Вирусы способны кристаллизоваться что это
Лактобактерии (лат. Lactobacillus) — род грамположительных анаэробных неспорообразующих молочнокислых бактерий. Также .
Клостридии анаэробы – это целый ряд грамположительных облигатных бактерий, живущих и размножающихся исключительно в беск.
Объектами исследования при проведении бактериологического контроля лечебно-профилактических учреждений являются: во.
Почва — это смесь частиц органических и неорганических веществ, воды и воздуха. Неорганические частицы почвы — это .
Вода является естественной средой обитания многих микробов. Основная масса микробов поступает из почвы. Количество мик.
Вирусы-кристаллы
В течение нескольких лет после открытия Элфорда ученые спорили, являются ли вирусы живой материей или нет. То, что они были способны размножаться и передавать болезнь, безусловно, свидетельствовало в пользу принадлежности их к живой материи. Но в 1935 году У.М.Стэнли получил данные, свидетельствующие о том, что вирусы с большой степенью вероятности являются представителями неживой материи. Он размял как следует листья табака, пораженные вирусом табачной мозаики, и попробовал из полученного сока выделить вирус в чистом виде, пользуясь методами выделения белков. Результат превзошел все ожидания исследователя: он получил вирус в кристаллическом виде! Полученный им препарат вирусов был в виде таких же кристаллов, как и молекулы белка, при этом вирус был интактным, при его растворении в жидкости он так же вызывал развитие болезни, как и прежде.
За получение вирусов в кристаллическом виде Стэнли в 1946 году был удостоен звания лауреата Нобелевской премии по химии (вместе с ним премию получили Самнер и Нортроп, которым удалось кристаллизовать ферменты).
Еще 20 лет после успешных экспериментов Стэнли все вирусы, которые ученым удавалось кристаллизовать, принадлежали к группе достаточно простых растительных вирусов (тех, которые могли поражать только растения). Первый животный вирус был получен в кристаллическом виде только в 1955 году, это был вирус полиомиелита, а кристаллизовали его Карлтон Э. Швердт и Фредерик Л. Шаффер.
Тот факт, что вирусы могут существовать в виде кристаллов, казался многим, в том числе и Стэнли, доказательством того, что это обыкновенные белки, представители неживой материи. Ведь ничто живое не может быть кристаллизовано; жизнь и способность к кристаллизации казались понятиями взаимоисключающими. Жизнь -- это нечто подвижное, изменчивое, динамичное, а структура кристалла - жесткая, неизменная, строго организованная.
Только один факт не укладывался в гипотезу о неживой природе вирусов - они могли расти и размножаться даже после того, как побывали в кристаллическом состоянии. А способность к росту и размножению всегда считалась непременной характеристикой живого.
Ситуация начала проясняться после того, как два британских биохимика Фридерик Чарльз Боуден и Норман У. Пайри обнаружили, что вирус табачной мозаики содержит рибонуклеиновую кислоту. Немного, разумеется, но содержит. Согласно проведенному ими анализу, исследуемый вирус на 94 процента состоял из белка и на 6 процентов из РНК. Это определенно был нуклеопротеид! Более того, все остальные известные вирусы также оказались нуклеопротеидами, содержащими РНК, или ДНК, или и ту и другую нуклеиновые кислоты.
Различие между существованием нуклеопротеида и существованием просто белка практически и есть различие между живой и неживой материей. Оказывается, вирусы состояли из того же материала, что и гены. А гены - это истинная сущность жизни. Крупные вирусы были очень похожи на расплетенные хромосомы. Некоторые вирусы содержали 75 генов, каждый из которых контролировал определенную деталь структуры вируса: в каком месте он был вытянутым, в каком образовывал складку. Вызывая мутации в нуклеиновой кислоте, можно было получать поврежденные гены и таким образом выяснять, какова функция конкретного гена и какова его локализация. Подобным способом можно было произвести полную расшифровку генов вируса, провести их структурный и функциональный анализ, и, безусловно, это был всего лишь первый небольшой шаг к расшифровке куда более сложного генного аппарата клеточных организмов.
Вирусы в клетке можно представить себе как десантников, высадившихся в нее, заблокировавших гены, контролирующие жизнедеятельность клетки, и заставивших химические процессы в клетке протекать в нужном им направлении. Такое грубое вмешательство часто приводит к гибели клетки или гибели всего организма-хозяина. Иногда вирусы в клетке могут даже заменять ген или группу генов на свои собственные, придавая клетке новые свойства, которые она впоследствии будет передавать дочерним клеткам. Этот феномен получил название трансдукция.
Однако все факты существования вирусов были косвенными, а ни один косвенный факт не может сравниться с прямым доказательством. Вирусами занимались много, но никто их не видел.
Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства. Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию. Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.
В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака. А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия. Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.
Строение вирусов
Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.
Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам. С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.
Формы вирусов
Вирусы встречаются в трех основных формах. Они бывают:
- Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
- Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
- Сложными. Например, бактериофаги.
Проникновение вирусов в клетку-хозяина
Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента. Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки. Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.
Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:
Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.
Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.
Проникновение вирусов в клетку достигается за счет:
Размножение вирусов
После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).
Механизм репликации зависит от вирусного генома.
- ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
- РНК-вирусы обычно используют ядро РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.
Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.
Вироиды
Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.
30 известных вироидов были классифицированы в две семьи.
- Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
- Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.
В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.
Бактериофаги
Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:
Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.
Существует три основных структурных формы фага:
- Икосаэдрическая (20-сторонняя) головка с хвостом
- Икосаэдрическая головка без хвоста
- Нитевидная форма
Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).
Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.
Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.
Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция. При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда. Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.
При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.
Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.
Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.
Покажите ножницы которыми вирусы разрезают молекулу РНК что бы встроиться для мутации.Может что нибудь придумаете другое.К примеру деление цепочка аминокислот получив энергию из вне как одноименные заряды распадается на две. К каждой соединятся только те какие были ранее (другие проскочат мимо),казалось бы копии,но внутренняя энергия разная(уменьшается увеличивается) поэтому распад и создание. Вся химия углерода на этом построена 1000 орган соединений создает у других хим элементов этого свойства нет. Иммунная система делает накладку(интерференция)с помощью энергии интерферонов пытаясь разрушить цепочку РНК вируса.Надо помочь организму но не вакциной(вирус быстро мутирует)
Кристаллизация
В 1932 году молодому американскому биохимику Вендиллу Стэнли предложили заняться вирусами. Стэнли начал с того, что отжал бутыль сока из тонны листьев табака, пораженных вирусом табачной мозаики. Он начал исследовать сок доступными ему химическими методами. Разные фракции сока он подвергал воздействию всевозможных реактивов, надеясь получить чистый вирусный белок (Стэнли был убеждён, что вирус - это белок). Однажды, Стэнли получил почти чистую фракцию белка, отличавшегося по своему составу от белков растительных клеток. Учёный понял, что перед ним то, чего он так упорно добивался. Стэнли выделил необыкновенный белок, растворил его в воде и поставил раствор в холодильник. Наутро в колбе вместо прозрачной жидкости лежали красивые шелковистые игольчатые кристаллы. Из тонны листьев Стэнли добыл столовую ложку таких кристаллов. Затем Стэнли отсыпал немного кристалликов, растворил их в воде, смочил этой водой марлю и ею натёр листья здоровых растений. Сок растений подвергся целому комплексу химических воздействий. После такой "массированной обработки" вирусы, скорее всего, должны были погибнуть.
Натёртые листья заболели. Итак, странные свойства вируса пополнились ещё одним - способностью кристаллизироваться.
Эффект кристаллизации был настолько ошеломляющим, что Стенли надолго отказался от мысли, что вирус - это существо. Так как все ферменты - белки, и количество многих ферментов также увеличивается по мере развития организма, и они могут кристаллизироваться, Стэнли заключил, что вирусы - чистые белки, скорее ферменты.
Вскоре учёные убедились, что кристаллизировать можно не только вирус табачной мозаики, но и ряд других вирусов.
Спустя пять лет английские биохимики Ф. Боуден и Н. Пири нашли ошибку в определении Стенли.94% содержимого вируса табачной мозаики состояло из белка, а 6% представляло собой нуклеиновую кислоту. Вирус был на самом деле не белком, а нуклеопротеином - соединением белка и нуклеиновой кислоты.
Как только биологам стали доступны электронные микроскопы, учёные установили, что кристаллы вирусов состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли. Когда же удалось рассмотреть в электронном микроскопе отдельные вирусные частицы, то оказалось что они бывают разной формы но всегда наружная оболочка вирусов состоит из белка, которые отличаются у разных вирусов, что позволяет распознавать их с помощью иммунологических реакций, а внутреннее содержимое представлено нуклеиновой кислотой, которая является единицей наследственности.
Составные части вирусов
Самые крупные вирусы (вирусы оспы) приближаются по размерам к небольшим бактериям, самые мелкие (возбудители энцефалита, полиомиелита, ящура) - к крупным белковым молекулам. Иными словами, среди вирусов есть свои великаны и карлики. (см. Приложение 3) Для измерения вирусов используют условную величину, называемую нанометром (нм). Один нм составляет миллионную долю миллиметра. Размеры разных вирусов варьируют от 20 до 300 нм.
Итак, вирусы состоят из нескольких компонентов: (см. Приложение 1)
сердцевина - генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса.
белковая оболочка, которую называют капсидом. Оболочка часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.
Дополнительная липопротеидная оболочка. Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес). Эта наружная оболочка является фрагментом ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду. Иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы, например у возбудителей гриппа и герпеса.
Каждый компонент вирионов имеет определённые функции: белковая оболочка защищает их от неблагоприятных воздействий, нуклеиновая кислота отвечает за наследственные и инфекционные свойства и играет ведущую роль в изменчивости вирусов, а ферменты участвуют в их размножении.
Более сложные по структуре вирусы, кроме белков и нуклеиновых кислот, содержат углеводы, липиды. Для каждой группы вирусов характерен свой набор белков, жиров, углеводов и нуклеиновых кислот. Некоторые вирусы содержат в своём составе ферменты.
Немного другое строение у вирусов бактерий (см. Приложение 2).
Коронавирус становится поводом пошутить над незнакомцем, ему посвящают мемы, о нем слагают песни. Вирус проникает не только в организмы живых существ, но и в поп-культуру. Однако пройдет время, и о нем все забудут, как когда-то перестали говорить о вирусе Эбола, атипичной пневмонии и оспе.
Север Туркмении, 1980-е годы. В Средней Азии возникла вспышка ранее неизвестного вируса. Обстановка сложная и напряженная. Вирус передается через зараженную воду. Из-за ее употребления количество заболевших резко растет. В большинстве случаев болезнь протекает относительно благополучно, но ужас в том, что умирают в основном женщины в третьем триместре беременности.
Михаил Фаворов,
эпидемиолог, доктор медицинских наук
Сегодня Михаил Фаворов живет в США, занимает пост президента компании DiaPrep System Inc и продолжает активно работать в области диагностики, контроля и профилактики инфекционных заболеваний.
Вирус — простейшая форма жизни. Принято считать, что если он находится внутри человека или животного, то становится живым существом — размножается и обменивается информацией. Но когда вирус находится вне организма, он считается неживым. О вирусах мы узнали сравнительно недавно, около 100 лет назад. М икробиолог Дмитрий Ивановский опубликовал исследование о существовании некой субстанции, которая проходит через фильтры, задерживающие бактерии, и назвал ее вирусом. В то время как чума человечеству известна многие тысячелетия, у нее другая природа — она вызывается бактериями, которые являются более сложным и крупным организмом. Ее распространение было связано с низким уровнем жизни и плохой гигиеной. Процент летальности достигал 25%, то есть при легочной форме погибал каждый четвертый.
Среди вирусных инфекций самой страшной была оспа, которая затронула все страны мира. Вызывалась она вирусом натуральной оспы. Вакцину удалось изобрести благодаря случайному знакомству с коровьей оспой. Вирус животных, которые выступали переносчиками, вводили в организм человека, но вакцинированные не заболевали человеческой формой болезни: организм защищали антитела введенного вируса. Уникальность натуральной оспы в том, что это антропонозный вирус — им болели только люди. Поэтому, когда произвели вакцину, оспу удалось искоренить. В 1950-х годах в Африке были вакцинированы последние контактировавшие с больными, а с 1978 года вирус был полностью ликвидирован. Оспа исчезает, когда у последнего заболевшего появляются антитела, — он выздоравливает и перестает быть переносчиком.
Рецепты с летучей мышью
Тепло наших тел
По уровню плотности населения Китай и Индия превосходят все остальные регионы планеты, а разнообразие видов животных в Африке настолько велико, что большинство из нас вряд ли догадываются о существовании некоторых из них, например окапи, виверр, руконожек. Как редкие животные, так и плотность населения становятся дополнительными стимулами высокой скорости распространения заражения. Вирусы не поражают отдельно китайцев или представителей других наций, вирусы аполитичны и не имеют вероисповедания. Они умеют приспосабливаться к любым изменениям среды не хуже человека. Все, что им нужно, — тепло наших тел и, возможно, определенные рецепторы.
Вспышка эпидемий — это не просто случайность, а стечение обстоятельств.
Все закрыто: рынки, магазины, метро. Остановки общественного транспорта абсолютно пусты. По тротуарам проплывает только мусор, гонимый ветром, исчезающий в желтоватой дымке. Странно, если учесть, что в городе проживают миллионы человек. Изредка на улице появляются люди в респираторных масках, некоторые сделаны из подручных средств. Однажды увидев такую картину, вряд ли возможно спутать с чем-то эпицентр распространения респираторного заболевания, и защищаться надо незамедлительно.
Чтобы обезопасить себя и свою семью во время респираторной эпидемии, главное — находиться на расстоянии не ближе 2 м от заболевшего, чихающего или кашляющего человека, мыть руки каждые два часа, проветривать помещения, минимально контактировать с людьми.
История человечества насчитывает десятки тысяч кровавых войн, но самые страшные по потерям, пожалуй, — войны с паразитами. По некоторым данным, от чумы умерло больше людей, чем в результате всех войн, вместе взятых, — около 186 млн человек. От одной Юстиниановой чумы, первой зарегистрированной в истории, погибли 100 млн человек. Разработка защиты от биологической угрозы требует больших затрат, поэтому вакцины создаются только для тех вирусов, которые представляют реальную опасность. Более того, к некоторым вакцинам вирусы привыкают, становятся устойчивыми и меняют свою структуру, поэтому человечеству приходится постоянно быть начеку и придумывать что-то новое.
Респираторная маска вполне может защитить, но проблема в том, что надежна она всего 20 минут.
На уроках биологии нам говорили, что жизнь — это способ существования нуклеиновых кислот. Один из вариантов существования нуклеиновых кислот — это вирусы, которые живут на других организмах. Они совершенно не заботятся о нашем благополучии, они пытаются приспособиться, как и все живые существа на планете. Единственное, за что стоит их благодарить, — эволюционное совершенство иммунной системы человека. Веками, когда появлялось какое-либо заражение, организм человека вырабатывал антитела и формировал клеточный иммунитет. Все знают, что если держать человека в стерильной среде, а потом выпустить на улицу, он вскоре умрет, потому что у него не будет механизма выработки защиты. Но это не цель существования вирусов, скорее побочный эффект.
Прогнозировать возникновение вспышек вирусов еще сложнее, чем рассуждать о высших смыслах. Это всегда уникальная ситуация, которая происходит в результате изменения состояния окружающей среды, при которой человек попадает в новые условия взаимодействия с другими видами животных. А сегодня антропогенное воздействие на окружающую среду достигло абсолютно несопоставимых масштабов по сравнению с предыдущими поколениями, к тому же человек как вид постоянно растет. У ученых есть возможность наблюдать за попытками вирусов совершить кроссвидовой переход благодаря лабораторным методам слежения. Врачи ликвидировали оспу и почти победили вирус полиомиелита — это внушает надежду, что с новым вирусом можно будет хотя бы договориться. Как бы ни сложились эти взаимоотношения, стоит помнить: пока человек будет существовать как вид, всегда найдутся те, кто захочет на нем паразитировать.
Как защититься от коронавируса? Узнайте здесь.
Большинство видов бактерий представлено одноклеточными формами. Бактериальные клетки в длину от долей до 10 мкм. Среди бактерий по форме различают палочковидные — бациллы, шаровидные — кокки и спиральные — вибрионы. Бациллы имеют вид отдельных палочек или длинных цепочек, состоящих из связанных между собой палочек. Простейшие первичные формы дают ряд комбинаций.
Такие же случаи известны и в мире неживой природы: удлиненные формы, шарообразные и спиральные, типичны для нее. Бактериальная клетка заключена в плотную жесткую оболочку, которая состоит из структурных единиц диаметром 50—1140 нм, расположенных в виде правильных шестиугольников или прямоугольников. В ряде случаев сама клетка облегается снаружи слизистой капсулой, являющейся дополнительным защитным слоем. В протоплазме бактериальных клеток находятся рибосомы, гранулы гликогена, белков и жиров, но отсутствуют митохондрии и эндоплазматическая сеть. Здесь нет четко выраженного ядра, а ДНК располагается в так называемой ядерной зоне, причем палочковидные бациллы имеют даже по два и более ядра на одну клетку. Размножение бактерий происходит обычно бесполым путем деления клеток на две. Отдельные виды бактерий могут делиться очень быстро — за 20—30 мин.
При неблагоприятных условиях многие бактерии переходят в состояние покоя. Отдельные виды (в форме спор) переносят весьма жесткие условия засухи, жары или холода. При образовании спор клетка ссыхается, но как только условия становятся благоприятными для роста, спора поглощает воду, разрушает внутреннюю оболочку и превращается в бактериальную клетку. Например, бациллы сибирской язвы сохраняют жизнеспособность после 30-летнего пребывания в виде спор. Процессы обмена веществ у бактерий регулируются множеством ферментов. Лишь небольшое количество бактерий автотрофны, т. е. синтезируют необходимые для них органические соединения из простых минеральных веществ окружающей среды. Большинство бактерий относится к сапрофитам и добывает себе пищу из Мертвых тел растений и животных или из органических веществ, синтезируемых животными и растениями, либо паразитами внутри или на поверхности растительных и животных организмов. Различают аэробные бактерии, которые используют в процессе дыхания атмосферный кислород, и анаэробные, растущие в отсутствие свободного кислорода.
Вирусы были открыты в 1892 г. нашим соотечественником ботаником Д. И. Ивановским. Но в оптический микроскоп их нельзя было рассмотреть. Вирусы можно наблюдать только в электронный микроскоп. Это, вероятно, самые маленькие существа на нашей планете — их размеры находятся в диапазоне от нескольких до сотен нанометр ров. Наиболее простые вирусы имеют сердцевину — нуклеиновую кислоту, окруженную белковой оболочкой. Нуклеиновая кислота обусловливает специфичность вируса, а белковая оболочка служит для защиты нуклеиновой кислоты.
В 1955 г. У. Стэнли изолировал и кристаллизовал вирус табачной мозаики, а в 1956 г. ему удалось разделить вирус на основные компоненты — белок и нуклеиновую кислоту и затем воссоединить их с образованием активного вируса.
На фотографии показан фаг Т4 — вирус, который может заразить бактерию. Как это происходит? Вирус закрепляется на оболочке бактерии и через оболочку протягивает свою тонкую ниточку ДНК. Ниточка ДНК, попав внутрь бактерии, удваивается, и вокруг нее, как около затравки кристалла, собирается из питательного раствора — протоплазмы бактерии — белковая оболочка. Готов новый вирус. До 300—400 фагов может появиться внутри бактерии за 30 мин. В процессе построения нового фага ученые нашли в ДНК группы генов, которые являются центрами, ответственными за синтез (кристаллизацию?) определенной группы белков: одни — за оболочку, другие — за хвостик. Так из частей — блоков, более или менее крупных, собирается вирус. А как строится кристалл из блоков — кластеров, знают кристаллографы.
В свою очередь, частицы-вирусы соединяются вместе и принимают вид кристаллов. Так, для вируса табачной мозаики палочковидные частицы вируса соединяются в кристаллы шестигранной формы.
Генетикам удалось сконструировать микроб с заранее заданными свойствами, который будет с жадностью пожирать разлитую на поверхности воды нефть и тем самым активно бороться с загрязнением.
Геология тоже связана с миром бактерий, причем самым тесным образом. В результате микробиологических исследований рыхлых аллювиально-делювиальных образований редкометалльных месторождений было установлено, что образование широких ареалов рассеяния металлов, мигрирующих в коре выветривания, главным образом в форме солевых растворов, также согласуется с широким распространением в этих отложениях тионовых бактерий, что свидетельствует об участии этих микроорганизмов в образовании растворимых форм металлов. Роль биогенного фактора в осадочном рудообразовании очень велика. Обитающие в земной коре (в частности, в подземных водах) микроорганизмы участвуют в окислительных и восстановительных процессах, связанных с преобразованиями рудного вещества.
Вопрос о происхождении вирусов сложен. Идет дискуссия о том, какими были древние формы вирусов, находящиеся на грани между живым и неживым, и насколько они соответствуют современным вирусам. Другая точка зрения состоит в том, что вирусы имеют как бы вторичное происхождение, развиваясь из патологически измененных частей клеток как животных, так и растений. К этому вопросу мы вернемся при рассмотрении изменений, происходящих с газово-жидкими включениями в кристаллах.
Вместе с тем в биологических книгах иногда мелькают догадки: не есть ли вирус некая переработанная форма клетки? В последнее время удалось проследить отдельные связи вируса с клеткой. В ряде случаев, изучая нормальные клетки птиц и млекопитающих, которые культивировались в лабораторных условиях, ученые наблюдали появление в них вирусных частиц. В лабораторных условиях вирусы были получены из нормальных клеток кур, фазанов, мышей, крыс, хомяков, морских свинок, кошек, свиней, павианов. А можно ли выделить вирус из каждой клетки? Отдельными экспериментами было показано, что можно. Отсюда следовал вывод о потенциальной возможности образования вируса из каждой клетки.
Из опытов следует, что гены, которые кодируют образование частей вируса, являются частью нормального клеточного генома. Что касается белка, из которого состоит чехол вируса, то скорее всего это просто оболочка — нормальный белок, из которого строятся обычные мембраны нормальных клеток. Сам вирус в таком случае является переносчиком генетической информации между клетками организма и между организмами разных видов.
Тут с точки зрения геологии, а именно минералогии, появляются соображения о причинах появления таких форм, как вирусы. Немного опережая разъяснения, скажем, что и в минералах можно увидеть правильные формы, связанные с минимумом энергии.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Читайте также: