Вирус гриппа универсальная вакцина
16 декабря 2011
- 2226
- 1,9
- 0
- 1
Делать прививку каждый год — это так неудобно
Грипп ложится на человечество ежегодным тяжким бременем, и его сезонные эпидемии заставляют нас с неприятной регулярностью брать больничные. Такая систематичность вызвана высокой изменчивостью вирусных серотипов, которые очень быстро мутируют и вследствие этого год за годом проскакивают мимо кордонов иммунитета неузнанными. Почему это так, и будет ли возможно в обозримом будущем остановить сезонные вспышки гриппа с помощью универсальной вакцины — об этом и пойдет речь в статье, оригинал которой был опубликован в недавнем выпуске Nature Outlook.
Грипп
Вакцина на все случаи жизни
В поиске неподвижной мишени
Похоже, в конце туннеля забрезжил-таки свет: например, с помощью таких технологий у одного больного были выявлены антитела, способные блокировать все 16 подтипов вируса гриппа типа А (так называемые F16-антитела). Чтобы найти их, команде швейцарских иммунологов под руководством Антонио Ланцавеккья (Antonio Lanzavecchia) пришлось просканировать 104 тысячи В-лимфоцитов, полученных от восьми доноров, пока они не обнаружили нужные клоны.
Впервые вирус был выделен в 30-е года XX века. Вирусы гриппа относятся к семейству Ortomyxoviridae, которое включает роды Influenza A, B, C, принадлежность к которым определяется антигенными свойствами внутренних белков вириона (M1 и NP). Дальнейшее деление проводится согласно подтипам (серотипам) поверхностных белков гемагглютинина (HA) и нейраминидазы (NA). В настоящее время известно 16 подтипов HA и 9 — NA.
Эпидемиологическое значение для людей имеют вирусы, содержащие три подтипа гемагглютинина (H1, H2, H3) и два подтипа нейраминидазы (N1, N2). Основные антигенные компоненты вирионов гриппа A и B — это NA и HA; у вируса гриппа C нет нейраминидазы. Антитела, вырабатываемые в ответ на гемагглютинин, составляют основу иммунитета против определённого подтипа возбудителя гриппа.
Для вирусов сероварианта А (реже В) характерно частое изменение антигенной структуры при пребывании их в естественных условиях. Эти изменения обусловливают множество названий подтипов, которые включают место первичного появления, номер и год выделения и характеристику HN — например A/Moscow/10/99 (H3N2), A/New Caledonia/120/99 (H1N1), B/Hong Kong/330/2001.
Зри в корень
Исследователи по всему миру работают, не покладая рук. В 2008 году группа ученых из датской компании Crucell нашла свой вариант универсальных человеческих антител против вируса гриппа, используя новейшие высокопроизводительные технологии скрининга лимфоцитов.
Дыра в кармане
В другой плоскости
Многие компании ищут идеальную мишень на поверхности частицы вируса гриппа. VaxInnate — биотехнологическая фирма из Кренбери (Нью-Джерси, США) — создала гибридный белок, состоящий из четырех копий M2e (поверхностного фрагмента ионного канала M2) и бактериального белка флаггелина. По их данным, созданная вакцина Vax102 безопасна и вызывает развитие иммунитета против всех разновидностей вируса гриппа А.
Другая компания того же профиля — Dyna Vax, расположенная в Беркли (Калифорния, США), — создала аналогичную рекомбинантную вакцину (получившую название N895), состоящую из M2e и рибонуклеопротеина. Теоретически предсказанное действие вакцины — запустить атаку антител на вирусный белок M2, а Т-клеток — на нуклеокапсид.
Биотехнологическая фирма Acambis (Кембридж, Великобритания) проводит испытания собственной вакцины на основе белка M2, показав ее хорошую переносимость и эффективность против вирусов гриппа типа А. Исследование на хорьках (их гортань чрезвычайно напоминает человеческую) показало выработку иммунитета против птичьего гриппа у 70% животных. Купившая Acambis французская компания Sanofi Pasteur собирается продолжать испытания, однако, по словам ее представителей, белок M2 сам по себе вряд ли будет лучшей вакциной, чем уже существующие, и поэтому требуются дополнительные активные факторы, поиск которых сейчас и ведется.
Зайти с двух сторон
Написано по материалам Nature Outlook Influenza [6].
Беседовала Елена Бабичева
— Александр Васильевич, в этом году в большинстве регионов России теплая осень, это отсрочило начало эпидемии гриппа?
— Пока регистрируются лишь единичные случаи, причем в основном речь идет об острых респираторных вирусных инфекциях (ОРВИ). Их распространению способствовал очень холодный сентябрь — люди начали болеть, потому что в домах еще не включили отопление. Затем пришло потепление с дождями, а именно такую погоду вирусы очень любят и распространяются стремительно. В целом же подъем заболеваемости ожидается в ноябре. Вторая волна, как правило, приходит уже после новогодних каникул, ближе к концу зимы.
— Пока приход гриппа укладывается в стандартные схемы. В августе, после того как в Южном полушарии заканчивается зима, ученые обобщают данные и устанавливают, какие именно вирусы гриппа циркулировали там в этом году. Этим занимаются в 59 контрольных лабораториях по всему миру, в России — это референс-центр по мониторингу за инфекциями верхних и нижних дыхательных путей Минздрава и Роспотребнадзора, в том числе и наш институт — ЦНИИ эпидемиологии. Ученые выделяют из проб вирус, характеризуют его, делают генетический паспорт и загружают данные в международную базу. Затем анализируют, какие типы вирусов и с какой частотой циркулировали в течение года, и на основе этих данных создают вакцину для Северного полушария. Когда закончится зима у нас — проанализируют эпидемиологическую ситуацию и будут создавать вакцины для Южного полушария.
— Какие штаммы вируса вызывают больше всего опасений?
— В прошлом году основная заболеваемость была связана с калифорнийским гриппом, в этом сезоне произошла смена типов вируса на грипп А — Brisbane (H1N1) и Kansas (Н3N2) и вирус гриппа типа В — Colorado (линия B/Victoria). Эти штаммы вошли в окончательный состав трехвалентной вакцины. Разработана и четырехвалентная вакцина, в которую помимо перечисленных включен и вирус гриппа B — Phuket (линия B/Yamagata).
Самый опасный для человека — вирус гриппа А. Гриппом В болеют реже, около 1 процента населения, обычно он активизируется к концу эпидемиологического сезона в марте-апреле. Врачи прекрасно знают, что, как только уровень заболеваемости гриппом В стал расти — значит, сезон гриппа заканчивается.
— Насколько важно рядовому пациенту знать, каким вирусом гриппа он болеет?
— Важнее определить, грипп у вас или острая респираторная инфекция (ОРИ) — клинические симптомы у них на начальном этапе во многом схожи, а вот последствия разные: грипп может давать очень тяжелые осложнения. С ходу определить, чем человек болеет, сложно, так как мы живем в эру так называемых сочетанных инфекций, когда возбудителей несколько и классическая картина заболевания может быть смазана.
— Если к нам периодически возвращается один и тот же тип гриппа, значит, должен появиться иммунитет. Почему он не срабатывает?
— Особенность вируса гриппа как раз в его изменчивости. Другие вирусы, например кори или ветрянки, более или менее стабильны. У гриппа, как известно, каждый год появляется измененный штамм, а иммунитет для каждой такой мутации специфический. Поэтому, встречаясь с новым видом штамма, мы болеем заново. Именно эта изменчивость вируса и не позволяет создать универсальную вакцину. Хотя все идет именно к этому.
— То есть у нас может появиться прививка от гриппа, которая будет действовать против всех штаммов?
— Да, в этом направлении ведется очень активная работа. Сейчас расшифровывают геном не только человека, но и вирусов, в частности вируса гриппа. Известны его стабильные участки, против которых вырабатываются антитела. Будущее за вакцинами, которые будут действовать именно таким образом. ВОЗ рассчитывает их получить уже к 2025 году.
— Самая активная мутация вируса гриппа, которая вызвала относительное непопадание с вакциной, произошла в 2016 году. Сейчас говорят о 95 процентах попадания вакцины, то есть в 95 процентах случаях вы защищены от гриппа. Какой-то неизвестный мутировавший штамм не может прийти к нам неожиданно и как-то особенно быстро. За вирусами гриппа следят как за очень важными объектами, потому что грипп — серьезная болезнь с тяжелыми осложнениями. При этом нужно понимать, что вакцина от гриппа защищает только от этого вируса, а человек может заболеть любой другой респираторной инфекцией.
— То есть вакцина не панацея…
— Какие осложнения наиболее характерны?
— Это может быть и насморк, и пневмония, и остеопороз, и даже инсульт и инфаркт. Следствием инфекции считаются все осложнения, которые у человека наблюдаются в течение двух месяцев после того, как он переболел гриппом. Особенно тяжело, как известно, болеют люди пожилого возраста и дошкольники. Кстати, сегодня известно, что более или менее легко переносят грипп только первые заболевшие, а вот те, кто заразились следом за ними, болеют намного тяжелее.
— Потому что чем больше людей он поражает, тем сильнее он становится — в буквальном смысле. Он крепнет, повышает вирулентность, то есть становится более живучим.
— За рубежом проходят такие же массовые кампании по вакцинации от гриппа, как в России?
— На самом деле за рубежом ответственность за здоровье лежит не на органах здравоохранения, а на самих людях. В детский коллектив непривитого ребенка не возьмут, работодателю известно, от каких инфекций привит работник,— для этого достаточно нажать на кнопку компьютера. Это касается не только противогриппозных вакцин. Например, женщина в возрасте 55+ собирается в Таиланд, где эпидемическая ситуация с гепатитом А (там он у каждого третьего). Для этого возраста эта инфекция считается особо опасной, поэтому если в Северной Америке туристка не сделала прививку от гепатита А перед путешествием и заболела, то расходы на лечение она будет нести сама. А мы привыкли, что о нас заботится государство. Поэтому и в садик отправляем детей без прививок, хотя я считаю, что это нарушение прав детей, которые привиты.
— А в чем опасность для привитых? Ведь если у ребенка есть прививка, он защищен от инфекции…
— А как же коллективный иммунитет, который должен был бы защитить тех, у кого нет прививки?
— А как же тогда иммунитет тренировать? Как защититься от инфекции помимо вакцинации?
В начале ноября в престижном научном журнале Scientific Reports вышла статья, посвященная разработке универсальной вакцины от гриппа. Ее авторы утверждают, что их разработка защитила мышей от доз вируса, в разы превышающих смертельные. Это не первое сообщение о “волшебной пилюле” против самого распространенного сезонного заболевания. Вести об очередной универсальной вакцине появляются с завидным постоянством. А вот реальна ли вообще такая разработка?
Не дай гриппу прилипнуть
Прежде всего надо понять, против чего бороться. Вирус гриппа попадает в дыхательные пути и там же закрепляется. “Ловить” его внутри клеток сложно. И вот почему: сами вирусы, в отличие от бактерий, не имеют клеточного строения. Внутри их частиц, покрытых белковой оболочкой, как правило, только нуклеиновые кислоты ( ДНК ). Нет специфических средств, которые могли бы, проникнув в клетку, уничтожить только вирусную нуклеиновую кислоту и не тронуть “родные”. Поэтому преступника надо поймать до того, как он окажется внутри жертвы.
И это возможно. На поверхности вирусной частицы есть белок под названием гемагглютинин. Он сливается с сиаловыми кислотами — веществами на поверхности клеток эпителия дыхательных путей. Если эту реакцию предотвратить, вирус гриппа не сможет попасть в клетку. Разновидности вируса гриппа отличаются главным образом структурой своих гемагглютининов.
Иммунную систему можно настроить так, что она будет распознавать гемагглютинины вируса гриппа и посылать к ним разрушающие их клетки. Собственно, на этом принципе и построены все стандартные вакцины против гриппа. Они представляют собой дезактивированные вирусы с гемагглютининами, которые, по прогнозам, будут часто встречаться в наступающем сезоне эпидемий. Но есть одна проблема. Гены, кодирующие гемагглютинины, постоянно мутируют. Следовательно, меняется структура соответствующих белков. Поэтому вакцины не обеспечивают стопроцентной защиты от инфекции.
“Универсальный” не равно “абсолютный”
Теоретически универсальную вакцину сделать всё-таки можно. Молекулы гемагглютинина большие, и кодирующие их гены тоже. В них есть участки, которые мутируют часто, а есть такие, что изменяются редко и неохотно. Их строение очень близко у вирусов гриппа разных типов.
Но то теория. Дело в том, что области гемагглютинина, кодируемые такими постоянными участками, играют незначительную роль в прикреплении вирусных частиц к клетке. Они находятся во внутренней части молекулы. Кстати, поэтому и антителам — белкам для распознания чужаков и врагов — трудно до них добраться и опознать (а значит, и сложно бороться против такого гемагглютинина). Как правило, антитела вырабатываются к “торчащим наружу” участкам молекулы гемагглютинина. Но они, как мы уже знаем, постоянно меняются.
Есть и второй вариант — собрать в одной вакцине гемагглютинины сразу нескольких типов вирусов — “птичьего”, “свиного” и “простого”, сезонного, гриппов. Вечной и абсолютной защитой такую вакцину не назовешь, потому что в ней не учитываются мутации генов гемагглютининов. Однако у нее есть другой плюс: она защищает сразу от нескольких типов вируса гриппа. В теории это действительно обеспечивает лучшее предохранение от инфекции. Но — пока только в теории, на людях такие вакцины не тестировались. По крайней мере за рубежом. А о “человеческих” тестах отечественных вакцин подобного типа информации не найти.
Исследователи, опубликовавшие свою статью в Scientific Reports, пошли фактически по такому же пути. Правда, они не стали собирать все гемагглютинины в одной вакцине, а проанализировали варианты генов, кодирующих разновидности этого белка у вирусов гриппа различных типов. На основе результатов этого анализа они создали “усредненные” гены для различных гемагглютининов, поместили их в безопасные для мышей вирусы и ввели в организмы грызунов .
После, когда антитела к введенным с помощью вирусов генам уже должны были образоваться, ученые заразили животных огромными дозами вирусов гриппа различных типов. Количество вводимых вирусных частиц было настолько высоко, что в десятки раз превышало ранее измеренную смертельную дозу. И тем не менее подавляющее большинство грызунов выжило при заражении практически всеми типами вируса (а их было 10).
На первый взгляд кажется, что все хорошо. Однако есть нюансы. Во-первых, вакцину тестировали только один год, а это значит, что в следующем сезоне, когда вирусы гриппа уже мутируют, она может оказаться неэффективной. Во-вторых, мыши все-таки не люди, и у них течение болезни может отличаться от нашего. Так что называть полученную вакцину универсальной, может, и разумно, но это точно не абсолютная защита.
Универсальная вакцина в России?
Сообщения о чудодейственной вакцине против гриппа делают не только зарубежные ученые. Так, всего полтора месяца назад министр здравоохранения Вероника Скворцова заявила, что в Институте эпидемиологии и микробиологии имени Н. Ф. Гамалеи разработали практически универсальную вакцину от гриппа. По словам Скворцовой, от “обычных” препарат отличается тем, что “действует через универсальные сигнальные молекулы против вируса гриппа А всех штаммов, а не только против того, что мы в сезонный грипп включаем”. По всей видимости, под универсальными сигнальными молекулами имеются в виду как раз гемагглютинины.
Подобные разработки — это, безусловно, хорошо. Они показывают, что отечественная медицина не стоит на месте и идет в ногу с передовыми зарубежными лабораториями. Однако у них есть и обратная сторона. Она открылась исследователям совсем недавно, и не на примере вируса гриппа, а на примере вируса лихорадки Денге. Оказалось, что иметь немного антител против него хуже, чем не иметь их вообще. Небольшого количества антител недостаточно, чтобы полностью защитить организм от инфекции. Однако их вполне хватает, чтобы запустить иммунный ответ организма. В таких случаях течение болезни получается особенно тяжелым: тревога в виде возбудителя лихорадки есть, а средств, чтобы от нее отбиться, не хватает.
Краткий итог такой: вакцину против гриппа можно сделать более универсальной, и тогда она будет защищать от множества типов вируса сразу. Однако абсолютной такая защита все равно не будет.
ЧИТАЙТЕ ТАКЖЕ
Руководитель Роспотребнадзора Анна Попова в четверг сообщила об эпидемии гриппа в 20 регионах страны. Чтобы защититься от вируса и ОРВИ многие постарались успеть сделать прививки. Однако у населения накопилось много вопросов. Кто-то выступает за обязательную вакцинацию, а кто-то сетуют на ее бессмысленность. Так есть ли прививок толк? (подробности)
ДНК-вакцина вызывает сильнейший иммунный ответ, который запускается до того, как инфекция успеет распространиться.
Фото Global Look Press.
Медики, биологи и фармацевты уже давно пытаются создать универсальную вакцину от гриппа. Сделать это не так-то просто, поскольку штаммы вирусов постоянно мутируют, а, значит, без генетиков тут не обойтись.
Команда под руководством профессора Деборы Фуллер (Deborah Fuller) из Медицинской школы Вашингтонского университета надеется, что новое исследование приблизит учёных к созданию вакцины, которая защитит пациентов от всех штаммов вируса гриппа, даже если они будут генетически меняться с течением времени.
На такое способна лишь ДНК-вакцина: в отличие от обычных препаратов, которые заставляют сразу весь организм генерировать иммунный ответ, ДНК-вакцина вставляет генетический код в клетки, ориентируя их на выработку антигена, который вызовет иммунный ответ.
В данном случае противовирусная ДНК-вакцина заставит клетки человека производить антигены, а также усилит работу антител и Т-клеток (иммунных клеток) для борьбы с патогенном.
Подобная ДНК-вакцина станет первым препаратом в совершенно новой линейке вакцин, которая, как надеется Фуллер, со временем будет расширяться. Такие средства просто необходимы, и на передовой стоит как раз проблема вакцинации от гриппа. По данным Центров по контролю и профилактике заболеваний США, только в Америке за этот год гриппом переболело вдвое больше людей, чем в прошлом году.
Сотрудники лаборатории Деборы Фуллер разрабатывают ДНК-вакцину, используя генетические компоненты вируса гриппа. Исследователи выбирают "консервативные" компоненты, которые не изменяются с течением времени. Если вакцина будет воздействовать именно на них, даже в случае дрейфа генов или других изменений в штаммах её действие останется эффективным, поясняют авторы.
Пока что первый вариант вакцины содержит ДНК, кодирующие белки четырёх различных штаммов вируса гриппа А. Эти белки вызывают сильный иммунный ответ на каждый отдельный штамм. Кроме того, вакцина включает ДНК, кодирующую белок, который является высококонсервативным, и в результате её действие распространяется на разные штаммы вируса.
Чтобы повысить мощность иммунного ответа, исследователи прибегли к слиянию: в вакцину добавили плазмиды (небольшие молекулы ДНК) бактерий E. coli (кишечная палочка), а также ДНК вируса гепатита В. Эти компоненты способствуют выработке антигенов, которые вызывают сильный иммунный ответ.
В ходе испытаний вакцины на макаках специалисты обнаружили, что после трёх доз препарат начинал генерировать мощный иммунный ответ против каждого из четырёх "заявленных" штаммов гриппа. Но, что более важно, клеточный ответ распространялся также и на штаммы, "не указанные в условиях задачи", то есть вакцина оказалась действительно универсальной. Причём защита была 100%-ной.
Фуллер поясняет, что вакцина будет вводится пациентам через кожу, однако не при помощи привычного шприца, а через генную пушку. Такой аппарат сможет ввести вещество непосредственно в клетки кожи. Далее эти клетки запустят в организме производство антител и Т-клеток, которые начнут бороться с патогеном.
По словам исследователей, преимущества нового типа вакцин очевидные. Во-первых, это принципиально иное действие: препарат помогает организму находить заражённые клетки и более эффективно их уничтожать. Во-вторых, тесты на приматах показали, что реакция Т-клеток происходила настолько быстро, что животные просто не успевали заболеть. Такой эффект наблюдается благодаря направленному действию ДНК-вакцины: в первую очередь Т-клетки отправлялись в лёгкие, где скапливается наиболее количество патогенов.
Кроме того, производство ДНК-вакцины относительно недорогое, а также быстрое: на это уходит в среднем три месяца, тогда как классические препараты производятся около девяти месяцев.
Универсальная вакцина также избавит пациентов от необходимости делать ежегодные прививки от гриппа. А если вдруг появится новый пандемический штамм вируса, то ДНК-вакцина, благодаря быстрому действию, сможет предотвратить общенациональную эпидемию.
Авторы также отмечают, что по тем же принципам можно создать больше эффективных вакцин от других вирусных – например, вируса Зика.
Впрочем, от первых воодушевляющих результатов до того момента, когда новая вакцина появится в коммерческом производстве, пройдёт, вероятно, ещё несколько лет. Впереди – различные испытания и усовершенствование вакцины.
Более подробное описание "священного грааля" медиков содержится в статье, опубликованной в издании PLOS One.
Тем временем генетики создали специальный тест, который покажет, поможет ли пациенту вакцина от гриппа.
Первые упоминания об эпидемиях гриппа появились еще в XV–XVI веках, но самая трагичная и всем известная эпидемия была в 1918 году. По разным оценкам во время этой эпидемии погибло от 50 до 100 миллионов людей. Так что, несмотря на то, что мы уже на протяжении многих веков регулярно встречаемся с вирусом гриппа, однажды для нас это может оказаться серьезной проблемой. Возможно ли это как-то предотвратить?
На нашем счету есть уже одна победа. Много веков вспышки эпидемии натуральной оспы ежегодно уносили сотни тысяч жизней. Но это длилось до тех пор, пока английский врач Эдвард Дженнер не изобрел вакцину против натуральной оспы. И после проведения крупномасштабных кампаний по вакцинации всех жителей Земли, в 1979 году Всемирная организация здравоохранения наконец-то объявила о полном искоренении этого заболевания.
Позднее на конференции в Далеме был сформулирован ряд условий:
• вирус должен заражать только человека;
• существует быстрая и точная диагностика;
• у заболевания нет скрытой формы и возможно ограничить распространение патогена;
• инфекция не должна быть летальной или существует эффективная вакцина.
Для оспы эти условия выполнимы: вирус натуральной оспы заражает только человека, заболевание имеет характерную клиническую картину, пока не проявились первые признаки заболевания, человек практически не заразен, и у нас есть хорошая вакцина.
Применимо ли это к гриппу? Все наверняка слышали про свиной, птичий грипп. Да, грипп заражает не только людей. У гриппа такие же симптомы, как и еще у 200 различных вирусных заболеваний, а его точная диагностика обойдется в 2,5 тысячи рублей. Вы начнете заражать окружающих еще до того, как появятся первые симптомы. И последнее: у нас нет высокоэффективной вакцины против гриппа.
К сожалению, в ближайшее время грипп не будет искоренен. Изменить природу вируса гриппа уж слишком амбициозная задача. А вот создать новую эффективную вакцину вполне реально.
Какой она должна быть? Во-первых, эффективной, то есть после вакцинации у большинства людей будет формироваться хорошая иммунная защита, и они не заболеют. Во-вторых, универсальной, то есть эта защита будет действовать против большого разнообразия штаммов вируса гриппа. Штамм — это конкретный вирус, который был выделен в определенное время в определенном месте.
Как производят вакцину сейчас
Каждый год вакцину против гриппа собирают с нуля, но по уже отработанной технологии, которая максимально сжата по срокам и занимает восемь-девять месяцев. Сначала собирают информацию о том, какие штаммы циркулируют в природе. В феврале это все обсуждают и выбирают три или четыре наиболее подходящих для вакцины штамма. Затем запускается многостадийное производство, самая длительная стадия которого — выращивание вируса в куриных эмбрионах. Затем надо пройти тестирование на эффективность и безопасность и получить лицензию, только после этого вакцину можно продавать.
В чем здесь проблема? Пока восемь месяцев мы готовим вакцину, грипп тоже не спит, он активно меняется. Выбор штаммов — это попытка предсказания и не всегда удачная. И, чтобы себя обезопасить, нам надо найти в вирусе гриппа что-то такое, что не будет постоянно меняться.
Вирус гриппа, как и большинство других вирусов, может размножаться только в живых клетках другого организма, он устроен намного проще, чем наши клетки или даже бактерии. Существует три вида вируса гриппа: A, B и C. Вакцина включает штаммы только двух первых видов, потому что для нас они представляют наибольшую опасность. Но при этом все три вида имеют схожую структуру, которую условно можно разделить на три части: внешняя мембрана, такая же, как у наших клеток, из белков и липидов, белковая оболочка и геном в виде молекул РНК, покрытых белком. В каждой части есть белки, и наша иммунная система узнает их фрагменты, которые могут быть разными у разных вирусов, то есть вариабельными, а могут быть очень похожими, или консервативными. Вариабельность или консервативность определяются скоростью накопления мутаций. Консервативные фрагменты меняются медленнее, поэтому именно они нас интересуют.
Как иммунитет реагирует на появление вируса в организме?
Есть два пути. Первый — гуморальный. Это синтез антител, которые связывают поверхностные белки вируса, блокируют их и сообщают всем вокруг, что здесь находится что-то чужое. Второй — клеточный. Т-киллеры (разновидность Т-клеток) находят зараженные клетки по фрагментам внутренних белков вируса и убивают эти клетки, чтобы остановить распространение патогена. Но что самое главное: наш иммунитет умеет запоминать те фрагменты белков, с которыми он встретился, и при повторном заражении будет реагировать на них быстрее. Вакцинация — это обучение иммунитета: мы показываем ему патогены и формируем иммунологическую память.
Какие консервативные фрагменты исследователи выбрали для обучения иммунитета?
Начнем с внутренних белков, которые узнают Т-киллеры. Есть два белка, представленные в большом количестве внутри вируса гриппа: нуклеопротеин (NP), который связан с РНК и нанизан на нее, почти как бусинки на ниточку, и матриксный белок 1 (M1), который, как одинаковые кирпичики, выстраивает белковую оболочку. Оба белка, помимо того, что защищают геном вируса, выполняют еще и другие важные функции в жизненном цикле вируса. Так как изменение в аминокислотной последовательности белка может привести к тому, что белок потеряет свою функцию, нуклеопротеину и матриксному белку приходится быть достаточно консервативными.
Но T-киллеры узнают зараженную клетку, когда она показывает им фрагмент вирусного белка, который находится внутри нее. А это значит, при вакцинации вирусные белки как-то должны оказаться внутри. Как же их туда перенести?
Для этого решили использовать вирус осповакцины. Он безопасен, может заражать наши клетки и размножаться в них, но иммунная система очень быстро с ним справляется, и поэтому мы не заболеваем. Несколько генов в этом вирусе заменили на гены нуклеопротеина и матриксного белка, чтобы клетка их синтезировала, а потом показывала Т-киллерам. Такая вакцина уже прошла первую и вторую стадии клинических испытаний, которые показали ее эффективность и безопасность.
Теперь рассмотрим белки и их фрагменты, с которыми могут связываться антитела. Во внешней оболочке вируса гриппа есть ионный канал, состоящий из четырех белков М2, который, как насос, перекачивает ионы внутрь вируса. У каждого белка М2 снаружи есть небольшой кусочек, пептид, который оказался очень консервативным. Но мы не можем иммунизировать маленьким пептидом: антитела его даже не заметят. Поэтому при помощи генно-инженерных методов решили пришить его к другому, большому, белку, мимо которого иммунная система уж точно не пройдет, а заодно и на наш пептид отреагирует. Для это выбрали один из белков вируса гепатита В, и такая вакцина уже завершила первую стадию клинических испытаний.
Объектом самого последнего достижения, о котором сейчас все говорят, стал гемагглютинин (HA). Это поверхностный белок, который находится в оболочке вируса гриппа. Он в чем-то похож на липучку от кроссовок: когда вирус встречает клетку, он цепляется за нее при помощи гемагглютининов, чтобы дальше заразить. У разных вирусов гемагглютинины очень разные, но у некоторых из них ближе к основанию есть похожая область. И все было бы хорошо, но только эта часть белка очень нестабильна, мы не можем ею иммунизировать. Однако эту проблему удалось решить. В прошлом году практически одновременно в двух самых популярных научных журналах (Science и Nature) были опубликованы статьи о создании наночастиц, которые на поверхности несут кусочки гемагглютинина. Такие структуры оказались стабильными и эффективно вызывали иммунный ответ у мышей и хорьков. Начало клинических испытаний планируют начать уже в следующем году.
Для вакцины есть много хороших перспективных идей, но каждая из них должна успешно пройти все стадии тестирования, поэтому до реального применения пройдут еще годы. Но, кроме универсальной вакцины, универсальным может быть и лекарство. Для лекарства так же, как и для вакцинации, выбирают конкретную мишень. Но в отличие от вакцины лекарство действует непосредственно на сам вирус и до тех пор, пока вы им лечитесь.
Противогриппозные препараты начали разрабатывать еще в 1960-х годах, и первыми были созданы блокаторы ионного канала. Ионный канал перекачивает через оболочку протоны, чтобы закислить внутреннюю среду вируса гриппа. Это нужно для того, чтобы после проникновения вируса в клетку РНК смогла отделиться от белковой оболочки.
Однажды узнали, что производные адамантана могут блокировать этот канал, что мешает вирусу гриппа заразить клетку. Были выпущены два препарата: Амантадин и Римантадин, которые действуют только на вирус гриппа А. Но чем чаще их использовали, тем быстрее увеличивалось количество устойчивых к ним штаммов вируса гриппа. К 2005 году в некоторых странах доля устойчивых вирусов достигла 90%, поэтому теперь официальные организации не рекомендуют использовать эти препараты для лечения гриппа.
Позднее появились блокаторы нейраминидазы. Нейраминидаза — это тоже поверхностный белок вируса гриппа. Она помогает потомству вируса гриппа заражать другие клетки и работает как кусачки. Когда новый вирус выходит из клетки, он тут же к ней прилипает. Чтобы он не заражал ту же самую клетку второй раз, нейраминидаза откусывает все молекулы, к которым он прикрепился. Соответственно, блокирование нейраминидазы будет замедлять распространение вируса по нашему организму. Сейчас есть три препарата такого типа (Реленза, Тамифлю и Рапиваб), и все три действуют как на вирус гриппа А, так и на вирус гриппа В. Ко всем трем вирус гриппа пока чувствителен, тем не менее время от времени регистрируют случаи устойчивости. Для Тамифлю даже известна конкретная мутация с заменой одной аминокислоты в нейраминидазе, из-за которой препарат перестает действовать.
Чем активнее мы используем новые технологии, тем быстрее они теряют свою практическую ценность. Поэтому к списку рекомендованных противогриппозных препаратов есть очень важное уточнение: они рекомендованы для людей из группы риска, потому что для них заболевание и сопутствующие осложнения могут действительно закончиться смертью. Все, кто не входит в этот список, имеют достаточно собственных сил и ресурсов, чтобы справиться с вирусом гриппа. Все, что нам надо, — это выделить эти ресурсы для иммунной системы: не бежать на работу, а отдохнуть, выспаться, пропить витамины. Ну а ежегодная вакцинация уменьшит вероятность того, что вы вообще заболеете.
И последней вопрос, на который надо ответить, — что лучше: универсальная вакцина или универсальное лекарство? На данный момент иммунная система имеет неоспоримое преимущество над нашим интеллектом. Она умеет охотиться за патогенами и узнавать их даже в случае небольшого количества изменений. Все, что нам надо, — это заранее подготовить ее к тому врагу, с которым ей предстоит встретиться.
Расшифровку подготовила Дарья Сапрыкина
Читайте также: