К какой ткани относится сухожилия и хрящ
Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). Также к соединительным тканям относится жидкая подвижная кровь, строение которой мы изучим в разделе "Кровеносная система".
Что же общего между жидкой подвижной кровью и плотной неподвижной костью? Общим оказываются два основополагающих признака соединительных тканей:
- Хорошо развито межклеточное вещество
- Наличие разнообразных клеток
Рыхлая волокнистая соединительная ткань (РВСТ) содержит клетки разной формы: фибробласты (юные), фиброциты (зрелые). РВСТ содержится во всех внутренних органах, она располагается по ходу прохождения кровеносных, лимфатических сосудов и нервов, образует соединительнотканные прослойки.
Обратите внимание на название клеток: фибробласты, фиброциты - эти слова происходят от (лат. fibra — волокно). В соединительных тканях имеются три основных типа волокон:
- Коллагеновые - обеспечивают механическую прочность
- Эластические - обуславливают гибкость тканей
- Ретикулярные - образуют ретикулярные сети, служащие основой многих органов (печень, костный мозг)
Плотная волокнистая соединительная ткань (ПВСТ) отличается преобладанием волокон над клетками. ПВСТ участвует в образовании сухожилий, связок, формирует оболочки внутренних органов.
Ретикулярная ткань (от лат. reticulum - сетка) образует строму (опорную структуру) кроветворных и иммунных органов. Здесь зарождаются все клетки кровеносной и иммунной систем.
Жировая ткань состоит из скопления жировых клеток (адипоцитов). Создает резерв питательных веществ, образует подкожный жировой слой и капсулу почек. Кроме того, жировая ткань выполняет защитную (механическую) функцию, предупреждая повреждения внутренних органов, и участвует в терморегуляции.
Слизистая (студенистая) ткань встречается в норме только в составе пупочного канатика зародыша, ее относят к эмбриональным тканям.
К скелетным тканям относятся хрящевая и костная ткани, которые выполняют защитную, механическую и опорную функции, принимают активное участие в минеральном обмене.
Хрящевая ткань состоит из молодых клеток - хондробластов, зрелых - хондроцитов (от греч. chondros - хрящ). Межклеточное вещество упругое, содержит много воды, особенно в молодом возрасте. С течением времени воды в хряще становится меньше и его функция постепенно нарушается.
Хрящевая ткань образует межпозвоночные диски, хрящевые части ребер, входит в состав органов дыхательной системы. В хрящевой ткани, как и в эпителии, отсутствуют кровеносные сосуды, благодаря чему хрящи отлично приживаются после пересадки. Питание хряща происходит диффузно.
Хрящевая ткань выстилает поверхность костей в месте образования суставов. При нарушении в ней обменных процессов хрящевая ткань начинает заменяться костной, что сопровождается скованностью и болезненностью движений, возникает артроз.
Костная ткань состоит из клеток и хорошо развитого межклеточного вещества, пропитанного минеральными солями (составляют около 70%), преобладающим из которых является фосфат кальция Ca3(PO4)2.
В костной ткани активно идет обмен веществ, интенсивно поглощается кислород. Кости - это вовсе не что-то безжизненное, в них постоянно появляются новые и отмирают старые клетки. В кости можно обнаружить следующие типы клеток:
- Остеобласты - молодые клетки
- Остеоциты - зрелые клетки (от греч. osteon — кость и греч. cytos — клетка)
- Остеокласты - отвечают за обновление кости, разрушают старые клетки
Кость состоит из компактного и губчатого вещества. Компактное вещество значительно тяжелее и плотнее губчатого, обеспечивает основополагающие функции кости: защитную, поддерживающую. В компактном веществе запасаются химические элементы. Губчатое вещество содержит орган кроветворение - красный мозг.
Структурной единицей компактного вещества является остеон (Гаверсова система). В Гаверсовом канале, расположенном в центре остеона, проходят кровеносные сосуды - источник питания для костной ткани. По краям канала лежат юные клетки, остеобласты, и стволовые клетки. Вокруг канала лежат соединенные друг с другом остеоциты, образующие пластинки.
Кость состоит из двух компонентов:
-
Минеральный
Межклеточное вещество костной ткани содержит коллагеновые волокна, которые пропитаны минеральными солями, главным образом - фосфатом кальция Ca3(PO4)2, за счет чего костная ткань выполняет опорную функцию и способна выдерживать значительные нагрузки.
С возрастом доля минерального компонента увеличивается, и кость становится более ломкой и хрупкой, возникает склонность к переломам. Истончение костной ткани называется остеопороз (от греч. osteon - кость + греч. poros - пора).
Органический компонент представлен белками и жирами (липидами). За счет данного компонента обеспечивается еще одно важное свойство кости - эластичность. Если провести химический опыт и удалить из кости все соли (мацерация кости), то она станет настолько гибкой, что ее можно завязать в узел.
Органический компонент превалирует в костях новорожденных. Их кости очень эластичные. Постепенно минеральные соли накапливаются, и кости становятся твердыми, способными выдержать значительные физические нагрузки.
Соединительные ткани развиваются из мезодермы - среднего зародышевого листка.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Соединительная ткань встречается в организме повсеместно. У этой ткани больше всего разновидностей. Это и жир и кости с хрящами и сухожилия. Кровь тоже является соединительной тканью нашего тела. Главной особенностью любой соединительной ткани является наличие межклеточного вещества вырабатываемого самими клетками. Это вещество состоит из 2 компонентов: аморфного и волокнистого.
Что касается аморфного компонента, то он представлен гликозаминогликанами (представляют собой полисахариды) и протеогликанами (состоят из гликозаминогликанов с добавлением белка 5-10%). От количества аморфного компонента зависит консистенция ткани. Например, в плазме крови его почти нет, т.к. кровь жидкая. В составе хрящевой ткани аморфный компонент присутствует в больших количествах, чем обеспечивает ей необходимые свойства.
Волокнистый компонент межклеточного вещества представлен волокнами 2 типов: колагеновыми и эластичными. Коллагеновые волокна состоят из белка коллагена, имеют диаметр 10 мкм, длинные и извитые. Придают ткани прочность. Коллагеновые волокна имеют тенденцию к набуханию. Эластичные волокна состоят из белка эластина, менее извитые и имеют диаметр 1 мкм. Основная функция эластичных волокон – придание эластичности (могут удлиняться в 2-3 раза) ткани и возвращение её в исходное положение после растяжения. Ретикулярные волокна представляют собой незрелые коллагеновые. Поскольку их можно окрасить солями серебра, их еще называют аргирофильными.
Локализация и функции соединительной ткани
По локализации в организме соединительная ткань часто занимает промежуточное положение между другими тканями, связывая различные виды тканей в единое целое. Например, слой соединительный ткани под названием дерма питает поверхностный слой кожи эпидермис, через базальную мембрану. Исходя из вышесказанного, перечислим основные функции соединительной ткани в организме:
- механическая, опорная и формообразующая функции. Эта ткань составляет опорную систему организма: кости, хрящи, фасции, сухожилия, связки. Входит в состав капсулы и стромы большинства органов, связывает различные виды тканей между собой;
- защитная и иммунная функции. Фасции защищают мышечную ткань, кости скелета защищают от повреждения многие жизненно важные органы, включая сердце и мозг. Многие подвиды соединительной ткани способны к фагоцитозу и выработки иммунных тел;
- трофическая функция и депонирующая функция. Играя роль посредника между различными тканями, соединительная ткань может осуществлять их питание. Пример с дермой и эпидермисом был рассмотрен выше. Что касается депонирующей функции, хорошим примером послужит жировая ткань являющаяся главным депо жира в организме;
- обменная функция. Соединительная ткань способствует обмену веществ и поддержанию постоянства внутренней среды организма;
- пластическая функция. Соединительная ткань участвует в компенсаторно-приспособительных реакциях, регенерации тканей при их повреждении. Компенсаторно-приспособительными реакциями называют процессы сохранения организмом постоянства внутренней среды, при изменении внешней среды окружающей организм или при наличии внутреннего патологического процесса в самом организме.
Классификация соединительной ткани
Будем придерживаться следующей классификации. Соединительная ткань подразделяется на собственно соединительную и скелетную. Скелетная представлена костной и хрящевой тканью. Собственно соединительная подразделяется на волокнистую и ткани со специальными свойствами. Теперь рассмотрим эти ткани подробнее.
Выделяют рыхлую, плотную оформленную и плотную неоформленную волокнистую ткань.
Рыхлая соединительная ткань присутствует в стенках всех кровеносных и лимфатических сосудов, образует строму многих внутренних органов. Аморфный компонент межклеточного вещества (коллоид) рыхлой ткани способен задерживать жидкость, тем самым формируя отек. Количество коллагеновых и эластичных волокон в рыхлой соединительной ткани очень мало, а те, что есть направлены в разные стороны. Рассмотрим виды клеток типичных для этого подвида ткани и их функции:
Оба подвида плотной соединительной ткани имеют большое количество тесно расположенных волокон. Клеточных элементов и аморфного компонента в них мало. Плотная неоформленная волокнистая ткань образует соединительнотканную основу кожи (сетчатый слой). Ее коллагеновые и эластичные волокна переплетаются, но идут в разных направлениях. Плотная оформленная волокнистая ткань имеет строго упорядоченные по направлению волокна в зависимости от особенностей органа. Этот подвид ткани формирует сухожилия мышц, связки, перепонки, фасции.
Эти ткани представляют собой скопление однородных клеток, выполняющих некую конкретную функцию. Рассмотрим 4 подвида этих тканей:
- жировая ткань – представлена клетками липоцитами и является депо жира. Подразделяется на белую и бурую. Бурая жировая ткань характерна только для новорожденных детей. Жировая ткань локализуется в подкожно-жировом слое, около почек, в брызжейке, в сальнике. Прослойки рыхлой соединительной ткани делят жировую на дольки. Жир участвует в процессах терморегуляции, является запасом связанной воды;
- ретикулярная ткань состоит из клеток соединенных друг с другом длинными ретикулярными отростками (так называемая ретикулярная сеть). В межклеточном веществе много ретикулярных волокон, занимающих по растяжимости среднее положение между эластичными и коллагеновыми. Составляет основу костного мозга, лимфоузлов, входит в состав селезенки, почек, слизистой оболочки кишечника. Основная функция ретикулярной ткани – формирование новых клеток крови;
- слизистая или студенистая соединительная ткань встречается только на стадии зародыша в пупочном канатике. Желеобразная структура позволяет защищать пупочные сосуды от сдавливания и механических травм. Эту ткань еще называют Вартоновым студнем;
- пигментная соединительная ткань состоит из клеток меланоцитов содержащих пигмент меланин. Скопления этой ткани находятся в области мошонки, вокруг сосков, анального кольца, радужке глаза, а также в родимых пятнах.
Хрящевая ткань является разновидностью скелетной ткани и имеет свои морфологические особенности. Аморфное вещество здесь очень плотное из-за концентрации вышеупомянутых гликоминагликанов и протеогликанов. Сверху хрящ по всей поверхности покрыт слоем под названием надхрящница, за счет которой осуществляется рост хряща. Аморфный и волокнистый компоненты синтезируются в молодых клетках – хондробластах, расположенных во внутреннем слое надхрящницы. Сам хрящ кровеносных сосудов не имеет, его питание происходит из капилляров надхрящницы. Хондробласты с возрастом покрываются специальной капсулой и переходят в состав хряща. Теперь они стали хондроцитами. Межклеточное вещество хрящевой ткани настолько плотное, что когда хондроциты делятся, дочерние не могут отойти от материнской. Поэтому хондроциты располагаются группами в небольшой полости. Существует три разновидности хряща:
- гиалиновый хрящ образует хрящи ребер, эпифизарные хрящи, суставные хрящи, характерен для стенок воздухоносных путей. По внешнему виду является прозрачным, голубовато-белого цвета. Этот хрящ еще называют стекловидным. В старости часто обызвествливается. Межклеточное вещество представлено аморфным компонентом, с небольшой примесью коллагеновых волокон;
- эластичный хрящ формирует ушные раковины, часть слуховой трубы и наружного слухового прохода, надгортанник, хрящи гортани, т.е. анатомические образования, где хрящевая основа подвержена изгибам. Межклеточное вещество богато эластичными волокнами, впрочем, коллагеновые волокна тоже присутствуют. Эластичный хрящ имеет желтоватую окраску, менее прозрачен чем гиалиновый и в отличие от него, почти никогда не обызвествливается в старости;
- волокнистый хрящ образует межпозвоночные диски, входит в состав внутрисуставных дисков и менисков, а также височно-нижнечелюстного и грудино-ключичного суставов. Межклеточное вещество богато коллагеновыми волокнами. У пожилых людей обызвествливается.
Основными клетками любой кости являются остеоциты находящееся в обызвествленном межклеточном веществе, которое практически не содержит аморфного компонента. Между остеоцитами находятся осеиновые (коллагеновые) волокна и неорганические соли. Эта ткань формирует наш скелет и одновременно является депо минеральных веществ, например кальция и фосфора. Существует 3 типа клеток костной ткани:
- остеобласты – молодые клетки синтезирующие межклеточное вещество. Расположены в богатом сосудами поверхностном слое кости – надкостнице. В процессе развития остеобласты превращаются в остеоциты;
- остеоциты представляют собой основное вещество кости;
- остеокласты – клетки разрушители. Костное вещество постоянно обновляется, поэтому стареющая кость разрушается остеокластами, а освободившееся место занимают молодые остеоциты. Также остеокласты играют важную роль при формировании костей в эмбриональном периоде, разрушая хрящи которые заменяются костной тканью.
Существует несколько разновидностей костной ткани. Грубоволокнистая костная ткань отличается беспорядочным и разнонаправленным расположением оссеиновых волокон. Встречается у зародышей и молодых организмов. У взрослых людей ее можно встретить только в швах черепа и местах где сухожилия крепятся к костям. В остальных частях тела, по мере развития организма грубоволокнистая ткань замещается пластинчатой.
Пластинчатая костная ткань представляет собой множество костных пластинок, внутри и между которыми находятся параллельные пучки оссеиновых волокон. Эта ткань бывает 2 видов:
- компактная костная ткань образует среднюю часть трубчатых костей, так называемый диафиз. Состоит из строго упорядоченных костных пластинок и имеет большую твердость;
- губчатой костной ткани, костные пластинки образует перекладины (трабекулы). Данная ткань формирует концы длинных трубчатых костей, которые называются эпифизы, а также образует короткие кости. Что касается плоских костей человеческого организма, то в них может присутствовать как компактная, так и губчатая ткань.
Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.
У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.
Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.
К соединительным тканям относятся также хрящевая и костная ткани, из которых построен скелет тела человека. Эти ткани называют скелетными. Органы, построенные из этих тканей, выполняют функции опоры, движения, защиты. Они также участвуют в минеральном обмене.
Хрящевая ткань (textus cartilaginus) образует суставные хрящи, межпозвоночные диски, хрящи гортани, трахеи, бронхов, наружного носа. Состоит хрящевая ткань из хрящевых клеток (хондробластов и хондроцитов) и плотного, упругого межклеточного вещества.
Хрящевая ткань содержит около 70-80 % воды, 10-15 % органических веществ, 4-7 % солей. Около 50-70 % сухого вещества хрящевой ткани - это коллаген. Межклеточное вещество (матрикс), вырабатываемое хрящевыми клетками, состоит из комплексных соединений, в которые входят протеогликаны. гиалуроновая кислота, молекулы гликозаминогликанов. В хрящевой ткани присутствуют клетки двух типов: хондробласты (от греч. chondros - хрящ) и хондроциты.
Хондробласты - это молодые, способные к митотическому делению округлые или овоидные клетки. Они продуцируют компоненты межклеточного вещества хряща: протеогликаны, гликопротеины, коллаген, эластин. Цитолемма хондробластов образует множество микроворсинок. Цитоплазма богата РНК, хорошо развитой эндоплазматической сетью (зернистой и незернистой), комплексом Гольджи, митохондриями, лизосомами, гранулами гликогена. Ядро хондробласта, богатое активным хроматином, имеет 1-2 ядрышка.
Хондроциты - это зрелые крупные клетки хрящевой ткани. Они округлые, овальные или полигональные, с отростками, развитыми органеллами. Хондроциты располагаются в полостях - лакунах, окружены межклеточным веществом. Если в лакуне одна клетка, то такая лакуна называется первичной. Чаще всего клетки располагаются в виде изогенных групп (2-3 клетки), занимающих полость вторичной лакуны. Стенки лакуны состоят из двух слоев: наружного, образованного коллагеновыми волокнами, и внутреннего, состоящего из агрегатов протеогликанов, которые входят в контакт с гликокаликсом хрящевых клеток.
Структурной и функциональной единицей хрящей является хондрон, образованный клеткой или изогенной группой клеток, околоклеточным матриксом и капсулой лакуны.
В соответствии с особенностями строения хрящевой ткани различают три вида хряща: гиалиновый, волокьистый и эластический хрящ.
Гиалиновый хрящ (от греч. hyalos - стекло) имеет голубоватый цвет. В его основном веществе располагаются тонкие коллагеновые волокна. Хрящевые клетки имеют разнообразные форму и строение в зависимости от степени дифференцировки и места расположения их в хряще. Хондроциты образуют изогенные группы. Из гиалинового хряща построены суставные, реберные хрящи и большинство хрящей гортани.
Волокнистый хрящ, в основном веществе которого содержится большое количество толстых коллагеновых волокон, обладает повышенной прочностью. Клетки, расположенные между коллагеновыми волокнами, имеют вытянутую форму, у них длинное палочковидное ядро и узкий ободок базофильной цитоплазмы. Из волокнистого хряща построены фиброзные кольца межпозвоночных дисков, внутрисуставные диски и мениски. Этим хрящом покрыты суставные поверхности височно-нижнечелюстного и грудино-ключичного суставов.
Эластический хрящ отличается упругостью, гибкостью. В матриксе эластического хряща наряду с коллагеновыми содержится большое количество сложно переплетающихся эластических волокон. Округлые хондроциты расположены в лакунах. Из эластического хряща построены надгортанник, клиновидные и рожковидные хрящи гортани, голосовой отросток черпаловидных хрящей, хрящ ушной раковины, хрящевая часть слуховой трубы.
Костная ткань (textus ossei) отличается особыми механическими свойствами. Она состоит из костных клеток, замурованных в костное основное вещество, содержащее коллагеновые волокна и пропитанное неорганическими соединениями. Различают три типа костных клеток: остеобласты, остеоциты и остеокласты.
Остеобласты - это отростчатые молодые костные клетки многоугольной, кубической формы. Остеобласты богаты элементами зернистой эндоплазматической сети, рибосомами, хорошо развитым комплексом Гольджи и резко базофильной цитоплазмой. Они залегают в поверхностных слоях кости. Округлое или овальное ядро их богато хроматином и содержит одно крупное ядрышко, обычно расположенное на периферии. Остеобласты окружены тонкими коллагеновыми микрофибриллами. Вещества, синтезируемые остеобластами, выделяются через всю их поверхность в различных направлениях, что приводит к образованию стенок лакун, в которых эти клетки залегают. Остеобласты синтезируют компоненты межклеточного вещества <коллаген - это компонент протеогликана). В промежутках между волокнами располагается аморфное вещество - остеоидная ткань, или предкость, которая затем кальцифицируется. Органический матрикс кости содержит кристаллы гидроксиапатита и аморфный фосфат кальция, элементы которых поступают в костную ткань из крови через тканевую жидкость.
Остеоциты - это зрелые многоотростчатые веретенообразные костные клетки с крупным округлым ядром, в котором четко видно ядрышко. Количество органелл невелико: митохондрии, элементы зернистой эндоплазматической сети и комплекс Гольджи. Остеоциты располагаются в лакунах, однако тела клеток окружены тонким слоем так называемой костной жидкости (тканевой) и не соприкасаются непосредственно с кальцинированным матриксом (стенками лакуны). Очень длинные (до 50 мкм) отростки остеоцитов, богатые актиноподобны-ми микрофиламентами, проходят в костных канальцах. Отростки также отделены от кальцинированного матрикса пространством шириной около 0,1 мкм, в котором циркулирует тканевая (костная) жидкость. За счет этой жидкости осуществляется питание (трофика) остеоцитов. Расстояние между каждым остеоцитом и ближайшим кровеносным капилляром не превышает 100-200 мкм.
Остеокласты - это крупные многоядерные (5-100 ядер) клетки моноцитарного происхождения, размером до 190 мкм. Эти клетки разрушают кость и хрящ, осуществляют резорбцию костной ткани в процессе ее физиологической и репаративной регенерации. Ядра остеокластов богаты хроматином и имеют хорошо видимые ядрышки. В цитоплазме содержится множество митохондрий, элементов зернистой эндоплазматической сети и комплекса Гольджи, свободных рибосом, различных функциональных форм лизосом. Остеокласты имеют многочисленные ворсинкообразные цитоплазматические отростки. Таких отростков особенно много на поверхности, прилежащей к разрушаемой кости. Это гофрированная, или щеточная, каемка, увеличивающая площадь соприкосновения остеокласта с костью. Отростки остеокластов также имеют микроворсинки, между которыми находятся кристаллы гидроксиапатита. Эти кристаллы обнаруживаются в фаголизосомах остеокластов, где они разрушаются. Деятельность остеокластов зависит от уровня паратиреоидного гормона, увеличение синтеза и секреции которого приводит к активации функции остеокластов и разрушению кости.
Различают два типа костной ткани - ретикулофиброзную (грубоволокнистую) и пластинчатую. Грубоволокнистая костная ткань имеется у зародыша. У взрослого человека она располагается в зонах прикрепления сухожилий к костям, в швах черепа после их зарастания. Грубоволокнистая костная ткань содержит толстые неупорядоченные пучки коллагеновых волокон, между которыми находится аморфное вещество.
Пластинчатая костная ткань образована костными пластинками толщиной от 4 до 15 мкм, которые состоят из остеоцитов, основного вещества, тонких коллагеновых волокон. Волокна (коллаген I типа), участвующие в образовании костных пластинок, лежат параллельно друг другу и ориентированы в определенном направлении. При этом волокна соседних пластинок разнонаправленные и перекрещиваются почти под прямым углом, что обеспечивает большую прочность кости.
[1], [2], [3], [4], [5], [6], [7], [8], [9]
Все наши кости в процессе эмбрионального (зародышевого) развития образуются из хрящей. У взрослого человека они составляют не более 2% массы тела. Кости растут благодаря диафизарному хрящу, удлиняются они до тех пор, пока не закрываются так называемые зоны роста1. Однако некоторые из них увеличиваются в течение всей жизни человека. Установлено, что постоянно растут, хотя и малыми темпами, нижняя челюсть, нос, ушные раковины, ступни ног и кисти рук.
Наиболее часто, спортсмены покидают спорт из-за травм суставно-связочного аппарата. Его слабое место — хрящ. Проблемы с позвоночником также обусловлены в основном патологией межпозвоночных хрящей.
Можно сказать, что в спортивной травматологии лечение хрящей является заботой № 1. При этом некоторые авторы считают, что восстанавливаются они не более чем на 50%, ставя, таким образом, под сомнение возможность полного восстановления спортивной работоспособности. Попробуем более подробно рассмотреть, что же такое хрящ и определить пределы и методы его регенерации.
Хрящевая ткань — одна из разновидностей соединительной ткани, которая выполняет в организме опорные функции. Непременным атрибутом хряща, за исключением суставного, является надхрящница, обеспечивающая его питание и рост. В суставах хрящ обнажен и контактирует непосредственно с внутренней средой сустава — синовиальной жидкостью. Она выполняет роль своеобразной смазки между трущимися поверхностями суставов, покрытых гладким глиаиновым хрящом. Хрящи костей и позвоночника постоянно испытывают как статическую, так и динамическую нагрузки. Хрящи носа, гортани, бронхов, фиброзных треугольников в сердце осуществляют также и опорную функцию.
Структура хряща позволяет ему испытывать обратимую деформацию и в то же время сохранять способность к обмену веществ и размножению. Главные его компоненты — хрящевые клетки (хендроциты) и внеклеточный матрикс, состоящий из волокон и основного вещества. Причем, большую часть массы хряща составляет именно межклеточное вещество.
В зависимости от преобладания коллагеновых, эластических волокон или основного вещества различают гиалиновый, эластический и волокнистый хрящ.
Особенностью хряща, по сравнению с другими видами тканей в организме является то, что в нем мало клеток и они окружены большим количеством межклеточного пространства — матрикса. Хрящ так плохо восстанавливается после повреждений именно потому, что в нем очень мало клеток, способных размножаться и основная часть репарации (восстановления) идет за счет внеклеточного матрикса. В эластическом хряще (гортани, носа, ушной раковины) содержится много эластина (из него, например, на 30% состоит ухо человека ).
Биомеханические свойства хрящей делают их высокоспецифическими и по существу уникальными компонентами опорно-двигательного аппарата.
Они:
а) принимают на себя действие внешних механических сил сжатия и растяжения; распределяют эти силы равномерно, поглощают и рассеивают их, переводя аксиально направленные силы в тангенциальные (в суставах конечностей, позвоночника и т.д.);
б) образуют устойчивые к износу поверхности сочленений скелета, участвуют в формировании смазочного аппарата в синовиальных суставах;
в) являются местом прикрепления и опорой для мягких тканей и мышц; образуют полости в местах контакта с внешней средой (хрящи носа, ушей, органов дыхания).
Считается, что хрящевой матрикс состоит из 3-х основных компонентов:
1) волокнистый коллагеновый каркас, который образует трехмерную сеть переплетений;
2) молекулы протеогликанов, которые заполняют петли волокнистого каркаса;
3) вода, свободно перемещающаяся между переплетениями каркаса и молекулами протеогликанов.
У суставного хряща нет кровеносных сосудов. Он питается диффузно, поглощая питательные вещества из синовиальной жидкости.
В чем причина низкой метаболической активности хряща? Только в одном — в малом количестве клеток (1-10%) в единице объема ткани. В пересчете на чистую клеточную массу уровень метаболизма хондроцитов ничуть не меньше, чем у других клеток организма. Особенно низким метаболизмом отличаются суставные хрящи и пульподные ядра межпозвонковых дисков. Именно эти структуры отличаются самым малым количеством хондроцитов (1% от общей массы хряща) и именно они хуже всех других восстанавливаются после повреждений.
Окислительные процессы в хряще протекают в основном анаэробным (бескислородным) путем. Так, например, хондроциты пульпозных ядер межпозвоновых дисков на 99% питаются анаэробно и лишь на 1% аэробно. В среднем же кислородные окисление в хрящевой ткани как минимум в 50 раз менее интенсивно, чем в обычных тканях организма. Анаэробный характер окисления в хондроцитах — это защитно-приспособительная реакция, сложившаяся в процессе эволюции. И это неудивительно, если учесть, что хрящ не имеет (глаиновый, фиброзный) или почти не имеет (эластический) кровоснабжения. Если начать введение кислорода в пространство, пограничное с хрящом, то диффузия в хрящ О2 не только не улучшает его трофику, но, наоборот, резко ухудшает ее.
Насколько низка метаболическая активность хряща, можно понять из следующего сравнения. Белковый состав печени полностью обновляется за 4(!) дня. Коллаген хрящей обновляется всего лишь на 50% за 10(!) лет. Поэтому становится понятным, что любая травма хрящевой ткани практически неизлечима, если только не принять специальных мер, направленных на увеличение числа хондроцитов, которые сформируют новый матрикс.
Регенерация хрящевой ткани как физиологическая, так и репаративная (восстановительная) напрямую зависит от гормонального фона и модулирующего действия тех или иных гормонов. Так, например, глюкокортикоидные гормоны угнетают анаболические реакции в хондроцитах, ингибируют синтез коллагена и протеогликанов, вызывают дефицит глауроновой кислоты в синовиальной жидкости и в матриксе. И это угнетающее действие глюкокортикоидов более выражено, если оно сочетается со сдавлением (компрессией) хряща. В принципе, в этом нет ничего удивительного, если учесть, что глюкокортикоиды подавляют гликолиз — анаэробное окисление глюкозы в хряще. Регенерация без энергетического обеспечения становится попросту невозможной. Инсулин стимулирует синтез коллагена в матриксе хрящевой ткани, однако эта стимуляция невелика и носит опосредованный характер.
Самым сильным фактором, стимулирующим как физиологический, так и репаративный синтез в хрящевой ткани является соматотропный гормон. Сродство хрящей к соматотропному гормону отсутствует как таковое. Однако под действием соматотропного гормона в печени образуется инсулиноподобный фактор роста (ИРФ-1), который и обладает собственно анаболическим действием на все ткани, включая хрящевую. Сам по себе гормон роста способен оказывать анаболическое действие на клетки лишь в том случае, если его концентрация в 2000 раз превышает физиологическую. Такое возможно только в пробирке и полностью исключается в реальной жизни. Применяя соматотропин с репаративной целью необходимо помнить, что его влияние на синтез ИРФ-1 возможно лишь в условиях нормальной работы печени, при отсутствии серьезных заболеваний, иначе ИРФ-1 просто не будет синтезироваться и введение соматотропина не даст никакого результата. Способность соматомедина усиливать регенерацию хрящевой ткани в 100 раз превышает эффект от введения в организм инсулина и тестостерона. ИРФ-1 — это единственный фактор, вызывающий деление (размножение) хондроцитов. Другие анаболические факторы организма (а их довольно много) такой способностью не обладают.
Тестостерон — основной андроген организма умеренно стимулирует биосинтетические процессы в хрящах, а эстрогены — женские половые гормоны, наоборот, тормозят ее.
Анаболические стероиды обладают способностью вызывать регенерацию хряща в намного большей степени, нежели чистый тестостерон и это неудивительно, если учесть, что они обладают анаболическим действием в несколько раз превышающим анаболическое действие тестостерона.
Интересно, что матрикс — порождение хондроцитов — живет своей самостоятельной жизнью. Он способен модулировать действие различных гормонов на хондроциты, ослабляя, либо усиливая их действие. Воздействуя на матрикс, можно изменить состояние хондроцитов как в лучшую, так и в худшую сторону. Удаление части матрикса вызывает немедленную интенсификацию биосинтеза недостающих в нем макромолекул. Более того, одновременно усиливается пролиферация (разрастание) хондроцитов. Количественные изменения в матриксе способны вызвать их качественные изменения.
Длительное ограничение движений в суставе (гипсовая иммобилизация и др.) приводит к уменьшению массы хрящей. Причина на удивление проста: в неподвижном суставе отсутствует перемешивание синовиальной жидкости. При этом диффузия молекул в хрящевую ткань замедляется и питание хондроцитов ухудшается. Недостаток прямой компрессивной нагрузки (на сжатие) так же приводит к ухудшению питания хондроцитов. Хрящу нужна хотя бы минимальная компрессионная нагрузка для поддержания нормальной трофики. Чрезмерная нагрузка на растяжение в эксперименте вызывает перерождение хряща с развитием грубых фиброзных волокон.
Очень сложное влияние на состояние внутрисуставных хрящей оказывает синовиальная оболочка. Она может как усиливать анаболизм хрящевой ткани, так и усиливать ее катаболизм. Удаление синовиальной оболочки резко ухудшает трофику хрящей, которая восстанавливается лишь после ее отрастания.
Хондроциты способны и к ауторегуляции. Они синтезируют специальные факторы роста, стимулирующие разрастание соседних хондроцитов. Пока их структура полностью не расшифрована. Известно лишь то, что они имеют полипептидную природу.
Если в шейном отделе позвоночника негативные явления развиваются с подросткового возраста, то в поясничном отделе, где нагрузка на единицу поперечного сечения намного ниже — начиная с 25-30 лет. В целом они носят такой же морфологический характер, как и в шейном отделе, но отличаются клиническими (медицинскими) признаками. В шейном отделе позвоночника сквозь поперечные отростки шейных позвонков проходят крупные артерии, питающие все основание мозга и его стволовую часть, где находится жизненно важные центры (дыхания, кровообращения и т.д.). С развитием шейного остеохондроза происходит постепенное незаметное сдавливание этих артерий с развитием недостаточности мозгового кровообращения. При этом практически не бывает (или они бывают очень редко) никаких болевых признаков процесса. В поясничном отделе позвоночника картина несколько иная. Из этого отдела выходят нервные корешки, несущие чувствительные волокна от нижних конечностей и двигательные волокна к мышцам ног. Поясничный остеохондроз прежде всего проявляется различными болевыми симптомами, нарушением чувствительности и двигательной сферы. При этом никаких жизненно важных функций организма он не нарушает. Шейный остеохондроз никакими болевыми признаками себя не обнаруживает и особых неудобств не доставляет, однако может привести к серьезным нарушениям мозгового кровообращения, вплоть до инсультов с развитием параличей.
Возрастные изменения эластических хрящей не носят фатального характера. Они выражаются в основном в оссификации — накоплении кальция и не приводят ко сколько-нибудь заметному нарушению функций.
В глиаминовых хрящах суставов уже начиная с 30-летнего возраста обнаруживается фибриляция — разволокнение хрящевой поверхности. При микроскопическом исследовании на поверхности хряща обнаруживаются разломы и расщепления. Расщепление хряща происходит как вертикальном, так и в горизонтальном направлении. При этом местами встречаются скопление клеток хрящевой ткани как ответная реакция организма на разрушение хряща. Иногда отмечается возрастное увеличение (!) толщины суставных хрящей как ответное действие на действия механических (тренировка) факторов. Возрастную эволюцию хрящей коленного сустава многие исследователи отмечают начиная уже с 40-летнего возраста. Наиболее существенное изменение, отмечаемое при старении хряща — это уменьшение содержания воды, что автоматически приводит к снижению его прочности.
Потенциальные возможности регенерации хряща достаточно велики. Он может регенерировать за счет собственного потенциала (размножение хондроцитов и рост матрикса) и, что не менее важно, за счет других видов соединительной ткани, которые имеют общее с ним происхождение. Примыкающие к хрящу ткани обладают способностью к переориентации своих клеток и превращению их в хрящеподобную ткань, которая неплохо справляется со своими функциями. Возьмем для примера самый частый вид повреждений — повреждение внутрисуставного хряща.
При поверхностных повреждениях можно добиться полного восстановления хряща применяя сильнодействующие фармакологические средства. За последние 40 лет экспериментальных и клинических работ свою высокую эффективность доказал лишь один единственный препарат — соматотропный гормон (СТГ). Он стимулирует рост хрящевой ткани в 100 раз сильнее, чем введение тестостерона и инсулина. Еще больший эффект оказывает комбинированное введение СТГ и тиреокальцитонина — особого рода гормона щитовидной железы, который усиливает репарацию как костной, так и хрящевой ткани. Исключительная эффективность действия СТГ на репарацию хряща обусловлено тем, что он стимулирует непосредственно деление хондроцитов. Используя СТГ теоретически можно довести количество хондроцитов до любого нужного количества. Они, в свою очередь, восстанавливают матрикс до необходимого объема, синтезируя все его компоненты, начиная с коллагеновых волокон и кончая протеогликанами. Недостатком СТГ является то, что его нельзя применять местно, вводя непосредственно в зону поражения хрящевой ткани, поскольку действует он опосредованно. СТГ вызывает образование в печени инсулиноподобного фактора роста (ИРФ-1) который и оказывает сильнейший анаболический эффект. Парентеральное (инъекционное) его введение вызывает рост не только поврежденных хрящей, но и нормальных тоже, а это нежелательно, ведь в организме существуют кости, в которых хрящевые зоны роста не закрываются на протяжении всей жизни. Длительное введение больших доз СТГ в сформировавшийся организм может вызвать диспропорции скелета. Хотя следует отметить, что на пораженный хрящ он действует сильнее, и явных деформаций скелета при лечении СТГ в научной литературе не встречается.
В последние годы синтезирована лекарственная формы ИРФ-1, которую все шире применяют инъекционно вместо соматотропина. Поскольку ИРФ-1 действует непосредственно на ткани (в т.ч. и на хрящевую), то возникает заманчивая перспектива использовать его для местного введения (электрофорез, ультразвук и т.д.). Такое применение ИРФ-1 позволило бы локализовать его действие местом пораженного хряща и исключить действие на здоровые хрящи организма.
Неплохое действие на восстановление хряща и окружающего его соединительной ткани оказывают анаболические стероиды (АС). По эффективности они стоят на втором месте после ИРФ-1 и соматотропного гормона, хотя непосредственно деления хондроцитов они не вызывают. Анаболические стероиды, однако, ускоряют физиологическую регенерацию и потенцируют анаболическое действие инсулина и других эндогенных анаболических факторов, блокируют действие катаболических гормонов (глюкокортикоидов). Практическое применение АС в хирургической и травматологической практике доказало их высокую эффективность. Очень жаль, что до сих пор не разработаны лекарственные формы АС для локального применения. Это позволило бы создавать высокие концентрации лекарственного вещества именно в месте повреждения и предотвращать системные (на уровне всего организма) побочные действия. К сожалению, исследования в данной сфере никем не финансируются из-за причисления АС к допинговым средствам в спорте.
Некоторые исследователи в области молекулярной биологии представили очень убедительный материал, доказывающий, что стимуляторы (2-адренергических рецепторов способны симулировать анаболические эффекты соматомединов и, в частности, по отношению к хрящевой ткани. Механизм такого действия не вполне ясен. Не исключено, что просто повышается чувствительность печени к эндогенному соматотропному гормону и возрастает синтез в печени ИРФ-1. Одним из наиболее сильных избирательных стимуляторов (2-адренергических рецепторов является кленбутерол. Этот препарат не обладает гормональными эффектами и, в то же время, оказывает хорошее анаболическое действие. Подобно ИРФ-1 он стимулирует рост хрящевой ткани и может с успехом применяться в посттравматическом восстановительном периоде. Препаратов, стимулирующих (2-адренорецепторы много, но особо хотелось бы отметить такое старое и проверенное средство как адреналин. Адреналин — гормон мозгового вещества надпочечников даже при длительном курсовом применении не вызывает привыкания. В больших дозах адреналин воздействует в основном на а-адренорецепторы. Происходит сужение сосудов кожи, повышение артериального давления, подъем уровня сахара в крови. Малые дозы адреналина не затрагивают а-адренорецепторов, стимулируют (2-адренорецепторы. Расширяются сосуды мышц, снижаются уровень сахара в крови и артериальное давление. Развивается общее анаболическое действие и, в особенности по отношению к хрящевой ткани. Ежедневное введение малых (именно малых!) доз адреналина хорошо зарекомендовало себя как средство, способствующее регенерации.
Некоторые витамины в больших фармакологических дозировках способны существенно увеличить выброс в кровь эндогенного соматотропина. Пальму первенства здесь держит никотиновая кислота (витамин РР). Внутривенное введение сравнительно небольших доз никотиновой кислоты способно увеличить базальную секрецию СТГ в 2-3 раза. Увеличивает секрецию гормона роста витамин К, только применять его необходимо в умеренных дозах, чтобы не повысить чрезмерно свертываемость крови.
1 Прекращение роста большинства костей в длину могут служить признаком того, что уже возможно лечение, например, анаболическими стероидами, которые приводят к преждевременному закрытию ростовой зоны хряща, если ростовые зоны узе закрыты, (что явствует из рентгеновского снимка лучевой кости молодого человека), то уже отсутствует опасность слишком быстро закрыть зоны роста применения стероиды, а значит, их применение можно начинать.
Читайте также: