактериофагах и получил название множественной реактивации. В основе множественной реактивации лежит кооперативный процесс, при котором вирионы с поражением разных генов дополняют друг друга путем генетической рекомбинации, в результате чего репродуцируется исходный неповрежденный вирус. Эффективность множественности реактивации зависит от многих причин: степени повреждения генома вирионов, числа проникших в клетку вирионов, концентраций их в определенных участках клетки, аутоинтерференции поврежденных вирионов. Для множественной реактивации важное значение имеет расстояние между вирионами с поврежденными геномами внутри клетки. Обработка вирионов двухвалентными ионами металлов, ведущая к их агрегации, усиливает множественную реактивацию.
Рекомбинация. Генетической рекомбинацией называют обмен генетическим материалом, происходящий между родительскими вирусами. Возможен обмен полными генами (межгенная рекомбинация), так и участками одного и того же гена (внутригенная рекомбинация). Образующийся вирус-рекомбинант обладает свойствами, унаследованными от разных родителей.
Обычно рекомбинируемые штаммы обладают характерными признаками, которые обозначаются как маркеры. Например, были получены рекомбинанты между вирусами полиомиелита, обладающие повышенной устойчивостью и повышенной чувствительностью к гуанидину, разной нейровирулентностью, разной устойчивостью к повышенной температуре, разной чувствительностью к ингибиторам сывороток лошадей и коров и т. п. Для получения рекомбинантов используют штаммы, содержащие два или большее число маркеров.
Тест рекомбинации применяют для генетических исследований вирусов. С его помощью возможно построение генетических карт вирусов, в которых определяется, в каких участках генома произошли мутации, а также в условных единицах измеряется расстояние между разными мутациями.
Пересортировка генов. Вариантом рекомбинации является феномен, получивший название пересортировки генов. Она наблюдается при генетических взаимодействиях между вирусами, имеющими сегментированный геном. Образующиеся при этом гибридные формы вирусов называют реассортантами. Реассортанты вирусов гриппа получают при совместном культивировании вирусов с разными генами гемагглютинина и нейраминидазы. В этом случае из общего потомства путем нейтрализации соответствующих антигенов можно выделить интересующие исследователя варианты.
Существуют определенные группировки (констелляции или созвездия) генов, которые в данной системе клеток более стойки и делают вирус более жизнеспособным.
Сходные процессы пересортировки генов имеют место у вирусов гриппа типов А, В и С и у других вирусов с фрагментарным геном — у буньявирусов, аренавирусов (однонитчатые РНК) и реовирусов (ротавирусов) (двунитчатая РНК). Однако эти процессы не столь интенсивны и доступны изучению, как у вирусов гриппа.
Гетерозиготность. При совместном культивировании двух штаммов вируса может происходить формирование вирионов, содержащих в своем составе два разных генома или по крайней мере один полный геном и часть второго генома. Это явление названо гетерозиготностью.
Комплементация. Комплементация (дополнение) является таким видом негенетического взаимодействия при смешанной инфекции двумя вирусами, которое стимулирует репродукцию обоих партнеров или одного из них, но не изменяет генотипы вирусов. Принцип комплементации заключается в том, что вирус снабжает партнера недостающими компонентами, обычно белками, структурными или неструктурными.
Комплементация широко распространена среди вирусов и встречается как между родственными, так и неродственными вирусами. Феномен тесно связан с проблемой дефектности вирусов.
Поскольку в вирусной популяции помимо стандартных обычно присутствуют дефектные неинфекционные вирусные особи, в частности дефектные частицы, утратившие часть генетического материала, комплементация имеет место в инфекционном цикле многих вирусов и заключается в том, что члены популяции снабжают друг друга продуктами генов, которые дефектны у партнеров. Отличие комплементации от генетической рекомбинации заключается в отсутствии обмена генетическим материалом.
Комплементация встречается и у неродственных вирусов, принадлежащих к разным семействам. Одним из семейств, вирусы которого наиболее часто участвуют в комплементации, является семейство аденовирусов. В одних системах аденовирусы могут действовать как дефектные вирусы, в других — как помощники. Например, в культуре клеток почек макак резусов аденовирусы могут репродуцироваться только в присутствии SV40, который является в данном случае вирусом-помощником. В других системах сами аденовирусы действуют как вирусы-помощники, а вирусом-сателлитом является аденоассоци-ированный вирус, относящийся к семейству парвовирусов. Репродукция этого вируса полностью зависит от комплементирующего действия аденовирусов. Вирус гепатита В является помощником для дельта-агента, который покрывается его наружным белком — HBs-антигеном. Сочетание обоих вирусов обнаружено при наиболее тяжелых формах гепатита.
Возможна не только межцистронная, но и внутрицистронная комплементация в том случае, когда один ген кодирует несколько белков.
Фенотипическое смешивание. При совместном культивировании двух вирусов может наблюдаться феномен фенотипического смешивания, когда геном одного вируса бывает заключен в капсид, состоящий частично или полностью из белков другого вируса.
Фенотипическое смешивание наблюдается при смешанной инфекции,многими вирусами, причем эти вирусы могут быть как близкими друг другу (например, вирусы гриппа А и В или разные серологические подтипы вируса гриппа А), так и весьма далекими (онковирусы и рабдовирусы).
РЕСТРИКТАЗЫ И ФИЗИЧЕСКИЕ КАРТЫ ВИРУСОВ
Подлинную революцию в физическом картировании геномов вирусов произвело применение рестриктаз и секвенирование вирусных геномов. Рестриктазы имеют исключительное значение в молекулярной генетике вообще и генетической инженерии в частности. Их открытие (1968—1970 гг.) впервые дало возможность специфически расщеплять ДНК на строго определенные фрагменты, доступные для препаративного выделения и анализа.
Рестриктазы или эндодезоксирибонуклеазы — это просто организованные белки, являющиеся ферментами, широко распространенными среди прокариотов и участвующими в генетических процессах. В отличие от экзонук-леаз, отщепляющих концевые нуклеотиды или свободные остатки фосфорной кислоты, эндонуклеазы расщепляют молекулу ДНК изнутри, обычно — в местах, где преобладают пиримидиновые основания. Рестриктазы характеризуются высоковыраженной специфичностью, распознавая строго определенные последовательности нуклеотидов в двунитчатой ДНК.
Число новых рестриктаз стремительно нарастает и со временем, по-видимому, будут обнаружены рестриктазы, узнающие любую последовательность нуклеотидов.
Использование разных рестриктаз позволяет получать фрагменты разной величины, которые затем разделяются и анализируются путем электрофореза в агарозных или полиакриламидных гелях. Сочетание рестрикционного анализа с другими методами позволяет составить физические карты геномов вирусов. Физические карты вирусных геномов обозначают взаимное расположение генов, их границы, локализацию начала репликации, промоторов, лидеров, экзонов и интронов, сигнальных последовательностей и других генетических элементов.
Генетический код для синтеза белков вируса SV-40 записан не на одной, а на обеих нитях ДНК, а транскрипция разных генов идет в разных направлениях.
В настоящее время полностью расшифрованы нуклеотидные последовательности отдельных генов и целых геномов методом секвенирования (от англ. sequence — последовательность). Если речь идет о РНК-содержащих вирусах, то предварительным условием для дальнейшего их анализа является переписка РНК на ДНК с помощью РНК-зависимой ДНК-полимеразы (обратной транскриптазы), после чего генетический материал может быть подвергнут рестрикционному анализу.
Проектное задание к модулю
В качестве проектного задания студентам предлагается написание рефератов по следующим темам:
1. Природа дефектных вирусных геномов. Вирусы-сателлиты.
2. Вирусная интерференция
3. Необычные свойства ретровирусов
4. Трансформация клетки опухолеродными ДНК-вирусами
5. Классификация и основные свойства вирусов гриппа
6. Индукция специфического иммунного ответа на вирусы
7. Особенности репродукции пикорнавирусов
8. Семейство тогавирусов. Особенность репродукции и инфекционного процесса.
9. Вирус клещевого энцефалита.
10. Вирус бешенства
11. Вирусная персистенция
12. Основные свойства парамиксовирусов
13. Вирус кори. Биология возбудителя. Особенности патогенеза
14. Аденовирусы, их репликация и связь с другими вирусами
16. Пути распространения вирусных болезней растений.
17. Прионы. Возбудители или провокаторы или….
18. Вироиды как вирусоподобные инфекционные агенты.
19. Вирусы, вызывающие респираторные инфекции. Сравнительная характеристика
20. Место вирусов в биосфере.
21. Бактериофаги. Их морфологическое многообразие и взаимодействие с бактериями.
22. Атипичная пневмония и возможность происхождения новых вирусов
23. Роль вирусов в возникновении злокачественных опухолей
24. Особенности транскрипции РНК- содержащих вирусов.
25. Морфогенез вирусов или морфологические превращения в процессе репродукции.
Тест рубежного контроля
Читайте также: