Генная инженерия и инфекции
Генетическая информация (геном) содержится в клетке в хромосомах (у человека их 46), состоящих из молекулы ДНК и упаковывающих её белков, а также в митохондриях. ДНК (дезоксирибонуклеиновая кислота) является последовательностью нуклеотидов, каждый из которых содержит одно из четырех азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C). С функциональной точки зрения ДНК состоит из множества блоков (последовательностей нуклеотидов), хранящих определенный объем информации — генов.
Ген — участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов (в организме человека их примерно 20-25 тысяч). Совокупность всех генов организма составляет его генотип. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Лишь те гены активны, которые необходимы для функционирования данной клетки, поэтому, например, нейроны и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.
Роль белков в организме
Белки являются наиболее важными молекулами в каждом живом организме, химической основой живой материи. По определению Энгельса "жизнь есть способ существования белковых тел". Белки осуществляют обмен веществ (перенос веществ в организме) и энергетические превращения, обеспечивают структурную основу тканей, служат катализаторами химических реакций, защищают организмы от патогенов, переносят сообщения, регулирующие деятельность организма. Химически белки представляют собой цепочку аминокислот, свёрнутую в пространстве особым образом.
Информация о последовательности аминокислот в полипептидной цепи белка содержится в генах в форме последовательности нуклеотидов. Например, последовательность CAA (цитозин, аденин, аденин) или CAG (цитозин, аденин, гуанин) кодирует аминокислоту глутамин. Эта информация копируется на молекулы РНК, которые передают в рибосомы (которые тоже состоят из белков) инструкции для синтеза белков. Синтезируемые белки начинают выполнять свои функции, обеспечивая работу клетки и всего организма.
Одна из функций белков - активация генов. Некоторые гены содержат фрагменты, притягивающие к себе определённые белки. Если такие белки содержатся в клетке, они присоединяются к этому участку гена и может разрешать или запрещать его копирование на РНК. Наличие или отсутствие в клетке подобных регулирующих белков определяет, какие гены активируются, а значит, какие новые белки синтезируются. Именно этот регулирующий механизм определяет, должна ли клетка функционировать как мышечная или как нервная клетка или какая часть тела должна развиваться в этой части эмбриона. Каждая клетка руководствуется подобными простыми инструкциями ("если имеется белок X и Y, синтезируй белки Z, W и U, но не синтезируй белок V"). Однако в целом процесс развития организма из одной клетки до 100 триллионов клеток (у человека) - это очень сложный процесс. Чтобы разобраться в нём до конца учёным может потребоваться 10-20 лет.
Если внести в организм (растение, микроорганизм, животное или даже человек) новые гены, то можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. Изменения генов прежде всего связано с преобразованием химической структуры ДНК: изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств.
Генная инженерия берет свое начало в 1973 году, когда генетики Стэнли Кохен и Герберт Бойер внедрили новый ген в бактерию кишечной палочки (E. coli).
Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали.
Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. Среди них лекарства, излечивающие артрозы, сердечно-сосудистые заболевания, некоторые опухолевые процессы и, возможно, даже СПИД. Среди нескольких сотен генно-инженерных фирм 60% работают над производством лекарственных и диагностических препаратов.
Генная инженерия в сельском хозяйстве
К концу 1980-х удалось успешно внедрить новые гены в десятки видов растений и животных — создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов.
Одна из важных задач - получение растений, устойчивых к вирусам, так как в настоящее время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса, делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций.
Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно, во-первых, из-за их токсичности, во-вторых, потому, что дождевой водой они смываются с растений. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillus thuringiensis, позволяющих синтезировать инсектициды бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов стали устойчивы к непобедимому колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Использование генной инженерии позволило сократить применение инсектицидов на 40 - 60%.
Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке.
Список растений, к которым успешно применены методы генной инженерии, составляет около пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис, рожь и много других сельскохозяйственных растений.
Генная терапия человека
На людях технология генной инженерии была впервые применена для лечения Ашанти Де Сильвы, четырёхлетней девочки, страдавшей от тяжёлой формы иммунодефицита. Ген, содержащий инструкции для производства белка аденозиндезаминазы (ADA), был у неё повреждён. А без белка ADA белые клетки крови умирают, что делает организм беззащитным перед вирусами и бактериями.
Работающая копия гена ADA была введена в клетки крови Ашанти с помощью модифицированного вируса. Клетки получили возможность самостоятельно производить необходимый белок. Через 6 месяцев количество белых клеток в организме девочки поднялось до нормального уровня.
После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения заболеваний. Сегодня мы знаем, что с помощью генной терапии можно лечить диабет, анемию, некоторые виды рака, болезнь Хантингтона и даже очищать артерии. Сейчас идёт более 500 клинических испытаний различных видов генной терапии.
Неблагоприятная экологическая обстановка и целый ряд других подобных причин приводят к тому, что все больше детей рождается с серьезными наследственными дефектами. В настоящее время известно 4000 наследственных заболеваний, для большинства из которых не найдено эффективных способов лечения.
Сегодня существует возможность диагностировать многие генетические заболевания ещё на стадии эмбриона или зародыша. Пока можно только прекратить беременность на самой ранней стадии в случае серьёзных генетических дефектов, но скоро станет возможным корректировать генетический код, исправляя и оптимизируя генотип будущего ребёнка. Это позволит полностью избежать генетических болезней и улучшить физические, психические и умственные характеристики детей.
Сегодня мы можем отметить, что за тридцать лет своего существования генная инженерия не причинила никакого вреда самим исследователям, не принесла ущерба ни природе, ни человеку. Свершения генной инженерии как в познании механизмов функционирования организмов, так и в прикладном плане весьма внушительны, а перспективы поистине фантастичны.
Проект "Геном человека"
В 1990 году в США был начат проект "Геном человека", целью которого было определить весь генетический год человека. Проект, в котором важную роль сыграли и российские генетики, был завершён в 2003 году. В результате проекта 99% генома было определено с точностью 99,99% (1 ошибка на 10000 нуклеотидов). Завершение проекта уже принесло практические результаты, например, простые в применении тесты, позволяющие определять генетическую предрасположенность ко многим наследственным заболеваниям.
Например, благодаря расширфровке генома, уже к 2006 году были разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году были определены гены, которые связаны со злокачественными новообразованиями, а к 2010-2015 году были установлены механизмы возникновения почти всех видов рака. К 2020 году может быть завершена разработка препаратов, предотвращающих рак.
Ближайшие задачи генетиков
Хотя генетика и генная инженерия уже играют огромную роль в медицине и сельском хозяйстве, основные результаты ещё впереди. Нам ещё очень многое предстоит узнать о том, как работает сложная генетическая система в нашем организме и у других видов живых существ.
Необходимо определить функции и назначение каждого гена, определить, каковы условия его активации, в какие периоды жизни, в каких частях тела и при каких обстоятельствах он включается и приводит к синтезу соответствующего белка. Далее, необходимо понять, какую роль играет в организме этот белок, выходит ли он за пределы клетки, какие сообщения несёт, какие реакции катализирует, как влияет на запуск биологических процессов в других частях организма, какие гены активирует. Отдельной сложной задачей является решение проблемы сворачивания белков - как, зная последовательность аминокислот, составляющих белок, определить его пространственную структуру и функции. Эта проблема требует новых теоретических знаний и более мощных суперкомпьютеров.
Но учёные не пасуют перед масштабом этой задачи. Расшифровка генома человека потребовала более десяти лет, решение проблемы сворачивания белков может занять чуть дольше, но когда она будет решена, человек сможет полностью контролировать жизненные процессы в любых организмах на всех уровнях.
Перспективы контроля над генами
Развитие генной инженерии сделает возможным улучшение генотипа человека. Масштабные задачи, стоящие сегодня перед человечеством требуют людей талантливых во многих отраслях, совершенных и высокоразвитых личностей, обладающих идеальным здоровьем, высочайшими физическими и умственными способностями. Таких людей можно будет создать методами генной, генетической и клеточной инженерии. Эти методы будут применимы как к только появляющимся на свет детям, так и к уже взрослым людям. Человек сможет многократно усилить свои собственные способности, и увеличить способности своих детей. С объективной точки зрения в этом нет ничего плохого или не этичного. Уже сегодня многие всемирно известные учёные, такие как Уотсон, один из первооткрывателей ДНК, говорят о том, что человеческая глупость, например, является по сути своей генетическим заболеванием и в будущем будет излечима.
Будут полностью ликвидированы генетические причины заболеваний, все люди будут совершенно здоровыми. Старение будет остановлено и никому не придётся сталкиваться с увяданием, с упадком сил, с дряхлостью. Люди станут практически бессмертными - смерть будет становиться всё более редким явлением, перестав быть неизбежностью.
Известно, например, что одной из причин старения является сокращение теломер при каждом делении клетки. Теломеры - это копии фрагмента TTAGGG, расположенные на концах всех хромосом и защищающие ДНК как металлические наконечники шнурков. Обычно клетка умирает, пережив около 50 процессов деления, однако учёным удалось добиться неограниченного деления клеток. В конце 1990-х ученым удалось внедрить в клетки открытый ими ген, отвечающий за выработку белка теломеразы, восстанавливающего теломеры, и тем самым сделать их бессмертными.
Конечно, отдельные группы, не отягченные соответствующими знаниями, но, преследующие какие то личные, идеологические или лоббистские цели могут пытаться запретить подобные технологии, но как показывает история развития науки, надолго это сделать им не удастся.
Прогресс вряд ли остановится на исправлении недостатков. Излечив болезни и остановив старение, человек примется за улучшение собственного организма, за его перестройку по собственным планам и желаниям. Люди смогут произвольным образом лепить свое собственное тело и мозг, добавлять себе новые способности, возможность жить под водой, летать, питаться энергией солнечного света, добавлять новые отделы мозга, новые органы тела. Любители модификации своего тела смогут сделать свои тела похожими на тела животных или даже химер, таких как кентавры или русалки.
Человек вряд ли ограничится собственной перестройкой. Он сможет воссоздать организмы, исчезнувшие ранее с лица Земли - мамонтов, птицу дронта, динозавров, а также создавать совершенно новые организмы - драконов, единорогов, живые дома, летающие деревья. Любой организм, существование которого не противоречит законам природы, сможет быть создан. Новые виды животных, растений и даже совершенно новых существ будут создаваться в промышленных целях, как форма творчества, для освоения космоса. Кроме того, человек наверняка захочет помочь братьям своим меньшим подняться с животного уровня. С помощью генной модификации можно будет усилить интеллект собак, шимпанзе, дельфинов, других животных. Человек больше не будет одинок в царстве жизни на Земле.
Но генная революция не будет длиться бесконечно. Идущий параллельно прогресс в области нанотехнологий приведёт к тому, что границы между живым и неживым будут стёрты. Нанороботы и роботы смогут выполнять все функции биологических объектов, кибернетические организмы будут сочетать в себе биологические и машинные части, андроиды будут неотличимы от биологических людей. Искусственный интеллект и загруженные в компьютер люди будут разумны так же как и личности, существующие в живых мозгах. В конце концов, неизбежна перестройка всей косной материи в умную материю, организованную на нано-уровне, обладающую способностью перестраивать себя и служить носителем разума.
Лекарства, полученные с помощью генной инженерии и клеточных технологий, вряд ли в ближайшие годы станут столь массовыми, что обгонят по продажам антибиотики и жаропонижающие. Но эти современные препараты незаменимы в лечении некоторых видов рака, редких наследственных заболеваний, терапии ВИЧ и других вирусных инфекций. А это большой рынок с потенциальным оборотом в десятки миллиардов долларов.
Стволовые клетки и генная инженерия
Генная терапия — общее название для технологий (а также соответствующих лекарств), которые используют изменение генов для достижения нужных медицинских эффектов. Например, в организм пациента могут доставить ген, кодирующий определенный белок. Когда нужная ДНК попадет в клетки, те смогут начать производство данного протеина, что будет иметь лечебное воздействие.
Что касается клеточной терапии, она в большинстве случаев представляет собой лечение стволовыми клетками. Они могут развиться в клетки любого типа, любого органа, если правильно управлять их ростом. И эту науку ученые освоили, но важно было еще и получить достаточный запас стволовых клеток. Проблему решил японский ученый Синья Яманака, который в 2006 году впервые смог получить индуцированные плюрипотентные стволовые клетки, то есть вернуть клетки взрослого человека в то состояние, когда из них может вырасти что угодно. Перед наукой открылись захватывающие перспективы: можно выращивать новые органы, восстанавливать поврежденные участки нервной системы, лечить заболевания крови — все это становится возможным с применением стволовых клеток.
Генный рынок
В 2016 году рынок препаратов для генной терапии оценивался в $584 млн. А к 2023 году, по прогнозам аналитиков, глобальная выручка от продажи таких препаратов превысит $4,4 млрд — это более 30% роста ежегодно.
Среди лидеров рынка как традиционные фармацевтические гиганты (такие, как Novartis и GlaxoSmithKline), так и более специализированные компании (Spark Therapeutics, Bluebird bio, Amgen, Celgene).
Как следует из отчета Allied Market Research, подавляющее большинство препаратов генной терапии производится для больных с онкологическими патологиями. И в ближайшее время — как минимум до 2023 года — эта ниша сохранит свое первенство на рынке. Следом за лекарствами от рака идут средства генной терапии от редких заболеваний, сердечнососудистых болезней, неврологических расстройств, инфекций.
Лидеры рынка следуют за трендами и разрабатывают препараты для онкобольных. Например, в компании Amgen, которая возглавила топ-25 биотехнологических компаний в 2017 году с капитализацией в $129,1 млрд, из 37 препаратов в стадии клинических испытаний 20 относятся к лечению опухолей и заболеваний крови.
А компания Novartis стала первой, кому американское управление по санитарному надзору за качеством пищевых продуктов и медикаментов (Food and Drug Administration, FDA) разрешило запустить массовое производство клеточной терапии рака, основанной на генетической модификации. Это тот самый случай, когда фармкомпания производит лекарство из Т-лимфоцитов, превращая их в средство борьбы с онкологией, а именно с острым лимфобластным лейкозом.
Novartis уже начала получать первые деньги от продажи своего препарата под названием Kymriah. И немалые — каждый курс генной терапии рака стоит порядка $475 000. Вслед за этим FDA одобрило еще одно лекарство для лечения онкологии с подобным механизмом действия — Yescarta от компании Gilead Sciences (капитализация в 2017 году — $103 млрд); оно будет продаваться по цене в $373 000 за курс и помогать больным с неходжкинской лимфомой.
На продажах Kymriah фармгигант Novartis сможет зарабатывать порядка $300 млн в год. А Gilead Science аналитики пророчат выручку от препарата Yescarta в $250 млн за 2018 год.
Novartis хочет расширить спектр применения своего лекарства, чтобы его также можно было назначать пациентам с неходжкинской лимфомой — это позволит компании побороться за рынок, который оценивают примерно в $1 млрд. Но фармгиганту придется конкурировать не только с Gilead Sciences, которые уже предложили свое — и более дешевое — решение, но и с Bluebird Bio и Juno Therapeutics, разрабатывающими аналогичные продукты.
Прибыльность клеточной генной терапии аналитики пока затрудняются оценить. Но по их данным, стоимость производства подобных лекарств от рака должна составлять не менее $200 000 за курс.
По-настоящему революционные открытия, которые происходят на рынке генной терапии и грозят перевернуть фармацевтический рынок (как минимум в области лечения онкологии), привлекают в отрасль инвестиции: за последние пять лет компании-производители получили порядка $600 млн венчурного капитала на свои разработки.
Рыночные перспективы стволовых клеток
По прогнозу аналитиков из Grand View Research, рынок препаратов, основанных на стволовых клетках, к 2025 году достигнет $15,6 млрд. Сегодня самые перспективные сферы применения стволовых клеток — это лечение болезни Паркинсона и болезни Альцгеймера, а также повреждений спинного мозга, сахарного диабета первого типа, заболеваний крови и онкологии.
Но пока что даже топовые компании, занимающиеся стволовыми клетками, не могут похвастаться такими же масштабами, как их коллеги по генной терапии. Например, крупнейшая компания, которая торгуется на бирже NASDAQ — Sangamo Therapeutics, — имеет капитализацию всего в $2,1 млрд.
В данный момент Sangamo Therapeutics разрабатывает два вида терапии на основе собственных — аутологичных — стволовых клеток для лечения заболеваний крови. Если производитель добьется успеха, то с помощью этих препаратов можно будет лечить такие генетические болезни крови, как бета-талассемия и серповидноклеточная анемия.
Что дальше?
По всем оценкам, рынок клеточной и генной терапии в ближайшие годы будет активно развиваться, и средний годовой рост продаж составит не менее 30%. Новые открытия в сфере генной терапии обещают 2200 клинических испытаний, которые проводятся по всему миру: ученые ищут средства от различных видов рака, редких генетических нарушений, болезни Паркинсона, ВИЧ и других болезней.
Впереди планеты всей, как всегда, США — около 55% исследований происходят именно там. Также разработками в сфере генной терапии занимаются в Европе, Канаде и Китае. Один препарат, созданный при участии генной инженерии, запустили и в России — это Неоваскулген, лекарство, призванное помочь при ишемии нижних конечностей.
Что же касается стволовых клеток, рост рынка ожидается в результате появления новых препаратов регенеративной медицины — сейчас многие из них находятся в стадии разработки. Большинство исследований проходят в США, но новые решения в области стволовых клеток также появляются в Сингапуре и Японии.
Президент России Владимир Путин считает, что в ближайшем будущем возможно генетическое программирование человека по заданным характеристикам, и это может оказаться страшнее атомной бомбы. Об этом глава государства говорил на встрече с участниками Всемирного фестиваля молодежи и студентов.
Генетическая инженерия
«Генетическая инженерия (генная инженерия)— совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами, введения их в другие организмы и выращивания искусственных организмов после удаления выбранных генов из ДНК. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, генетика, микробиология, вирусология.
Вот небольшая статья и отрывок из неё я привожу здесь:
В этой статье говорится о создании препарата репоксигена «Это средство генотерапии представляет собой комплекс ДНК, кодирующей белок эритропоэтин…вырабатываемый почками и стимулирующий образование эритроцитов (а значит, и повышающий способность крови переносить кислород), уже стал главным действующим лицом многих допинговых разборок. Другой информации о новых каких-то других результатах статья не содержит. Весь остальной текст о раздумьях будущего есть просто вода, не подкреплённая фактами. Как скажется этот препарат на жизнь человека, принимающего его, сказать пока никто не может. Так что то, что сказал Президент Путин об опасности генной инженерии для людей в ближайшем будущем не предвидится, за исключением спортсменов.
Можно сказать с уверенностью на 100%, что специалисты генной инженерии человека уродом могут сделать, но очень малая вероятность того, что они создадут лекарства, лечащие все болезни. Мы уже знаем из практики жизни людей и из статистики за тысячелетия, что никакие новшества в медицине и лекарства не смогли изменить их долголетие, в средних показателях, более 70-80 лет, установленные согласно Библии, Богом для людей. И только очень незначительный процент людей живут больше. Однако, мы знаем и другое то, что многие лекарства приносят облегчение для одной болезни, но одновременно могут подавлять иммунитет человека и вызвать осложнения всего здоровья человека без недостатков лекарств не существует.
- Генная инженерия в корне отличается от выведения новых сортов и пород. Исскуственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании.
- В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.
- В результате искуственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худщем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о подобного рода возможностях ещё очень неполны.
- Не существует совершенно надёжных методов проверки на безвредность. Более 10% серьёзных побочных эффектов новых лекарств не возможно выявить несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незамеченными, вероятно, значительно больше, чем в случае лекарств.
- Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне нечувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незамеченными.
- Созданные до настоящего времени с помощью генной инженерии продукты питания не имеют сколько-нибудь значительной ценности для человечества. Эти продукты удовлетворяют, главным образом, лишь коммерческие интересы.
- Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесённых туда, совершенно недостаточны. Не доказано ещё, что модифицированные с помощью генной инженерии организмы не окажут вредного воздействия на окружающую среду. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериями и вирусами. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.
- Могут возникнуть новые и опасные вирусы. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов (так называемая рекомбинация). Такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы могут стать также менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей.
- Знания о наследственном веществе, ДНК, очень неполны. Известно о функции лишь трёх процентов ДНК. рискованно манипулировать сложными системами, знания о которых неполны. Обширный опыт в области биологии, экологии и медицины показывает, что это может вызвать серьёзные непредсказуемые проблемы и расстройства.
- Генная инженерия не поможет решить проблему голода в мире. Утверждение, что генная инженерия может внести существенный вклад в разрешение проблемы голода в мире, является научно необоснованным мифом.
Что такое ГИ и зачем она нам нужна? Почему бактерии так популярны у генных инженеров? В каком виде проще всего внести нужный ген в бактерию? С какими трудностями можно столкнуться, работая с этими организмами? Что произошло раньше: создание первой генноинженерной бактерии или открытие структуры ДНК и генома? Об этом и многом другом читайте под катом.
В данном пункте приведено краткое описание так называемой Центральной догмы молекулярной биологии. Если вы обладаете базовыми знаниями в молекулярной биологии, то смело переходите к пункту 1.
Итак, начнём. Вся информация о всех стадиях развития и свойствах любого организма, будь то прокариоты (бактерии), археи или эукариоты (все остальные одно- и многоклеточные), закодирована в геномной ДНК, которая представляет собой комплекс двух комплементарных друг другу полинуклиотидных цепей, образующих двойную спираль (комплементарные нуклеотиды ДНК: A-T и G-C). Хромосомы эукариот представляют собой линейные двухцепочечные молекулы ДНК, а хромосомы прокариот закольцованы. Зачастую гены составляют лишь небольшую часть всего генома (у человека — около 1,5%).
Цепочки ДНК и РНК.
Последовательности ДНК и РНК всегда записывают от 5'-конца к 3'-концу. На то есть ряд причин:
- Синтез новых цепочек ДНК и РНК начинается с 5'-конца (ДНК-полимеразы (ферменты, синтезирующие комплементарную цепь ДНК на матрице ДНК или РНК) и РНК-полимеразы (ферменты, синтезирующие комплементарную цепь РНК на матрице ДНК или РНК) идут по матрице в направлении 3' -> 5', стало быть новая цепь синтезируется в направлении 5' -> 3');
- Рибосома читает кодоны, передвигаясь по мРНК в направлении 5' -> 3';
- Последовательность аминокислот записана в кодирующей цепи ДНК в направлении 5' -> 3' (значащая часть мРНК представляет собой точную копию участка кодирующей цепи ДНК с заменой тимина на урацил и с гидроксильной группой (-OH) вместо водорода в положении 2', разумеется);
Рибосомные РНК — незаменимые компоненты рибосомы. Основной функцией рРНК является обеспечение процесса трансляции: она участвует в считывании информации с мРНК при помощи адапторных молекул тРНК и катализе образования пептидных связей между присоединёнными к тРНК аминокислотами и растущей цепью белка.
В случае с генами, кодирующими белок процесс расшифровки генетической информации выглядит так:
Бактерия в генной инженерии — это потенциальный исходный материал для создания:
Интересным является тот факт, что первые успешные опыты в области генной инженерии бактерий произошли задолго до эпохальной работы Уотсона и Крика. Более того, на основании этих опытов был доказан сам факт того, что информация содержится именно в ДНК, после чего учёные могли не тратить своё время на гипотезы об РНК и белке.
Таким образом, было доказано, что носителем информации о признаках является именно ДНК. Кроме того, было наглядно показано, что возможно самопроизвольное проникновение инородной молекулы ДНК в бактериальную клетку.
Почему бактерии так популярны при очевидных недостатках (например, отсутствие эукариотических посттрансляционных модификаций)? Всё просто. Они неприхотливы в работе, просты в использовании и не требуют дорогих питательных сред.
Современная генная инженерия бактерий в основном представляет собой внедрение плазмидного вектора (модифицированной бактериальной плазмиды, содержащей целевой ген и набор других необходимых элементов, о которых речь пойдёт ниже). Изменение хромосомы бактерии менее типично, но эта процедура также не является чем-то диковинным: например, ген РНК-полимеразы бактериофага Т7 был введёт в хромосому кишечной палочки с помощью вектора на основе профага λ в процессе создания одного из популярных в лабораторной плактике штаммов. Причин, по которым зачастую исследователь выберет внедрение гена в составе плазмидного вектора три:
Кроме гена и промотора основными элементами плазмидного вектора являются:
-
ori — область начала репликации плазмиды. Нужна для поддержания постоянного количества плазмиды и её наследования дочерними клетками;
Другим примером может служить, использование гена β-глюкуронидазы (GUS). Данный фермент превращает определённые соединения в окрашенные или флуоресцирующие, что может быть обнаружено визуально по окрашенности колонии. Естественно, данные соединения нужно добавлять в питательную селективную среду. Ещё один пример — использование гена зелёного флуоресцентного белка (GFP) (хотя использование GUS и GFP более типично для работ с клетками растений и животных);
участок, отвечающий за контроль копийности (мало плазмид в клетке — плохо, много — тоже плохо);
Что ж, вектор у нас на руках. Как в него встроить ген? И вообще, где этот ген взять?
Допустим, что мы знаем последовательность нуклеотидов нужного нам гена. Тогда поступают следующим образом:
- Химически синтезировать короткие одноцепочечные полинуклеотиды таким образом, чтобы они частично перекрывались;
- Объединить эти фрагменты с помощью ПЦР.
-
Система на основе регуляторных элементов лактозного оперона E. coli (lac-оперона) и сильного промотора.
Дело в том, что у кишечной палочки есть свои правила питания. Во-первых, существует механизм подавления активности lac-оперона, который включён только тогда, когда в клетку не поступает лактоза. Это логично: зачем тратить силы на синтез того, что не пригодится? Но как только лактоза начинает поступать в клетку в достаточном количестве этот механизм выключается.
Однако, есть второй механизм подавления активности lac-оперона. Если в среде есть глюкоза, то клетка питается исключительно глюкозой, так как она активирует второй механизм ингибирования транскрипции lac-оперона. Таким образом, lac-оперон активен только тогда, когда в окружающем клетку пространстве есть только лактоза. Минусом лактозного оперона является крайне слабый промотор, поэтому в штаммах продуцентах он заменён на сильный. Сильные промоторы часто получают из патогенов. Наиболее широко используемые в генной инженерии прокариот сильные промоторы выделены из бактериальных вирусов — бактериофагов. Например, широко используется промотор фага Т7.
К слову, некоторые сильные промоторы для генной инженерии растений также выделены из вирусов, например, это промотор вируса мозаики цветной капусты.
Как было указано выше, у E. coli нет РНК-полимеразы, которая бы узнавала промоторы бактериофагов, поэтому предварительно в продуцент встраивают ген РНК-полимеразы соответствующего бактериофага.
Можно поступить и по-другому: вообще не добавлять в питательную среду глюкозу и лактозу, а потом, когда культура дорастёт до нужной плотности, добавить то, что клетка примет за лактозу, но не сможет метаболизировать или разрушить. Сейчас в качестве такого индуктора используют ИПТГ.
Система на основе регуляторного механизма промотора pL бактериофага λ.
Данный промотор инактивируется белком-репрессором cI. При этом была обнаружена термочувствительная форма этого белка, названная cI857: данный фактор транскрипции сохраняет функциональность при температуре около 30⁰С и теряет её при 42⁰С. Поэтому при использовании такой системы сначала бактериальную культуру растят до нужной плотности при 30⁰С, а затем поднимают температуру до 42⁰С, тем самым запуская синтез целевого белка.
Ну что же, вектор разработан. Дальше дело за малым — найти подходящий метод для его внесения в бактериальную клетку. Но это уже совсем другая история.
Читайте также: