Вирусные белки синтезируются из нуклеотидов вируса
86. 1. Определение, химический состав вирусов, функции компонентов.
Функция нуклеиновой кислоты вируса: …
Функция белков вирусных частиц: …
Размножение вирусов, синтез их нуклеиновых кислот.
Где размножается вирус?
О видах вирусов
86. 2. (Молекулярные механизмы действия вирусов.)
Реакция иммунной системы на обнаружение вируса.
Как вирусная частица попадает в клетки.
Что происходит с вирусной частицей после её попадания в клетку.
86. 3. Онкогенные вирусы. См. п.87.
86. 4. ВИЧ. См. п.77 и 80.
86. 5. Прионы.
86. 1. Определение, химический состав вирусов, функции компонентов. –
Опеределение вируса.
Вирусами называют КОМПЛЕКСЫ НУКЛЕИНОВЫХ КИСЛОТ С БЕЛКАМИ,
которые могут находиться во внешней среде вне клеток и
могут при попадании в организм проникать в клетки и размножаться внутри клеток.
Некоторые вирусы вдобавок к НК и белкам содержат липиды и углеводы.
Таким образом, вирусы не являются клетками, у вирусов нет органелл.
Отдельный комплекс нуклеиновых кислот с белками называется вирусной частицей или вирионом.
Функция нуклеиновой кислоты вируса:
нуклеиновые кислоты используются для синтеза белков вирусных частиц (кодируют первичную структуру белка).
Функция белков вирусных частиц:
1 – защищают НК от повреждений (НК сами по себе очень неустойчивы), образуя оболочку вокруг НК,
2 – участвуют в размножении вирусов в качестве ферментов и т.д. см. далее.
Углеводы вирусных частиц часто находятся на поверхности вирусных частиц и могут помогать вирусным частицам проникать в клетки.
Отдельная вирусная частица и вирусные частицы данного вида вирусов содержат только один вид НК – или ДНК, или РНК.
Вирусы, в вирионе которых находится ДНК, называются ДНК-овые вирусами,
а вирусы, в вирионе которых находится РНК, называются, РНК-овыми вирусами.
ДНК вируса может быть не только двухцепочечной, но и ОДНОЦЕПОЧЕЧНОЙ.
РНК вируса может быть как одноцепочечной (как в клетках), так и ДВУХЦЕПОЧЕЧНОЙ.
Размножение вирусов, синтез их нуклеиновых кислот.
Синтез нуклеиновых кислот вирусов происходит разными способами. –
1) Наряду с репликацией ДНК (см. п. 78),
2) у вирусов есть репликация РНК
3) и обратная транскрипция (см. п.80).
Какой бы ни была нуклеиновая кислота в самом вирионе,
при размножении вируса происходит синтез вирусных матричных РНК для синтеза вирусных белков (для трансляции).
Где размножается вирус?
Синтез вирусных нуклеиновых кислот и синтез вирусных белков может происходить только внутри клеток,
так как для синтезов нужны среда, рибосомы (осуществляются синтез белка), нуклеотиды и аминокислоты и т.д.
Поэтому размножаться вне клеток вирусы не могут. –
Пока вирус не проник в клетку, он не может размножаться, не может как-то влиять на обмен веществ в организме.
Поэтому наличие вируса (вирионов) в крови
не означает, что человек будет болеть болезнью, которая вызывается этим вирусом.
Он может заболеть, только если вирусные частицы проникнут в клетки,
а если они не проникнут в клетки, то человек не заболеет, хоть и будет носителем вируса.
О видах вирусов
Вирусы, содержащие разные нуклеиновые кислоты (то есть с разными последовательностями нуклеотидов) и разные белки, относят к разным видам вирусов.
Вирусные частицы с одинаковыми (или очень похожими) последовательностями нуклеотидов в НК, относятся к вирусу одного и того же вида.
Кроме того, последовательность нуклеотидов нуклеиной кислоты вируса данного вида
может меняться, то есть вирус может мутировать.
В итоге получается другой ШТАММ данного вида вируса, но сам вирус относится к тому же виду вирусов, что и до мутации.
Вирусы, которые поражают бактерии, называются БАКТЕРИОФАГАМИ.
Бактериофаги могут использоваться для внесения в клетку бактерии чужих для неё генов для синтеза клеткой белков, кодируемых этими генами,
То есть бактериофаги могут играть роль векторов – это используется генной инженерией.
В эукариотические клетки вирусы попадают не так, как в бактериальные (далее).
86. 2. (Молекулярные механизмы действия вирусов.)
Реакция иммунной системы на обнаружение вируса.
При попадании вирусной частицы в организм её должны заметить и уничтожить клетки иммунной системы
(с помощью АНТИТЕЛ – специальных белков, задача которых – распознавание антигенов)
для того чтобы вирус не успел проникнуть в клетку, размножиться в ней, убить её и заражать новые клетки.
Как вирусная частица попадает в клетки.
Проникновение вирусной частицы в клетку начинается с того, что
вирус связывается с определённым белком на поверхности клетки,
который таким образом выполняет функцию РЕЦЕПТОРА клетки для этого вируса.
Роль рецептора вируса обычно играют белки, предназначенные для других целей –
например, ВИЧ использует рецепторы хемокинов.
Если рецепторы вируса отличаются от обычных так, что вирус не может с их помощью проникнуть в клетку, то вирус не приведёт к заболеванию.
Причиной отличия рецептора может быть мутация гена, который кодирует этот рецептор.
Что происходит с вирусной частицей после её попадания в клетку.
После попадания вирусной частицы внутрь клетки
вирусная нуклеиновая кислота высвобождается, после чего
могут синтезироваться новые молекулы вирусной нуклеиновой кислоты (см. п.77)
и новые молекулы вирусных белков (п.82).
После этого из молекул вирусных нуклеиновых кислот и молекул вирусных белков
могут образовываться новые вирусные частицы –
так происходит РАЗМНОЖЕНИЕ ВИРУСОВ.
Новые вирусные частицы могут покидать клетку, в которой образовались,
и поступать в новые клетки, заражая всё новые и новые клетки.
Если заражённые вирусом клетки подвергнутся АПОПТОЗУ (см. п. 79),
то распространение вирусных частиц может затормозиться.
Поэтому замедленный апоптоз способствует распространению вирусной инфекции.
Накопление вирусных частиц в клетке может приводить к РАЗРУШЕНИЮ КЛЕТКИ;
кроме того, оно нарушает нормальную жизнедеятельность клетки и организма –
всё это приводит к появлению симптомов вирусной инфекции.
Нуклеиновые кислоты некоторых вирусов (см. ВИЧ далее) могут использоваться
в качестве матриц для образования двухцепочечных ДНК (вирусных ДНК),
которые способны встраиваться в ДНК человека –
это встраивание называется интегрированием в геном,
оно относится к ПЕРЕСТРОЙКАМ генома – см. п.79.
86. 3. Онкогенные вирусы. См. п.87.
Некоторые вирусы способствуют появлению онкологических заболеваний.
Такие вирусы называются онкогенными вирусами.
Примеры онкогенных вирусов:
вирус папилломы человека способен приводит к раку матки,
вирусы гепатитов В и С приводят к раку печени.
Онкогенные вирусы относят к группе биологических мутагенов – см. п.79.
Почему некоторые вирусы могут приводить к онкологическим заболеваниям (см. п.87 и п.92, 98):
потому что онкогенные вирусы приводят к таким МУТАЦИЯМ,
которые способствуют появлению онкологических заболеваний.
Например, считается, что онкогенными являются те вирусы,
которые приводят к встраиванию вирусных ДНК в ДНК (геном) человека (интегрируется).
Потому что это встраивание может изменить тот участок ДНК,
в который встраивается вирусная ДНК (то есть привести к мутации).
В норме, до мутации, протоонкоген кодирует белки, которые стимулируют деление клеток и относятся к онкобелкам.
В норме активность онкобелков регулируется,
поэтому они стимулируют деление клетки только тогда, когда нужно –
и поэтому деление клетки (и образованных при её делении клеток) не приводит к образование опухоли.
Но после мутации протоонкогена он может измениться так, что
кодируемые им онкобелки не смогут регулироваться
и станут стимулировать деление клетки постоянно, без остановки,
что может привести к появлению опухоли,
если мутантные клетки не подвергнутся апоптозу
или не уничтожатся клетками иммунной системы.
86. 4. ВИЧ. См. п.77 и 80.
ВИЧ – это вирус иммунодефицита человека.
Размножение ВИЧ в организме человека может привести к развитию СПИДа –
Синдрома Приобретённого Иммунодефицита Человека.
ВИЧ повреждает клетки иммунной системы (Т-хелперы, макрофаги),
что приводит к дефициту иммунных клеток и снижению иммунитета (иммунодефициту).
1. После попадания ВИЧ в организм человека
ВИЧ, как и все вирусы, сначала связывается с рецепторами на поверхности клеток:
ВИЧ связывается с рецепторами хемокинов
(хемокиновыми рецепторами;
хемокины – это гормоны, относятся к цитокинам)
и СД4 рецепторами на поверхности клеток иммунной системы.
Связыванию ВИЧ с рецепторами помогают гликопротеины, расположенные на поверхности вирусной частицы ВИЧ.
Есть люди, в организме которых есть ВИЧ, но у которых не развивается СПИД –
то есть они являются носителями вируса, они могут заразить ВИЧ,
но больными они не являются.
Предполагают, что это связано с тем, что ВИЧ не может размножаться в организме этих людей,
поскольку не проникает в их клетки из-за особенностей строения рецепторов ВИЧ у этих людей:
возможно, из-за мутаций генов, кодирующих эти рецепторы.
2. В качестве нуклеиновой кислоты в ВИЧ содержится одноцепочечная РНК.
В клетках РНК вируса становится матрицей для синтеза комплементарной ей цепи ДНК
(комплементарной ДНК, кДНК),
который катализируется ферментом обратная транскриптаза
(потому что синтез ДНК на матрице РНК называется обратной транскрипцией),
который содержался в вирусной частице ВИЧ.
Затем на матрице первой цепи ДНК синтезируется вторая цепь ДНК,
в результате чего образуется двухцепочечная ДНК.
Эта вирусная ДНК способна встраиваться в ДНК человека
с помощью фермента ИНТЕГРАЗЫ, который тоже содержится в вирусной частице ВИЧ.
3. В некоторый момент вирусная ДНК, находящаяся в составе ДНК человека,
может использоваться для синтеза вирусных РНК (то есть для транскрипции – п.80).
4. Вирусные РНК могут использоваться для синтеза вирусных белков (для трансляции) с помощью рибосом самой клетки.
5. Один из ферментов ВИЧ осуществляет расщепление полипептидной цепи, синтезированной на вирусной РНК;
этот фермент называется ПРОТЕАЗОЙ.
В итоге образуются вирусные белки, в том числе уже названные протеаза, интеграза и обратная транскриптаза.
6. Объединение вирусных белков с вирусной РНК приводит
к появлению новых вирусных частиц ВИЧ,
которые могут разрушать клетки, поступать в кровь и проникать в новые клетки.
Диагностика ВИЧ
осуществляется методом ПЦР и с помощью иммуноферментного анализа.
Метод ПЦР быстрее и надёжнее.
СПИД пока считается неизлечимым заболеванием.
Но замедлить развитие СПИДа и продлить жизнь человека, инфицированного ВИЧ, можно за счёт замедления размножения ВИЧ в организме заражённого.
Размножение ВИЧ замедляется за счёт применения лекарств,
снижающих активность ферментов ВИЧ, участвующих в размножении ВИЧ (см. выше),
то есть за счёт применения ИНГИБИТОРОВ ферментов ВИЧ.
Чем раньше начинают лечение инфицированного ВИЧ – тем дольше он проживёт. Поэтому важно вовремя делать анализ на ВИЧ при наличии оснований предполагать, что человек мог заразиться ВИЧ.
При наличии ВИЧ у беременной есть шанс родить здорового ребёнка,
если вовремя сделать анализ на ВИЧ и провести лечение.
Прионами называют белки с особой структурой, которая приводит к так называемым прионовым болезням:
куру, болезни Крейцфельдта-Якобы, почесухе овец, коровьему бешенству.
У прионов есть способность
превращать молекулы нормальных белков в прионы
за счёт того, что под влиянием структуры уже имеющихся молекул прионов
структура молекул ряда других белов может измениться так,
что эти молекулы тоже становятся прионами –
нерастворимыми в воде молекулами,
под влиянием которых могут стать прионами другие молекулы белков –
то есть происходит как бы цепная реакция;
из-за этого число прионов в организме становится всё больше.
Из-за этого свойства прионы считаются инфекционными белками,
а прионовые болезни считаются заразными
(заражение происходит при попадании прионов в организм – обычно в качестве пищи).
В случае с прионами увеличение числа болезнетворных молекул
происходит не путём деления клеток
(в отличие от бактериальных и других инфекций, где бактерии размножаются делением)
и не путём синтеза нуклеиновых кислот (см. выше о размножении вирусов),
а под влиянием уже имеющихся молекул прионов.
Прионы могут оказаться в организме не только в результате заражения
(не только при съедении пищи, содержащей прионы),
но и в результате мутаций генов некоторых белков.
Из-за своей структуры прионы не уничтожаются и не теряют свои вредные свойства при сколь угодно долгой варке, поэтому варка не является способом сделать пищу безопасной и свободной от прионов. Единственный способ исключить возможность заражения прионами при эпидемиях коровьего бешенства – это не употреблять в пищу мясо, тушёнку, консервы, желатин и т.д.А единственный способ уничтожить прионы - только сжечь. Прионы устойчивы и к действию других факторов, которые разрушают структуру обычных белков, то есть прионы устойчивы к денатурации под действием излучений, ультразвука и т.д.
В составе всех вирусов обязательно присутствуют белки и одна из нуклеиновых аминокислот. У сложноорганизованных вирусов есть также липиды, углеводы и другие соединения. Белки составляют от 49 до 89 % по массе, нуклеиновые кислоты – от 3 до 40 %. Нуклеиновая кислота и небольшое количество белка сосредоточены в центре вириона, большая часть белка – в капсиде. В состав белков входят те же аминокислоты, что и в состав остальных кислот, и построены они по тому же принципу. Белки вирусов выполняют различные функции. Они могут находиться на поверхности вириона, выполняя функцию рецепторов к чувствительным клеткам. Кроме того, капсид всех вирусов состоит из белков, выполняющих структурную функцию. Наконец, репликация вирусной нуклеиновой кислоты невозможна без участия белков - ферментов. Молекулярная масса вирусных белков варьирует в пределах от 10 · 103 до 15 · 104 Д. Учитывая разнообразие вирусных белков, их принято разделять на две группы: структурные и неструктурные (функциональные). Структурными белками являются все те белки, которые входят в состав капсида и поэтому придают вирусу определенную форму. Количество структурных белков у разных вирусов различно, что зависит от степени организации и размеров вируса. Неструктурными белками являются все те белки, которые участвуют в процессе репродукции вирусов. Это главным образом ферменты, регулирующие репродукцию, а также их предшественники.
Основная часть полипептидов является вирусоспецифическими белками (синтезированы по программе генома вируса). Их можно разделить на классы:
Снаружи вириона обычно располагаются высокомолекулярные белки, внутри – низкомолекулярные, тесно связанные с нуклеиновой кислотой. Основная роль наружных белков – защита нуклеиновой кислоты. Функции вирусных белков следующие:
1) защитная – защищает нуклеиновую кислоту от воздействия внешней среды;
2) адресная – белки имеют рецепторы определенной чувствительной клетки; 3) белки вирусов облегчают проникновение вируса в клетку.
Ферменты. В составе вириона присутствуют ферменты:
а) кодируемые вирусом;
б) индуцируемые вирусом.
Ген, кодирующий определенный фермент, входит в состав нуклеиновой кислоты вируса, а ген индуцируемых ферментов входит в состав клеточной ДНК. Другими словами, кодируемые вирусом ферменты – это все те ферменты, которые синтезированы по программе вирусного генома. Индуцируемые вирусом ферменты представляют собой ферменты клетки, переподчиненные вирусом для его собственной репродукции.
В зависимости от стадии развития ферменты делятся на следующие группы:
1) ферменты внутриклеточной формы вируса. Это ферменты, которые синтезируются на вирусной нуклеиновой кислоте только внутри пораженной клетки;
2) ферменты внеклеточной формы вируса. К ним относятся транскриптаза (РНК-полимераза), обратная транскриптаза (ревертаза) – все они заключены в состав вириона.
Липиды и углеводы, минеральные элементы, входящие в состав вирионов
Простые (безоболочечные) вирусы состоят из нуклеиновой кислоты и белка и представляют собой нуклеопротеиды или нуклеокапсиды. Сложные (оболочечные) вирусы кроме нуклеиновой кислоты и белка содержат также липиды и углеводы.
Нуклеиновые кислоты
Два типа нуклеиновых кислот – ДНК и РНК. Их структура относительно однообразна: ДНК представляет собой двуспиральную молекулу, РНК – односпиральную молекулу. Функция ДНК заключается в хранении и репликации наследственной информации, таким образом, она является клеточным геномом. РНК представлена в клетке в трех формах: информационной (иРНК), рибосомальной (рРНК), и транспортной (тРНК). Каждая из них выполняет определенную функцию: иРНК образуется в результате транскрипции генома и передает информацию с генома на белок, синтезирующий аппарат клетки, рРНК является структурным компонентом рибосом, тРНК доставляет аминокислоты белок-синтезирующему аппарату клетки.
В отличии от клетки вирусы содержат один тип нуклеиновой кислоты – или ДНК или РНК. Каждая из них выполняет функцию вирусного генома. Структура нуклеиновых кислот у разных вирусов весьма разнообразная. По количеству цепей они бывают одно- и двуспиральными, по форме – линейными и кольцевыми (циркулярными), а также непрерывными и фрагментированными
Белки.
Белки являются основными компонентами вирионов и состаяляют от 57 до 90% массы вириона. По аминокислотному составу вирусные белки принципиально не отличаются от состава белков животных.
В геноме вирусов кодируются две группы белков: структурные, которые входят в состав вирионов потомства, и неструктурные, участвующие в репродукции вируса на разных этапах, но не входящие в состав вирионов.
Структурные белки в составе вириона варьируют в широких пределах, что зависит от сложности организации вириона. Простые вирусы 3-4 белка, сложные более 30. Среди структурных белков – капсидные и пепломеры. Капсидные формируют капсид, окружающий нуклеиновую кислоту, геномные белки и ферменты. Пепломеры – белки суперкапсидной оболочки, называемой пеплос. Простые вирусы содержат только капсидные белки, а сложные капсидные и пепломеры. Белки в составе вирусного капсида называются капсомерами, основная функция – защита вирусного генома от неблагоприятных воздействий.
Суперкапсидные белки (пепломеры) находятся в липопротеидной оболочке сложных вирусов. Они либо пронизывают липидный бислой вириона, либо не доходят до его внутренней поверхности. Они гликопротеиды, т.е. к молекуле белка в определенных местах прикреплены углеводные цепи. Убольшинства сложных вирусов гликопротеиды формируют на поверхности вириона выступы – шипы длиной 7-10 нм.
Неструктурные белки менее изучены.К ним относятся: предшественники вирусных белков, которые существуют в зараженной клетке очень непродолжительное время, а затем нарезаются; ферменты синтеза РНК и ДНК – полимеразы; регуляторы стадий репродукции вирусов; ферменты, модифицирующие вирусные белки – протеиназы и протеинкеназы.
Липиды и углеводы. В состав вирионов всех сложных(оболочечных) вирусов позвоночных кроме нуклеиновой кислоты и белка входят липиды и углеводы.
50-60% фосфолипиды, 20-30% - холестерин. Липиды обнаруживаются только в суперкапсидной оболочкевирионов и имеют клеточное происхождение. Это связанно с тем, что оболочечные вирусы формируются путем почкования на плазматической мембране клеток. Поэтому суперкапсидная оболочка вирионов представляет собой мембрану клетки-хозяина,модифицированную за счет встроенных в нее вирусных белков – пепломеров. В вирионах в основном обнаруживают фруктозу, сахарозу, галактозу, глюкозамин. Углеводы являются каркасом для локальных участков гликопротеидов, обеспечивают сохранение конформации белковых молекул и защищают от действия протеаз.
Компоненты клетки-хозяина. В составе вирионов могут обнаруживаться некоторые компоненты клеток-хозяина. Это могут быть белки или цельные клеточные структуры. Например, в составе некоторых оболочечных вирусов находится белок цитоскелета, рибосомы, клеточные гистоны
Представители царства вирусов – особая группа жизненных форм. Они имеют не только узкоспециализированное строение, но и характеризуются специфическим обменом веществ. В данной статье мы изучим неклеточную форму жизни – вирус. Из чего состоит, как размножается и какую роль он играет в природе, вы узнаете, прочитав ее.
Открытие неклеточных форм жизни
Российский ученый Д. Ивановский в 1892 году занимался изучением возбудителя болезни табака – табачной мозаики. Он установил, что патогенный агент не относится к бактериям, а является особой формой, в последующем названной вирусом. В конце 19 века в биологии еще не использовали микроскопы с высокой разрешающей способностью, поэтому ученый не смог узнать, из каких молекул состоит вирус, а также увидеть и описать его. После создания электронного микроскопа в начале 20 столетия мир увидел первых представителей нового царства, оказавшихся причиной многих опасных и трудно излечимых болезней человека, а также других живых организмов: животных, растений, бактерий.
Положение неклеточных форм в систематике живой природы
Как было сказано ранее, эти организмы объединены в пятое царство живой природы - вирусы. Главный морфологический признак, характерный для всех вирусов, – отсутствие клеточного строения. До сих пор в научном мире не прекращаются дискуссии по вопросу, являются ли неклеточные формы живыми объектами в полном смысле этого понятия. Ведь все проявления метаболизма у них возможны только после проникновения в живую клетку. До этого момента вирусы ведут себя, как объекты неживой природы: у них отсутствуют реакции обмена веществ, они не размножаются. В начале 20 столетия перед учеными возникла целая группа вопросов: что такое вирус, из чего состоит его оболочка, что находится внутри вирусной частицы? Ответы были получены в результате многолетних исследований и экспериментов, послуживших основой для новой научной дисциплины. Она возникла на стыке биологии и медицины и называется вирусологией.
Особенности строения
Если в состав оболочки входят еще и липопротеидные субъединицы, являющиеся на самом деле частью цитоплазматической мембраны клетки хозяина, такие вирусы называются сложными (возбудители оспы и гепатита В). Часто в состав поверхностной оболочки вируса входят и гликопротеиды. Они выполняют сигнальную функцию. Таким образом, как и оболочка, так и сам вирус состоят из молекул органического компонента – протеина и нуклеиновых кислот (ДНК или РНК).
Как вирусы проникают в живые клетки
Ранее мы рассмотрели особенности строения оболочки внутриклеточного паразита. Вирус состоит из молекул органического и биологического вещества, а его поверхностная структура содержит специальные белки, узнающие плазмалемму живой клетки. Поэтому неклеточные формы поражают конкретные типы клеток определенных биологических видов организмов. Например, вирусы чумы собак не представляют опасности для здоровья человека. Внутрь клетки паразит попадает несколькими способами:
- Слиянием своей оболочки с мембраной клетки (вирус гриппа).
- Путем пиноцитоза (возбудитель полиомиелита животных).
- Через повреждение клеточной стенки (вирусы растений).
Размножение вирусов
Как только паразит попал в клетку, молекулы его нуклеиновой кислоты, вклиниваясь в геном ядра, передают информацию о строении протеиновых частиц и запускают процесс биосинтеза собственных белков. При этом используются рибосомы, молекулы АТФ, т-РНК клетки-хозяина. Параллельно в зараженной клетке происходит редупликация наследственной информации. Напомним, что из белка и нуклеиновой кислоты состоят вирусы, называемые простыми. Их частицы содержат РНК, которая сразу же связывается с субъединицами рибосом клетки-хозяина и индуцирует биосинтез молекул протеинов вируса.
Итогом нападения возбудителя на клетку становится соединение ДНК или РНК вируса с собственными белковыми частицами. Таким образом, вновь образованный вирус состоит из молекул нуклеиновых кислот, покрытых упорядоченными частицами протеидов. Мембрана клетки-хозяина разрушается, клетка гибнет, а вышедшие из неё вирусы внедряются в здоровые клетки организма.
Явление обратной редупликации
В начале изучения представителей данного царства бытовало мнение, что вирусы состоят из клеток, но уже опыты Д. Ивановского доказали, что возбудителей невозможно выделить с помощью микробиологических фильтров: патогены проходили через их поры и оказывались в фильтрате, который сохранял вирулентные свойства.
Дальнейшими исследованиями был установлен тот факт, что вирус состоит из молекул органического вещества и проявляет признаки живой субстанции только после своего непосредственного проникновения в клетку. В ней он начинает размножаться. Большинство РНК-содержащих вирусов размножаются так, как было описано выше, но некоторые из них, например вирус СПИДа, в ядре клетки-хозяина вызывает синтез ДНК. Это явление называется обратной репликацией. Затем на молекуле ДНК синтезируется и-РНК вируса, а уже на ней начинается сборка вирусных белковых субъединиц, образующих его оболочку.
Особенности бактериофагов
Что представляет собой бактериофаг - клетку или вирус? Из чего состоит эта неклеточная форма жизни? Ответы на эти вопросы таковы: это вирус, поражающий исключительно прокариотические организмы – бактерии. Строение его достаточно своеобразно. Вирус состоит из молекул органического вещества и делится на три части: головку, стержень (чехол) и хвостовые нити. В передней части – головке - находится молекула ДНК. Далее следует чехол, имеющий внутри полый стержень. Хвостовые нити, прикрепленные к нему, обеспечивают соединение вируса с рецепторными локусами плазматической мембраны бактерии. Принцип действия бактериофага напоминает шприц. После сокращения белков чехла молекула ДНК попадает в полый стержень и далее впрыскивается в цитоплазму клетки-мишени. Теперь зараженная бактерия будет синтезировать ДНК вируса и его белки, что неизбежно приведет к её гибели.
Как организм защищает себя от вирусных инфекций
Природа создала особые защитные приспособления, противостоящие вирусным заболеваниям растений, животных и человека. Сами возбудители воспринимаются их клетками как антигены. В ответ на присутствие вирусов в организме вырабатываются иммуноглобулины – защитные антитела. Органы иммунной системы - тимус, лимфатические узлы - реагируют на вирусное вторжение и способствуют выработке защитных протеинов – интерферонов. Эти вещества угнетают развитие вирусных частиц и тормозят их размножение. Оба вида защитных реакций, рассмотренных выше, относятся к гуморальному иммунитету. Другая форма защиты – клеточная. Лейкоциты, макрофаги, нейтрофилы поглощают вирусные частицы и расщепляют их.
Значение вирусов
Не секрет, что оно в основном негативное. Эти ультрамалые патогенные частицы (от 15 до 450 нм), видимые только в электронный микроскоп, вызывают целый букет опасных и трудноизлечимых заболеваний всех без исключения организмов, существующих на Земле. Так, у человека вирусы поражают жизненно важные органы и системы, например нервную (бешенство, энцефалит, полиомиелит) иммунную (СПИД), пищеварительную (гепатит), дыхательную (грипп, аденоинфекции). Животные болеют ящером, чумой, а растения - различными некрозами, пятнистостями, мозаичностью.
Многообразие представителей царства не изучено до конца. Доказательством служит то, что до сих пор открывают новые виды вирусов и диагностируют ранее не встречающиеся заболевания. Например, в середине 20 столетия в Африке был обнаружен вирус Зика. Он находится в организме комаров, которые при укусе заражают человека и других млекопитающих. Симптомы заболевания свидетельствуют о том, что возбудитель поражает прежде всего отделы центральной нервной системы и вызывает у новорожденных микроцефалию. Люди, являющиеся носителями этого вируса, должны помнить, что они представляют потенциальную опасность для своих партнеров, так как в медицинской практике зарегистрированы случаи передачи заболевания половым путем.
К положительной роли вирусов можно отнести их использование в борьбе против видов-вредителей, в генной инженерии.
В данной работе мы рассказали, что такое вирус, из чего состоит его частица, как организмы защищают себя от патогенных агентов. Также мы определили, какую роль играют неклеточные формы жизни в природе.
Сейчас известно 39 видов коронавирусов, в каждый вид могут входить десятки и сотни штаммов. Кроме того, есть еще 10 видов — кандидатов в коронавирусы. Специалисты пока только проверяют, можно ли их считать настоящими коронавирусами. У них широкий спектр хозяев среди птиц и зверей, у которых они вызывают заболевания дыхательной системы и желудочно-кишечного тракта. К людям коронавирусы приходят от животных: вирус атипичной пневмонии 2002—2003 годов SARS-CoV пришел от подковоносых летучих мышей, от которых он перескочил в мусанга, или малайскую пальмовую куницу, а из мусанга — уже в человека. (Любителям кофе малайская пальмовая куница должна быть знакома — это тот самый зверек, без которого не было бы кофе копи-лювак: мусангам скармливают кофейные зерна, которые определенным образом ферментируются в кишечнике, изменяя вкусовые свойства; кофе из зерен, которые прогнали через мусангов, считается особо изысканным и стоит весьма немалых денег.)
Еще один человеческий коронавирус известен по вспышке ближневосточного респираторного синдрома, первые случаи которого были зарегистрированы в 2012 году в Саудовской Аравии, — он получил название MERS-CoV. Этот вирус также пришел к людям от летучих мышей с промежуточной остановкой в одногорбых верблюдах (оттого его еще называют верблюжьим гриппом, что неправильно, — коронавирусы от вирусов гриппа отличаются). Умирают от него более трети заразившихся, однако заразиться им сложно: с момента появления вируса и до начала этого года в мире зарегистрировано лишь около двух с половиной тысяч случаев.
Подозревают, что и новый вирус SARS-CoV-2 тоже пришел к нам от летучих мышей.
Наконец, есть еще четыре человеческих коронавируса, два из которых, HCoV-229E и HCoV-OC43, были известны еще до атипичной пневмонии от SARS-CoV, а два других, HCoV-NL63 и HCoV-HKU1, открыли в 2004 и 2005 годах. Все четыре не вызывают ничего серьезнее мягкой простуды; хотя коронавирусная простуда встречается довольно часто — на ее счет относят 15—30% всей простуды в мире.
Но об эпидемиологии коронавирусов мы рассказывать не будем, а вместо этого поговорим о том, как они устроены и как на них реагируют наши клетки.
Обладатели белковой короны
И белок S, и белок HE сидят в мембранной липидной оболочке. Откуда она берется? Как мы помним, наши клетки окружены мембраной и внутри них существует много мембранных органелл — клеточных органов, выполняющих разные функции и ради правильной работы отделенных от остальной клетки двуслойной липидной мембраной. Ее-то вирус и заимствует, выходя из клетки, а как именно, скажем чуть ниже. Кроме S и HE в ней сидит очень много белка М, который поддерживает и структурирует мембрану, и еще немного белка E. Под липидной оболочкой с белками мы найдем геном вируса — нить молекулы РНК, которая усажена белком N: он упаковывает вирусную РНК в компактную свернутую спираль. (Белковая оболочка вирусов, непосредственно взаимодействующая с нуклеиновой кислотой, называется капсидом.) Когда РНК попадает в клетку, то на ней сразу можно синтезировать белки, и такую РНК у вирусов обозначают плюсом.
По этим признакам коронавирусы относят к РНК-содержащим вирусам, чей геном представляет собой одну-единственную плюс-цепь РНК. Так же выглядит геном у множества других вирусов, среди которых есть риновирусы (одна из самых частых причин простуды) и вирус гепатита С. В то же время коронавирусы относят к оболочечным вирусам, у которых кроме нуклеиновой кислоты и связанного с ней структурно-защитного белка (у коронавирусов это белок N) есть еще мембранная оболочка. К оболочечным вирусам еще относятся, например, вирусы герпеса, у которых наследственная информация хранится в ДНК, и ВИЧ. Как видим, по отдельности разные молекулярные черты можно найти у множества вирусов и лишь по их сочетанию отделить одну группу вирусов от другой.
Кстати, геном в виде РНК — это, можно сказать, слабость коронавирусов. В нуклеиновых кислотах время от времени появляются мутации либо из-за внешних факторов, вроде фоновой радиации, либо из-за стандартных ошибок белков, которые эти нуклеиновые кислоты копируют. Но в клеточной ДНК мутации могут быть исправлены специальными ремонтными белками. Этим же ремонтом способны воспользоваться вирусы с геномом в виде ДНК или же те, которые геномную РНК на время копируют в ДНК (такие вирусы называются ретровирусами). А в коронавирусной РНК ошибки никак не исправляются. Мутации помогают вирусам сменить хозяина, но среди мутаций есть очень много вредных, и если вирус не может никак корректировать дефекты в ДНК, они в какой-то момент могут сделать его просто нежизнеспособным.
Любые вирусы — это, грубо говоря, лишь комок молекул, пусть и сложно устроенный. Собственного обмена веществ у вирусов нет, и размножаться за пределами клетки они не могут. Вирусам с мембранной оболочкой проникнуть в клетку проще как из-за самой мембраны, так и благодаря сидящим на ней белкам: они хорошо подходят к клеточным рецепторам. Кроме того, белки мембранной оболочки, как собственно вирусные, так и те, которые вирус прихватил у клетки вместе с куском мембраны, помогают вирусу уходить от иммунной атаки. Но из-за мембраны такие вирусы более чувствительны к разным неблагоприятным факторам, вроде обезвоживания или моющих детергентов, мембрану разрушающих. Поэтому вирусы с мембранной оболочкой лучше всего передаются от хозяина к хозяину, а сидеть на какой-то поверхности и ждать, когда их оттуда снимет потенциальный хозяин, они долго не могут. Этим они отличаются от вирусов без мембраны, которые представляют собой нуклеиновую кислоту, заключенную в белковый капсид, — они более устойчивы в окружающей среде, но проникнуть в клетку для них зачастую сложнее.
Внедрение в клетку
Разные вирусы пользуются разными клеточными белками для входа. Так, вирус атипичной пневмонии SARS-CoV и относительно безобидный HCoV-NL63 связываются с ангиотензинпревращающим ферментом 2, который помогает регулировать кровяное давление, участвует в управлении иммунитетом и играет роль еще в целом ряде процессов. Но белка одного вида для входа бывает недостаточно, поэтому, например, SARS-CoV нужен еще белок TMPRSS2 — одна из сериновых протеаз, участвующая в разных биохимических реакциях. Вирус сначала связывается с одним белком на поверхности клетки, а потом второй белок на поверхности клетки режет вирусный белок S, после чего мембраны вируса и клетки соединяются.
Схема жизненного цикла коронавируса. Проникнув в клетку, вирус высвобождает свою РНК, на которой рибосомы — клеточные машины для белкового синтеза — собирают вирусные белки, необходимые для формирования мембранных пузырьков и для синтеза плюс-цепи геномной РНК — гРНК. На вспомогательных мембранных пузырьках появляются вирусные белки, образующие RTC — replication transcription complex, этот комплекс выполняет репликацию (удвоение генома вируса) и транскрипцию — синтез коротких субгеномных РНК (сгРНК), предназначенных для сборки структурных вирусных белков. Структурный белок N соединяется с геномной РНК и образует нуклеокапсид вируса (геном плюс капсидный белок). На эндоплазматической сети синтезируются другие структурные белки, которые организуют вирусу липидную мембрану.
Вирус проник в клетку, и теперь он начинает копировать свой геном, то есть молекулу РНК, и синтезировать белки, нужные для копирования РНК и для формирования вирусных частиц. Кроме полных геномных РНК коронавирусы создают еще набор более коротких РНК — они синтезируются на больших геномных РНК и нужны только для синтеза белков; в вирусные частицы эти короткие РНК не попадают (точно так же ведут себя некоторые другие вирусы, которые вместе с коронавирусами объединяют в группу Nidovirales). Все вирусные РНК синтезируются в особых белковых комплексах, которые, в свою очередь, закреплены в небольших мембранных пузырьках. Эти пузырьки создает сам вирус: его белки вторгаются во внутриклеточные мембраны и фрагментируют их, создавая пузырьки-везикулы, чтобы РНК-синтезирующим комплексам было к чему пришвартоваться.
Часть насинтезированной РНК остается плавать в цитоплазме клетки — на ней синтезируется белок N, который будет упаковывать геномную вирусную РНК в спираль. Другие структурные белки, те, что потом окажутся в мембранной оболочке вируса (S, M и пр.), синтезируются на РНК, осевшей на особой внутриклеточной структуре — эндоплазматической сети, или эндоплазматическом ретикулуме (ЭР). Эндоплазматическая сеть — это огромная система мембранных канальцев, цистерн и пузырьков, на которых сидят белоксинтезирующие молекулярные машины рибосомы и собирают белки в соответствии с информацией в РНК. Готовые белки погружаются внутрь полостей ЭР, где приобретают правильную пространственную форму и потом либо переходят в клеточную цитоплазму, либо отправляются на экспорт, наружу из клетки, будучи заключены в транспортный мембранный пузырек.
Особенности внутриклеточной борьбы
О том, что у нее внутри орудует вирус, клетка может догадаться по неполадкам с внутренними мембранами — мы помним, что коронавирусы фрагментируют мембраны, чтобы дать опору своим белкам, синтезирующим РНК, и сами вирусные частицы прихватывают себе куски мембран. Кроме того, вирусные белки накапливаются в эндоплазматической сети и вызывают так называемый ЭР-стресс, то есть стресс эндоплазматического ретикулума. ЭР-стресс заставляет клетку остановить синтез белков (что, несомненно, бьет по вирусу — ведь он зависит от клеточной белоксинтезирующей машины) и активирует сигнальные молекулярные пути, которые включают программы клеточного суицида. Наконец, клетка может понять по вирусной РНК, что внутри у нее поселилась инфекция, и в ответ начать синтез интерферона первого типа. Это сигнальный белок, который выходит из клетки и оповещает всех об инфекции, в результате здоровые клетки готовятся защищаться от своей соседки, а иммунные клетки стремятся уничтожить зараженную клетку.
Читайте также: