Вирусы могут быть одноклеточными и многоклеточными
Код ЕГЭ: 3.1. Разнообразие организмов: одноклеточные и многоклеточные;
автотрофы, гетеротрофы, аэробы, анаэробы
К одноклеточным эукариотам относится множество очень отличающихся друг от друга организмов, которых объединяет один признак — их единственная клетка является в то же время и целым организмом. Хотя в целом они устроены как типичная эукариотическая клетка, однако зачастую могут иметь дополнительные органеллы.
СТРОЕНИЕ. Поверхностный аппарат клетки, отделяющий организм одноклеточного от окружающей среды, зачастую устроен очень сложно. Как и у других клеток, его главная часть — плазмалемма. Надмембранный аппарат может быть представлен гликокаликсом, клеточными стенками различного химического состава, различными чешуйками и домиками (например, как у диатомовых водорослей). Подмембранный комплекс включает различные элементы цитоскелета, именно с ним связано передвижение одноклеточных эукариот. В состав подмембранного комплекса входят основания ресничек и жгутиков, с помощью трансформации элементов цитоскелета происходит движение псевдоподий (ложноножек). С цитоскелетом подмембранного комплекса связаны особые органеллы, которые характерны только для одноклеточных, — экструсомы. Это окружённые мембраной органеллы, которые служат для нападения и защиты.
Ядро у одноклеточных эукариот имеет типичное строение, но у некоторых организмов на протяжении всей жизни или на определённых этапах жизненного цикла в клетке содержится несколько (иногда до сотни) ядер. У инфузорий имеются ядра двух типов: небольшой микронуклеус (генеративное ядро), хранящий генетическую информацию и участвующий в половом процессе, и макронуклеус (вегетативное ядро) — крупное ядро, отвечающее за все процессы жизнедеятельности.
В цитоплазме некоторых одноклеточных эукариот (преимущественно пресноводных) имеются сократительные вакуоли, служащие для осморегуляции. Это одномембранные органеллы, снабжённые выводным каналом, выходящим на поверхность клетки. У инфузорий в состав сократительной вакуоли входит центральный резервуар и радиально расходящиеся канальцы. В сократительную вакуоль поступает жидкость, которая при периодическом сокращении вакуоли выводится наружу.
ПИТАНИЕ. По типу питания среди одноклеточных эукариот имеются как автотрофы, так и гетеротрофы. У автотрофов имеются хлоропласты различной формы (например, чашевидные, лентообразные). Кроме хлорофилла, хлоропласты могут содержать другие пигменты, служащие для лучшего улавливания солнечного света. Гетеротрофные организмы питаются различными органическими частицами или небольшими организмами (бактериями, другими одноклеточными и т. д.). Частицы захватываются при помощи ложноножек в ходе заглатывания частиц (фагоцитоза) или капель (пиноцитоза). У некоторых одноклеточных эукариот имеется особый участок клетки — клеточный рот (цитостом), в котором происходит захват пищевых частиц. Переваривание осуществляется в содержащих пищеварительные ферменты пищеварительных вакуолях (лизосомах).
Тип питания некоторых организмов зависит от образа жизни и среды обитания. Так, эвглена на свету питается автотрофно, производя органические вещества в ходе фотосинтеза, а в темноте переходит к гетеротрофному питанию, поглощая растворённые в воде питательные вещества.
СРЕДА ОБИТАНИЯ. Одноклеточные эукариоты обитают практически повсеместно, уступая в этом отношении только бактериям. Они распространены в пресных и солёных водоёмах, в почве, иногда живут на суше, хотя обычно для них необходима капельная влага. Также часто протисты (другое название одноклеточных эукариот) населяют другие организмы.
Жизнь почвенных одноклеточных обычно имеет две стадии: активную (во время которой происходит питание, рост и размножение) и период покоя. Период покоя наступает вследствие различных причин: недостатка питательных веществ или кислорода, слишком высокой плотности популяции, сухости, накопления различных химических веществ, низкой температуры и др. Хотя существует мнение, что для некоторых видов стадия покоя в жизненном цикле является обязательной. Почвенные одноклеточные принимают участие в почвообразовании и повышают плодородие почв.
В теле многих губок, коралловых полипов, некоторых плоских червей и моллюсков могут обитать водоросли, дающие своим хозяевам кислород и питательные вещества и получающие от них убежище. Такая группа организмов, как лишайники, представляет собой сожительство гриба и водоросли. Обитая в кишечнике различных организмов (термитов и жвачных парнокопытных), они помогают хозяину переваривать пищу.
При паразитизме хозяину наносится вред. Паразитизм среди одноклеточных эукариот распространён довольно широко: они могут вызывать множество заболеваний животных и растений.
Одноклеточные организмы могут объединяться в некое подобие многоклеточного организма, т. е. образовывать колонии. Отдельные особи в колонии могут быть неотличимы друг от друга (некоторые виды зелёных водорослей или инфузорий) или иметь достаточно сильные отличия и даже выполнять различные функции. Колонии образуются в результате бесполого размножения: при делении дочерняя клетка не отделяется от материнской, а остаётся связанной с ней.
Наиболее сложно устроены колонии вольвокса — представителя зелёных водорослей. Это полые шары величиной до 2 мм, они могут включать до 60 тыс. отдельных клеток. По краям колонии находятся двужгутиковые клетки, обеспечивающие передвижение. Кроме них имеются более крупные неподвижные репродуктивные клетки, которые, размножаясь, дают новые колонии. Дочерние колонии развиваются внутри материнской, а затем выходят из неё.
Полагают, что колониальные организмы являются связующим звеном между одноклеточными и многоклеточными организмами, и возникновение многоклеточности происходило через колониальность, причём в разных группах организмов неоднократно.
Тело многоклеточных организмов во взрослом состоянии состоит из множества клеток и их производных (межклеточное вещество). Их клетки различаются по строению и выполняемым функциям, т. е. проявляется дифференциация клеток. Клетки, сходные по строению и происхождению, объединяются в ткани.
Грибы, однако, не имеют настоящих тканей, поэтому некоторыми учёными они не включаются в состав многоклеточных организмов. Из различных тканей образуются органы, которые у многоклеточных животных объединяются в системы органов, выполняющие определённую функцию (дыхание, выделение, пищеварение и т. д.).
Для многоклеточных организмов характерен сложный процесс индивидуального развития (онтогенез). Он начинается в большинстве случаев (за исключением вегетативного размножения) с деления одной клетки — зиготы (оплодотворённой яйцеклетки) — или споры.
Многоклеточность возникала в ходе эволюции неоднократно, она развивалась параллельно у разных групп организмов. Существует несколько гипотез возникновения многоклеточного организма, но все они сходятся в том, что многоклеточность возникла из колониальности.
Многоклеточные организмы могут образовывать колонии, которые образуются в результате вегетативного (бесполого) размножения, когда дочерняя особь остаётся связанной с материнской. Особи в колонии могут быть связаны в разной степени, зачастую их объединяет общее пищеварение. Между отдельными организмами колонии может происходить разделение функций.
По типам питания все живые организмы подразделяются на две группы:
- Автотрофные. К ним относятся фототрофы – зеленые растения, и хемотрофы – некоторые протисты, грибы и бактерии. Это организмы, являющиеся продуцентами, производящие органические вещества из неорганических. Они располагаются схематично на первой ступени экологической пирамиды.
- Гетеротрофные. Это – организмы, питающиеся органическими веществами, произведенными другими их видами. В экологической пирамиде занимаются все уровни, кроме нижнего, на котором расположены автотрофы. В свою очередь гетеротрофные организмы разделяются на консументов – потребителей и редуцентов, разлагающих органику до простых органических и неорганических веществ. При этом, растительноядные животные являются гетеротрофами первого уровня, хищники, поедающие растительноядных – гетеротрофами второго уровня, хищники питающиеся хищниками – третьего и так далее.
По отношению к кислороду живые организмы делятся на четыре большие группы:
- Облигатные аэробы – тех, кто не может жить без кислорода, так как невозможными становятся процессы клеточного дыхания. К ним относятся большинство животных и зеленые растения.
- Микроаэрофилы – это некоторые виды бактерий, которым для жизнедеятельности необходимо небольшое количество кислорода – около 2 %.
- Факультативные анаэробы – живые организмы, которые могут обходиться без кислорода, но способны переключиться на кислородное дыхание. Это маслянокислые и молочнокислые бактерии, дрожжи.
- Облигатные анаэробы – эти организмы гибнут в кислородной среде. К ним относятся хемосинтезирующие бактерии и археи.
Анаэробные бактерии играют важную роль в круговороте вещества, делая его доступным для других участников экологических систем. Биологически же, анаэробный способ получения энергии намного менее эффективен, чем кислородное дыхание. Так, например, при дыхании образуется из одной молекулы глюкозы 38 молекул АТФ, а при бескислородном ее сбраживании – 2 молекулы.
Микробы — собирательное название группы живых организмов, которые слишком малы для того, чтобы быть видимыми невооружённым глазом.
Основы микробиологии
Микробиология изучает строение, жизнедеятельность, условия жизни и развития мельчайших организмов, называемых микробами, или микроорганизмами.
Микробы были открыты голландцем А. Левенгуком (1632-1723) в конце XVII в., когда он изготовил первые линзы, дававшие увеличение в 200 и более раз. Увиденный микромир поразил его, Левенгук описал и зарисовал микроорганизмы, обнаруженные им на различных объектах.
Он положил начало описательному характеру новой науки. Открытия Луи Пастера (1822-1895) доказали, что микроорганизмы отличаются не только формой и строением, но и особенностями жизнедеятельности. Пастер установил, что дрожжи вызывают спиртовое брожение, а некоторые микробы способны вызывать заразные болезни людей и животных.
Пастер вошел в историю как изобретатель метода вакцинации против бешенства и сибирской язвы. Всемирно известен вклад в микробиологию Р. Коха (1843-1910) — открыл возбудителей туберкулеза и холеры, И. И. Мечникова (1845-1916) — разработал фагоцитарную теорию иммунитета, основоположника вирусологии Д. И. Ивановского (1864-1920), Н. Ф. Гамалея (1859-1940) и многих других ученых.
Классификация и морфология микроорганизмов
Микробы - это мельчайшие, преимущественно одноклеточные живые организмы, видимые только в микроскоп. Размер микроорганизмов измеряется в микрометрах — мкм (1/1000 мм) и нанометрах — нм (1/1000 мкм).
Микробы характеризуются огромным разнообразием видов, отличающихся строением, свойствами, способностью существовать в различных условиях среды. Они могут быть одноклеточными, многоклеточными и неклеточными.
Микробы подразделяют на бактерии, вирусы и фаги, грибы, дрожжи. Отдельно выделяют разновидности бактерий — риккетсии, микоплазмы, особую группу составляют простейшие (протозои).
Бактерии — преимущественно одноклеточные микроорганизмы размером от десятых долей микрометра, например микоплазмы, до нескольких микрометров, а у спирохет — до 500 мкм.
Различают три основные формы бактерий — шаровидные (кокки), палочковидные (бациллы и др.), извитые (вибрионы, спирохеты, спириллы) (рис. 1).
Шаровидные бактерии (кокки) имеют обычно форму шара, но могут быть немного овальной или бобовидной формы. Кокки могут располагаться поодиночке (микрококки); попарно (диплококки); в виде цепочек (стрептококки) или виноградных гроздьев (стафилококки), пакетом (сарцины). Стрептококки могут вызывать ангину и рожистое воспаление, стафилококки — различные воспалительные и гнойные процессы.
Рис. 1. Формы бактерий: 1 — микрококки; 2 — стрептококки; 3 — сардины; 4 — палочки без спор; 5 — палочки со спорами (бациллы); 6 — вибрионы; 7- спирохеты; 8 — спириллы (с жгутиками); стафилококки
Палочковидные бактерии самые распространенные. Палочки могут быть одиночными, соединяться попарно (диплобактерии) или в цепочки (стрептобактерии). К палочковидным относятся кишечная палочка, возбудители сальмонеллеза, дизентерии, брюшного тифа, туберкулеза и др. Некоторые палочковидные бактерии обладают способностью при неблагоприятных условиях образовывать споры. Спорообразующие палочки называют бациллами.Бациллы, напоминающие по форме веретено, называют клостридиями.
Спорообразование представляет собой сложный процесс. Споры существенно отличаются от обычной бактериальной клетки. Они имеют плотную оболочку и очень малое количество воды, им не требуются питательные вещества, а размножение полностью прекращается. Споры способны длительно выдерживать высушивание, высокие и низкие температуры и могут находиться в жизнеспособном состоянии десятки и сотни лет (споры сибирской язвы, ботулизма, столбняка и др.). Попав в благоприятную среду, споры прорастают, т. е. превращаются в обычную вегетативную размножающуюся форму.
Извитые бактерии могут быть в виде запятой — вибрионы, с несколькими завитками — спириллы, в виде тонкой извитой палочки — спирохеты. К вибрионам относится возбудитель холеры, а возбудитель сифилиса — спирохета.
Бактериальная клетка имеет клеточную стенку (оболочку), часто покрытую слизью. Нередко слизь образует капсулу. Содержимое клетки (цитоплазму) отделяет от оболочки клеточная мембрана. Цитоплазма представляет собой прозрачную белковую массу, находящуюся в коллоидном состоянии. В цитоплазме находятся рибосомы, ядерный аппарат с молекулами ДНК, различные включения запасных питательных веществ (гликогена, жира и др.).
Микоплазмы - бактерии, лишенные клеточной стенки, нуждающиеся для своего развития в ростовых факторах, содержащихся в дрожжах.
Некоторые бактерии могут двигаться. Движение осуществляется с помощью жгутиков — тонких нитей разной длины, совершающих вращательные движения. Жгутики могут быть в виде одиночной длинной нити или в виде пучка, могут располагаться по всей поверхности бактерии. Жгутики есть у многих палочковидных бактерий и почти у всех изогнутых бактерий. Шаровидные бактерии, как правило, не имеют жгутиков, они неподвижны.
Размножаются бактерии делением на две части. Скорость деления может быть очень высокой (каждые 15-20 мин), при этом количество бактерий быстро возрастает. Такое быстрое деление наблюдается на пищевых продуктах и других субстратах, богатых питательными веществами.
Вирусы — особая группа микроорганизмов, не имеющих клеточного строения. Размеры вирусов измеряются нанометрами (8-150 нм), поэтому их можно увидеть только с помощью электронного микроскопа. Некоторые вирусы состоят только из белка и одной из нуклеиновых кислот (ДНК или РНК).
Вирусы вызывают такие распространенные болезни человека, как грипп, вирусный гепатит, корь, а также болезни животных — ящур, чуму животных и многие другие.
Вирусы бактерий называют бактериофагами, вирусы грибов - микофагами и т. п. Бактериофаги встречаются повсюду, где есть микроорганизмы. Фаги вызывают гибель микробной клетки и могут использоваться для лечения и профилактики некоторых инфекционных заболеваний.
Риккетсии — микроорганизмы, занимающие промежуточное положение между бактериями и вирусами. Они представляют собой неподвижные палочки длиной не более 1,0 мкм, не образующие спор и капсул. Как и вирусы, они являются внутриклеточными паразитами.
Грибы являются особыми растительными организмами, которые не имеют хлорофилла и не синтезируют органические вещества, а нуждаются в готовых органических веществах. Поэтому грибы развиваются на различных субстратах, содержащих питательные вещества. Некоторые грибы способны вызывать болезни растений (рак и фитофтора картофеля и др.), насекомых, животных и человека.
Грибы могут размножаться разными путями, в том числе вегетативным путем в результате деления гиф. Большинство грибов размножаются бесполым и половым путями при помощи образования специальных клеток размножения - спор.Споры, как правило, способны длительно сохраняться во внешней среде. Созревшие споры могут переноситься на значительные расстояния. Попадая в питательную среду, споры быстро развиваются в гифы.
Отдельные виды грибов способны не только приводить к порче продуктов, но и вырабатывать токсические для человека вещества — микотоксины. К ним относятся некоторые виды грибов рода аспергиллус, рода фузариум и др.
Полезные свойства отдельных видов грибов используют в пищевой и фармацевтической промышленности и других производствах. Например, грибы рода пениииллиум применяются для получения антибиотика пенициллина и в производстве сыров (рокфора и камамбера), грибы рода аспергиллус — в производстве лимонной кислоты и многих ферментных препаратов.
Актиномицеты — микроорганизмы, имеющие признаки и бактерий, и грибов. По строению и биохимическим свойствам актиномицеты аналогичны бактериям, а по характеру размножения, способности образовывать гифы и мицелий похожи на грибы.
Рис. 2. Виды плесневых грибов: 1 — пениииллиум; 2- аспергиллус; 3 — мукор.
Дрожжи — одноклеточные неподвижные микроорганизмы размером не более 10-15 мкм. Форма клетки дрожжей бывает чаще круглой или овальной, реже палочковидной, серповидной или похожей на лимон. Клетки дрожжей своим строением похожи на грибы, они также имеют ядро и вакуоли. Размножение дрожжей происходит почкованием, делением или спорами.
Дрожжи широко распространены в природе, их можно обнаружить в почве и на растениях, на пищевых продуктах и различных отходах производства, содержащих сахара. Развитие дрожжей в пищевых продуктах может приводить к их порче, вызывая брожение или закисание. Некоторые виды дрожжей обладают способностью превращать сахар в этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением и широко используется в пищевой промышленности и виноделии.
Некоторые виды дрожжей кандида вызывают заболевание человека — кандидоз.
1. Число микробов и бактерий в организме превышает количество клеток тела человека
2. Люди появляются на свет без бактерий
Зная, какую важную роль микроорганизмы играют в жизнеобеспечении, можно подумать, что бактерии появляются на свет вместе с человеком. Однако, как выяснилось, это не так: согласно Блейзеру, люди рождаются без бактерий и обзаводятся ими в течение нескольких первых лет жизни.
Большая часть микробиома ребёнка формируется к трём годам — это период интенсивного развития всех систем организма.
3. Одна бактерия способна приносить как пользу, так и вред
Некоторые микробы вызывают недуги, другие способны от них защитить, а иногда одна и та же бактерия может и навредить и оказать положительное влияние.
Победить негативное влияние бактерии можно с помощью антибиотиков, но Блейзер и его коллеги обнаружили, что отсутствие этого микроорганизма может вызвать рефлюкс-эзофагит (повреждение слизистой оболочки) и даже рак пищевода.
Таким образом, некоторые бактерии могут быть как полезными, так и смертельно опасными.
4. Лечение антибиотиками может спровоцировать астму и ожирение
В 1928-м году Александр Флемминг изобрёл пенициллин, и это был грандиозный прорыв в медицине. Во всём мире антибиотики широко применяются в борьбе с самыми разнообразными заболеваниями, однако, как показывают последние исследования, использование антибиотиков может увеличить риск развития астмы, воспалительных заболеваний кишечника и даже ожирения. Кроме того, микробы научились приспосабливаться к антибиотикам: к примеру, метициллин-резистентный золотистый стафилококк способен вызвать тяжёлые заболевания вроде пневмонии или сепсиса.
5. Пробиотики не так хороши, как считается
В последнее время во всём мире наблюдается повальное увлечение пробиотическими (состоящими из микроорганизмов) добавками к пище: многие принимают их после курса лечения антибиотиками, полагая, что это дарует им здоровье. Насколько их применение оправдано?
Все живое разделено на 2 империи — клеточные и неклеточные формы жизни. Основными формами жизни на Земле являются организмы клеточного строения. Этот тип организации присущ всем видам живых существ, за исключением вирусов, которые рассматриваются как неклеточные формы жизни.
Неклеточные формы
К неклеточным организмам относятся вирусы и бактериофаги. Остальные живые существа являются клеточными формами жизни.
Неклеточные формы жизни являются переходной группой между неживой и живой природой. Их жизнедеятельность зависит от эукариотических организмов, они могут делиться только проникнув в живую клетку. Вне клетки неклеточные формы не проявляют признаков жизни.
В отличие от клеточных форм, неклеточные виды имеют только один вид нуклеиновых кислот — РНК или ДНК. Они не способны к самостоятельному синтезу белков из-за отсутствия рибосом. Также в неклеточных организмах отсутствует рост и не происходят обменные процессы.
Вирусы настолько малы, что лишь в несколько раз превышают размеры крупных молекул белков. Величина частиц разных вирусов находится в пределах 10-275нм. Они видны только под электронным микроскопом и проходят через поры специальных фильтров, задерживающих все бактерии и клетки многоклеточных организмов.
Впервые их открыл в 1892 г. русский физиолог растений и микробиолог Д. И. Ивановский при изучении болезни табака.
Вирусы являются возбудителями многих болезней растений и животных. Вирусными болезнями человека являются корь, грипп, гепатит (болезнь Боткина), полиомиелит (детский паралич), бешенство, желтая лихорадка и др.
Под электронным микроскопом разные виды вирусов имеют вид палочек и шариков. Отдельная вирусная частица состоит из молекулы нуклеиновой кислоты (ДНК или РНК), свернутой в клубок, и молекул белка, которые располагаются вокруг нее в виде своеобразной оболочки.
Вирусы не могут самостоятельно синтезировать нуклеиновые кислоты и белки, из которых они состоят.
Процесс размножения вирусов
Размножение вирусов возможно только при использовании ферментативных систем клеток. Проникнув в клетку хозяина, вирусы изменяют и перестраивают ее обмен веществ, в результате чего сама клетка начинает синтезировать молекулы новых вирусных частиц. Вне клетки вирусы могут переходить в кристаллическое состояние, что способствует их сохранению.
Вирусы специфичны — определенный вид вируса поражает не только конкретный вид животного или растения, но и определенные клетки своего хозяина. Так, вирус полиомиелита поражает только нервные клетки человека, а вирус табачной мозаики — только клетки листьев табака.
Бактериофаги (или фаги) являются своеобразными вирусами бактерий. Они были открыты в 1917 г. французским ученым Ф. д’Эрелем. Под электронным микроскопом они имеют форму запятой или теннисной ракетки размером около 5нм. Когда частица фага прикрепляется своим тонким отростком к бактериальной клетке, ДНК фага проникает в клетку и вызывает синтез новых молекул ДНК и белка бактериофага. Через 30-60мин бактериальная клетка разрушается и из нее выходят сотни новых частиц фага, готовых к заражению других бактериальных клеток.
Раньше считали, что бактериофаги могут быть использованы для борьбы с болезнетворными бактериями. Однако оказалось, что фаги, быстро разрушающие бактерии в пробирке, неэффективны в живом организме. Поэтому в настоящее время они применяются в основном для диагностики болезней.
Клеточные формы
Клеточные организмы делятся на два надцарства: прокариоты и эукариоты. Структурной единицей клеточных форм жизни является клетка.
Прокариоты имеют простейшее строение: отсутствует ядро и мембранные органоиды, деление идет путем амитоза, без участия веретена деления. К прокариотам относятся бактерии и цианобактерии.
Эукариоты — это клеточные формы, имеющие оформленное ядро, которое состоит из двойной ядерной мембраны, ядерного матрикса, хроматина, ядрышек. Также в клетке находятся мембранные (митохондрии, пластинчатый комплекс, вакуоли, эндоплазматический ретикулум) и немембранные (рибосомы, клеточный центр) органеллы. ДНК у представителей клеточных форм находится в ядре клетки, в составе хромосом, а также в клеточных органоидах, таких как митохондрии и пластиды. Эукариоты объединяют растительный, животный мир и Царство грибов.
Сходство между клеточными и не клеточными видами заключается в наличии специфического генома, способности эволюционировать и давать потомство.
Клеточная теория
Открытие и изучение клетки стало возможным благодаря изобретению микроскопа и усовершенствованию методов микроскопических исследований. Первое описание клетки было сделано в 1665 г. англичанином Р. Гуком. Позже стало ясно, что он открыл не клетки (в современном понимании этого термина), а только наружные оболочки растительных клеток.
Прогресс в изучении клетки связан с развитием микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое, протоплазма. В протоплазме был открыт постоянный компонент клетки — ядро. Накопленные многочисленные наблюдения о тончайшем строении и развитии тканей и клеток позволили подойти к обобщениям, которые были сделаны впервые в 1839 г. немецким биологом Т. Шванном в виде сформулированной им клеточной теории. Он показал, что клетки растений и животных принципиально сходны между собой. Дальнейшее развитие и обобщение эти представления получили в работах немецкого патолога Р. Вирхова.
Клеточная теория
Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие эмбриологии, гистологии и физиологии. Она дала основу для материалистического понимания жизни, для объяснения эволюционной взаимосвязи организмов, для понимания индивидуального развития.
Основные положения клеточной теории сохранили свое значение на сегодняшний день, хотя более чем за 100 лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток.
В настоящее время клеточная теория постулирует:
- Клетка — элементарная единица живого;
- клетки разных организмов гомологичны по своему строению;
- размножение клеток происходит путем деления исходной клетки;
- многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные, интегрированные системы тканей и органов, подчиненных и связанных между собой межклеточными, гуморальными и нервными формами регуляции.
Открытие вирусов
В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.
Рис. 1. Д.И. Ивановский
Рис. 2. Мозаичная болезнь табака
В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.
Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.
Строение вирусов
Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.
Рис. 3. Строение вируса
Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.
Размножение вирусов
Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.
Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).
Рис. 4. Схема репродукции вируса
При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.
При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).
Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.
ДНК- и РНК-содержащие вирусы
В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.
Одноцепочные РНК-содержащие вирусы подразделяются на:
1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов выполняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).
2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выполняет только наследственную функцию.
К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.
Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).
ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.
Вирус гепатита С
По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).
В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.
Рис. 5. Гепатит С
Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.
В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.
Бактериофаги
Рис. 6. Бактериофаг (Источник)
Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.
Рис. 7. Схема размножения бактериофага (Источник)
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
Читайте также: