Ухо это хрящ или кость
I
разновидность соединительной ткани, является частью кости, которая способствует обеспечению ее подвижности, либо отдельным анатомическим образованием вне скелета. В непосредственной связи с костью находятся суставные хрящи (наиболее представительная группа), межпозвоночные диски, хрящи уха, носа, лобкового симфиза. Отдельные анатомические образования составляют группу хрящей воздухоносных путей (гортани, трахеи, бронхов), стромы сердца.
Хрящи выполняют интегративно-буферную, амортизационную, формоподдерживающую функции, участвуют в развитии и росте костей. Биомеханические функции осуществляются за счет упругоэластических свойств хряща.
Основная масса хряща представлена хрящевой тканью. В ее состав входят неклеточные и клеточные элементы. Неклеточные элементы являются определяющим функциональным звеном хрящевой ткани и составляют основную се часть. Эту часть условно разделяют на волокнистые коллагеновые и эластические структуры и основное вещество. Основу коллагеновых структур составляет коллагеновый белок, из которого построены все волокнистые структуры хряща: молекулы, микрофибриллы, фибриллы, волокна. Эластические структуры присутствуют в некоторых хрящах (ушной раковине, надгортаннике, надхрящнице) в форме молекул эластина и эластического гликопротеида, эластических фибрилл и волокон, пластических гликопротеидных микрофибрилл, аморфного эластина.
Волокнистые структуры и клеточные элементы хряща окружены основным веществом интегративно-буферной метаболической средой соединительной ткани, которая имеет гелеобразную консистенцию. Ее главными компонентами являются протеогликаны и удерживаемая ими вода, через которую осуществляются все обменные процессы. Она же обеспечивает амортизационную функцию хряща.
Важной частью хрящевой ткани является интерстициальное пространство (межволокнистое и межклеточное), представляющее единую систему своеобразных каналов, стенки которых образованы волокнистыми структурами. Эта система каналов заполнена основным веществом и является вторым звеном микроциркуляции. По ней происходит перемещение межтканевой жидкости под действием механического давления, капиллярных и осмотических сил, что обеспечивает метаболизм и биомеханическую функцию хрящевой ткани Каналы имеют форму трубочек, щелей округлых полостей.
Клеточные элементы хрящевой ткани создают хрящ, осуществляют его постоянное обновление и восстановление. Среди хрящевых клеток выделяют камбиальные хрящевые клетки, хондробласты и хондроциты.
Различают три вида хрящей — гиалиновые, эластические и волокнистые. Основанием для выделения гиалиновых хрящей служит их внешний вид — напоминают гиалин. К этой группе относятся хрящи суставные, воздухоносных путей, носа. Эластические хрящи выделены по качественному составу волокнистых структур, хотя внешне они идентичны гиалиновым хрящам. Это хрящи уха и надгортанника. Волокнистые хрящи выделены по признаку структурной организации. Их соединительнотканный остов в основном построен из коллагеновых волокон, в отличие от других хрящей, где основу составляют коллагеновые фибриллы.
Патология. Врожденные пороки развития могут быть связаны с нарушением формирования хрящевой ткани (см. Остеохондродисплазия) или закладки и развития органов, образованных Х. (нос, гортань, суставы и др.).
Повреждения Х. отмечают в результате действия физических (механических, термических и др.), химических и других травмирующих агентов. При механических повреждениях Х. может нарушаться целость надхрящницы (см. Перихондрит), части хрящевого покрытия суставного конца кости, например трансхондральный перелом (см. Коленный сустав), хрящевая зона роста кости (эпифизеолиз — см. Переломы), отдельных хрящей (носа, гортани, уха, ребер и др.). X. может повреждаться в результате длительного действия слабых механических агентов (см. Микротравма).
Поражения Х. отмечают при многих дистрофических процессах (см. Остеоартроз, Остеохондроз, Остеохондропатии (Остеохондропатия)), нарушениях обменных процессов (например, Кашина — Бека болезни (Кашина — Бека болезнь), Охронозе). В ряде случаев инфекционные болезни (сыпной тиф, сепсис различной этиологии) сопровождаются поражением хрящевых структур.
Опухоли. Различают доброкачественные хрящеобразующие опухоли — хондрома, остеохондрома, хондробластома, хондромиксоидная фиброма и злокачественные — хондросаркома.
Остеохондрома (костно-хрящевой экзостоз) состоит из костного выроста, покрытого слоем хряща. Обычно локализуется в области метафизов длинных трубчатых костей, на ребрах, костях таза. Поражение может быть солитарным или множественным, иногда имеет наследственный характер. Клинически экзостозы могут не проявляться. При достижении больших размеров возникают деформация пораженной кости и боли вследствие давления на нерв.
Хондробластома встречается крайне редко, преимущественно у людей молодого возраста. Локализуется в области эпифизарно-хрящевой пластинки длинных трубчатых костей и диафизе. Клиническая картина нетипична — умеренные боли, небольшая припухлость в области пораженной кости, (ограничение движений в соседнем суставе.
Хондромиксоидная фиброма — редкая опухоль. Встречается у лиц молодого возраста. Чаще располагается в костях, образующих коленный сустав. Клинически проявляется незначительными болями, ограничениями движений, реже — пальпируемой опухолью.
Ведущим методом диагностики является рентгенологический. Распознавание множественных хондром кистей и стоп обычно не вызывает трудностей. Диагностировать хондромы длинных трубчатых костей, хондробластомы и хондромиксоидные фибромы сложнее. Их приходится дифференцировать с медленно текущими хондросаркомами, гигантоклеточными опухолями и другими поражениями кости. Диагностические трудности преодолеваются с помощью гистологического исследования материала, полученного из очага поражения. Единственный метод лечения указанных новообразований — хирургический. Особого внимания требуют хондромы длинных трубчатых костей и остеохондромы, поскольку они чаще других доброкачественных опухолей подвергаются малигнизации после нерадикальных операций. При энхондроме длинной трубчатой кости показана сегментарная резекция. Хондромы мелких костей требуют удаления всей пораженной кости. Прогноз после радикально произведенной операции благоприятный.
Большое значение для решения вопроса о наступлении малигнизации имеет наблюдение за динамикой клинических и рентгенологических признаков. Основным симптомом озлокачествления хондромы является внезапное увеличение в размерах ранее длительно существовавшей опухоли. В сомнительных случаях повторные рентгенологические исследования необходимо проводить ежемесячно.
Хондросаркома встречается относительно часто, составляя 12—18% всех сарком кости. Наблюдается преимущественно в возрасте 25— 60 лет, у мужчин в 2 раза чаще. Преимущественная локализация — кости таза, пояса верхних конечностей, ребра. Нередко поражаются проксимальные суставные конусы бедренной и плечевой костей. У 8—10% больных хондросаркома развивается вторично из предшествующих патологических процессов: хондромы, костно-хрящевые экзостозы, дисхондроплазии (болезнь Оллье), деформирующий остеоз (Педжета болезнь).
Основными симптомами при первичной хондросаркоме являются наличие опухоли и боли, которые усиливаются по мере роста опухоли. По клиническому течению, рентгеноморфологическим проявлениям и прогноз хондросаркомы значительно отличаются друг от друга, что обусловлено особенностями микроскопического строения. Для высокодифференцированных опухолей характерен длительный анамнез с малой выраженностью симптомов, что свойственно для лиц старше 30 лет. При анаплазированных хонросаркомах (чаще у лиц молодого возраста) длительность развития симптомов не превышает 3 мес.
Диагноз устанавливают с учетом клинико-рентгенологических признаков и морфологических данных. Объем хирургического вмешательства зависит от локализации и степени злокачественности опухоли. При 1—2 степени злокачественности возможна сегментарная резекция трубчатой кости с эндопротезированием. В случае анаплазированного варианта, особенно у лиц молодого возраста, показана ампутация конечности. При высокодифференцированных хондросаркомах 5-летняя выживаемость составляет до 90%. В случае анаплазированного варианта прогноз неблагоприятный — 5 лет переживает 5% больных.
Библиогр.: Гистология, под ред. Ю.И. Афанасьева и Н.А. Юриной, с. 310, М., 1989; Клиническая онкология, под ред. Н.Н. Блохина и Б.Е. Петерсона, с. 250, М., 1971; Кныш И.Т., Королев В.И. и Толстопятов Б.А. Опухоли из хрящевой ткани, Киев, 1986; Павлова В.Н. и др. Хрящ. М., 1988; Патологоанатомическая диагностика опухолей человека, под ред. Н.А. Краевского и др., с. 397, М., 1982; Трапезников Н.Н. и др. Опухоли костей, М., 1986; Хэм А. и Кормак Д. Гистология, пер. с англ., т. 3, М., 1983.
II
анатомическое образование, состоящее из хрящевой ткани и выполняющее опорную функцию.
Основные сведения по анатомии слуха.
- уха;
- афферентных (приводящих) слуховых путей;
- слуховых центров в головном мозге.
В органе слуха различают периферическую и центральную части, границей между которыми является мостомозжечковый угол, т.е. место, в котором преддверно-улитковый нерв входит в ствол мозга.
Периферическая часть органа слуха включает наружное, среднее и внутреннее ухо, а также слуховую часть преддверно-улиткового нерва (рис. 1).
Центральная часть представлена центральными слуховыми путями, а также подкорковыми и корковыми слуховыми центрами.
- ушной раковины;
- наружного слухового прохода.
Ушная раковина представляет собой моделированный эластический хрящ с рядом углублений и выпуклостей, покрытый кожей, за исключением ушной мочки, образованной кожной складкой. Кожа плотно прилегает к хрящу на передней поверхности и несколько более рыхло на задней. Ушная раковина расположена между височно-нижнечелюстным суставом спереди и сосцевидным отростком височной кости сзади. Ушная раковина снабжена мышечным аппаратом, состоящим из ряда малых мышц, сокращение которых у некоторых лиц способно вызывать движения раковины. Отдельные части ушной раковины и их названия представлены на рисунке 2.
Наружный слуховой проход обычно имеет длину около 3 см. Различают наружную хрящевую и внутреннюю костную части, в месте их соединения образуется сужение - isthmus (это сужение в терминологии слухопротезистов называют поворотом наружного слухового прохода).
Хрящевой наружный проход имеет извилистую форму и соединяется с костной частью мощным соединительнотканным соединением. Хрящевая часть прохода выстлана кожей с многочисленными волосяными мешочками, сальными и потовыми железами; последние образуют ушную серу и поэтому называются серными железами. Сера, состоящая из сального вещества и пигмента, содержит также клетки ороговевающего эпителия. Хрящ прохода образует желоб, дополненный вверху волокнистой соединительной тканью. Поэтому наружный слуховой проход способен расширяться в хрящевой части при введении ушной воронки. Костная часть выстлана более тонкой кожей, лишенной волосков и желез, плотно прилегающей к стенкам прохода. Просвет прохода слепо заканчивается барабанной перепонкой. Наружный слуховой проход суживается в направлении барабанной перепонки, поэтому инородные тела чаще всего задерживаются на границе его хрящевой и костной частей. Как форма наружного слухового прохода, так и защитные элементы (волоски, сера) призваны предохранять барабанную перепонку от травм, изменений температуры, высыхания, потери эластичности и упругости.
Чувствительная иннервация наружного уха происходит от тройничного нерва (V черепной нерв), большого ушного, блуждающего (Х черепной нерв) и чувствительных волокон лицевого нерва (VII черепной нерв). Иннервацией с участием блуждающего нерва можно объяснить возникновение кашлевого рефлекса при касании к задней стенке наружного слухового прохода.
Функции наружного уха:
- защитная;
- усиление высокочастотных тонов;
- определение смещения источника звука в вертикальной плоскости;
- локализация источника звука.
- барабанной перепонки;
- барабанной полости с цепочкой слуховых косточек (тимпанальный отдел);
- слуховой трубы (туботимпанальный отдел);
- сосцевидного отростка (мастоидальный отдел).
Барабанная перепонка имеет толщину 0,1 мм, овальную форму и размеры 9х11 мм. Она состоит из трех слоев: кожного, волокнистого и слизистого. Кожный слой является продолжением кожи наружного слухового прохода. Волокнистый слой состоит из пучков коллагеновых волокон, расположенных циркулярно и радиально. Радиальные волокна расположены вокруг центральной точки перепонки - пупка. Пучки радиальных волокон расходятся от пупка барабанной перепонки на ее периферию, напоминая спицы колеса. На периферии они переходят в волокнисто-хрящевое кольцо, фиксирующее оболочку к кости. Радиально расположенные пучки волокон плотно соединяются с рукояткой молоточка, переходя в ее надкостницу. Рукоятка молоточка образует выпячивание на перепонке, которое оканчивается в воронкообразном углублении - пупке барабанной перепонки. От контуров молоточка направляются вверх под почти прямым углом складки барабанной перепонки, отделяющие расслабленную часть перепонки, лишенную волокнистого слоя и прикрепленную непосредственно к барабанной выемке височной кости. Остальные 2/3 барабанной перепонки представляют собой плотную колеблющуюся поверхность, образующую натянутую часть барабанной перепонки, прикрепленную к волокнисто-хрящевому кольцу. Слизистый слой является продолжением слизистой оболочки среднего уха.
Линии, проведенные вдоль контуров рукоятки молоточка и перпендикулярно к ней, разделяют барабанную перепонку на квадранты: передневерхний, передненижний, задненижний и задневерхний.
Барабанная перепонка является боковой стенкой барабанной полости. Медиальная стенка образуется латеральной стенкой костного лабиринта с выпячиванием основного завитка улитки - промонториума. На медиальной стенке расположены два лабиринтных окна - овальное (окно преддверия) и круглое (окно улитки), закрытое эластической соединительнотканной оболочкой, т.н. вторичной мембраной.
Барабанная полость - это наполненная воздухом полость, расположенная между наружным и внутренним ухом, в которой различают:
- верхний отдел - надбарабанное пространство, или аттик (эпитимпанум);
- средний отдел (мезотимпанум);
- нижний отдел - подбарабанное пространство (гипотимпанум).
В барабанной полости расположены три слуховые косточки:
- молоточек, частично сращенный с барабанной перепонкой;
- наковальня, соединенная телом посредством сустава с головкой молоточка, а длинным отростком - с головкой стремени;
- стремя, закрывающее через посредство циркулярной связки овальное окно (окно преддверия).
Слуховые косточки представляют собой цепь, соединяющую барабанную перепонку с внутренним ухом (рис. 3).
В среднем ухе находится мышечный аппарат барабанной полости, предохраняющий внутреннее ухо от звуков чрезмерной интенсивности, причем мышцы сокращаются рефлекторно. Наименьшая интенсивность звука, вызывающая рефлекс стременной мышцы или мышцы натягивающей барабанную перепонку, составляет 92 дБ над порогом слуха, независимо от частоты. Мышца, натягивающая барабанную перепонку, находится в верхней части канала слуховой трубы, а ее сухожилие прикреплено к рукоятке молоточка. Стременная мышца расположена на задней стенке барабанной полости, ее сухожилие прикреплено к задней ножке стремени. Сокращение мышц барабанной полости ограничивает колебания слуховых косточек и напрягает барабанную перепонку; следствием этого является ослабление звука на 15-20 дБ.
Слуховая труба состоит из подвешенной к основанию черепа подвижной хрящевой (2/3 длины) и костной (1/3 длины) частей. Костная часть с мышцей, натягивающей барабанную перепонку, образуют мышечно-трубный канал височной кости. Воронкообразное глоточное устье хрящевой части трубы расположено в носовой части глотки. Костная часть трубы открывается в барабанную полость; это устье постоянно открыто. Посредством слуховой трубы происходит выравнивание давления между воздухоносными пространствами среднего уха и носовой частью глотки. Увеличение давления в барабанной полости пассивно компенсируется посредством слуховой трубы, но снижение давления требует активной вентиляции со стороны трубы. Со стороны носоглотки труба открывается благодаря сокращению мышц, натягивающих и поднимающих мягкое небо, причем этот механизм частично контролируется волей человека. Такие рефлексы как зевание, чихание или глотание, сопровождающиеся открытием глоточного устья трубы, находятся под контролем автономной нервной системы и не зависят от нашей воли. Если слуховая труба функционирует правильно, прослушивание собственного голоса непосредственно из глотки (т.н. аутофония), а также других звуковых явлений, возникающих в этой области, невозможно. Слуховая труба функционирует также как канал, дренирующий среднее ухо при патологических процесах и после ушных операций.
Сосцевидный отросток (пневматическая система височной кости) представлен многочисленными, соединяющимися друг с другом воздухоносными полостями, наибольшей из них является пещера - antrum . У разных лиц пневматическая система отличается разной степенью пневматизации. Хорошо развитая пневматическая система может распространяться на чешую височной кости, затылочную кость или на основание скуловой дуги. Слабо пневматизированный сосцевидный отросток может представлять собой плотную кость с единичными клетками вокруг небольшого антрума. Пневматические клетки сосцевидного отростка выполняют функцию термической и акустической защиты как для среднего, так и для внутреннего уха. Полная пневматизация сосцевидного отростка наступает между 6 и 12 годами жизни.
Расположено в височной кости, анатомически представлено лабиринтом и условно делится на функционально различные рецепторные аппараты:
- преддверный орган - преддверие и полукружные каналы;
- периферическая часть органа слуха - улитка.
Морфологически с учетом анатомического строения отличают костный и перепончатый лабиринт. Костный лабиринт - это костная оболочка значительной плотности, единственная костная структура организма, в которой не прекращается механизм перестройки кости. В улитке костная часть представлена веретеном и спиральным каналом улитки, 2,5 раза окружающим веретено. От веретена отходит костная спиральная пластинка, вместе с основной мембраной спирального улиткового хода разделяющая просвет канала на лестницу преддверия, соединенную с овальным окном, а вместе с мембраной Рейсснера улиткового хода - на барабанную лестницу, закрытую вторичной мембраной круглого окна (рис. 8). Барабанная лестница и лестница преддверия выполнены жидкостью, называемой перилимфой, они соединяются на верхушке улитки геликотремои.
Перепончатая часть улитки образует спиральный улитковый ход, имеющий на поперечном разрезе форму треугольника, образованного упомянутыми оболочками: снизу - основной мембраной, сверху - мембраной Рейсснера. Улитковый ход, расположенный между лестницами преддверия и барабанной, образует т.н. среднюю лестницу, наполненную эндолимфой. Он оканчивается с обеих сторон слепыми концами: вверху прилежащим к геликотреме, а внизу - преддверным.
На основной мембране располагается спиральный орган улитки, или орган Корти, с волосковыми рецепторными клетками и опорными клетками. Реснички чувствительных клеток пронизывают сетчатую оболочку, покрывающую спиральный орган. К рецепторным клеткам органа Корти направляются волокна клеток ганглия, отростки которых, в свою очередь, образуют слуховой нерв и доходят до улитковых ядер ствола мозга. Волосковые рецепторные клетки разделяются на внутренние и наружные. Внутренние клетки расположены в одном ряду: каждая из них соединяется с афферентным волокном, проводящим раздражитель к мозговым центрам слуха. Эти волокна составляют 95% всех афферентных волокон слухового нерва. Наружные волосковые клетки расположены тремя рядами, определенную группу этих клеток снабжает одно единственное волокно. Афферентные волокна, идущие от наружных волосковых клеток, составляют лишь 5% волокон слухового нерва. Сокращение наружных клеток вызывает явление отоакустической эмиссии - сигналы, исходящие из внутреннего уха (чаще всего после звуковой стимуляции).
Хрящевая ткань, как и костная, относится к скелетным тканям с опорно-механической функцией. По классификации выделяют три разновидности хрящевой ткани — гиалиновую, эластическую и волокнистую. Особенности строения различных видов хрящевой ткани зависят от места расположения ее в организме, механических условий, возраста индивидуума.
Виды хрящевой ткани: 1 — гиалиновый хрящ; 2 — эластический хрящ; 3 — волокнистый хрящ
Наиболее широкое распространение у человека получила гиалиновая хрящевая ткань .
Она входит в состав трахеи, некоторых хрящей гортани, крупных бронхов, темафизов костей, встречается в местах соединения ребер с грудиной и в некоторых других областях тела. Эластическая хрящевая ткань входит в состав ушной раковины, бронхов среднего калибра, некоторых хрящей гортани. Волокнистый хрящ обычно встречается в местах перехода сухожилий и связок в гиалиновый хрящ, например в составе межпозвоночных дисков.
Ведущими химическими соединениями, образующими основное аморфное вещество хрящевых тканей (хондромукоид), являются сульфатированные гликозаминогликаны (кератосульфаты и хондроитинсульфаты А и С) и нейтральные мукополисахариды, большинство из которых представлено сложными надмолекулярными комплексами. В хрящах получили широкое распространение соединения молекул гиалуроновой кислоты с протеогликанами и со специфическими сульфатированными гликозаминогликанами. Этим обеспечиваются особые свойства хрящевых тканей — механическая прочность и в то же время проницаемость для органических соединений, воды и других веществ, необходимых для обеспечения жизнедеятельности клеточных элементов. Маркерными, наиболее специфичными для межклеточного вещества хряща соединениями являются кератосульфаты и определенные разновидности хондроитинсульфатов. Они составляют около 30 % сухой массы хряща.
Основные клетки хрящевой ткани — хондробласты и хондроциты .
Хондробласты представляют собой молодые, малодифференцированные клетки. Они располагаются вблизи надхрящницы, лежат поодиночке и характеризуются округлой или овальной формой с неровными краями. Крупное ядро занимает значительную часть цитоплазмы. Среди клеточных органелл преобладают органеллы синтеза — рибосомы и полисомы, гранулярная эндоплазматическая сеть, комплекс Гольджи, митохондрии; характерны включения гликогена. При общегистологической окраске препаратов гематоксилином и эозином хондробласты слабобазофильны. Структура хондробластов указывает на то, что эти клетки обнаруживают высокую метаболическую активность, в частности, связанную с синтезом межклеточного вещества. Показано, что в хондробластах синтез коллагеновых и неколлагеновых белков пространственно разделен. Весь цикл синтеза и выведения высокомолекулярных компонентов межклеточного вещества в функционально активных хондробластах у человека занимает менее суток. Новообразованные белки, протеогликаны и гликозаминогликаны не располагаются непосредственно вблизи поверхности клетки, а распространяются диффузно на значительном расстоянии от клетки в образовавшемся ранее межклеточном веществе. Среди хондробластов встречаются и функционально неактивные клетки, строение которых характеризуется слабым развитием синтетического аппарата. Кроме того, часть хондробластов, находящаяся сразу под надхрящницей, не утратила способность к делению.
Хондроциты — зрелые клетки хрящевой ткани — занимают, главным образом, центральные участки хряща. Синтетические способности этих клеток значительно ниже, чем у хондробластов. Дифференцированные хондроциты чаще всего лежат в хрящевых тканях не поодиночке, а группами, включающими по 2, 4, 8 клеток. Это так называемые изогенные группы клеток, которые образовались в результате деления одной хрящевой клетки. Структура зрелых хондроцитов указывает на то, что они не способны к делению и заметному синтезу межклеточного вещества. Но некоторые исследователи считают, что при определенных условиях митотическая активность в этих клетках все же возможна. Функция хондроцитов заключается в поддержании на определенном уровне обменных метаболических процессов в хрящевых тканях.
Изогенные группы клеток находятся в хрящевых полостях, окруженных матриксом. Форма хрящевых клеток в изогенных группах может быть различной — округлой, овальной, веретеновидной, треугольной — в зависимости от положения на том или ином участке хряща. Хрящевые полости окружены узкой, более светлой, чем основное вещество, полоской, образующей как бы оболочку хрящевой полости. Эта оболочка, отличающаяся оксифильностью, называется клеточной территорией, или территориальным матриксом. Более удаленные участки межклеточного вещества называются интерстициальным матриксом. Территориальный и интерстициальный матриксы — участки межклеточного вещества с различными структурно-функциональными свойствами. В пределах территориального матрикса коллагеновые фибриллы ориентированы вокруг поверхности изогенных клеточных групп. Переплетения коллагеновых фибрилл образуют стенку лакун. Пространства между клетками внутри лакун заполнены протеогликанами. Интерстициальный матрикс характеризуется слабобазофильной или оксифильной окраской и соответствует наиболее старым участкам межклеточного вещества.
Таким образом, дефинитивная хрящевая ткань характеризуется строго поляризованным распределением клеток в зависимости от степени их дифференцировки. Вблизи надхрящницы находятся наименее дифференцированные клетки — хондробласты, имеющие вид вытянутых параллельно надхрящнице клеток. Они активно синтезируют межклеточное вещество и сохраняют митотическую способность. Чем ближе к центру хряща, тем клетки более дифференцированы, они располагаются изогенными группами и характеризуются резким снижением синтеза компонентов межклеточного вещества и отсутствием митотической активности.
В современной научной литературе описан еще один тип клеток хрящевой ткани — хондрокласты . Они встречаются только при разрушении хрящевой ткани, а в условиях ее нормальной жизнедеятельности не обнаруживаются. По своим размерам хондрокласты значительно крупнее, чем хондроциты и хондробласты, так как содержат в цитоплазме несколько ядер. Функция хондрокластов связана с активацией процессов дегенерации хряща и участием в фагоцитозе и лизисе фрагментов разрушенных хрящевых клеток и компонентов хрящевого матрикса. Иными словами, хондрокласты — это макрофаги хрящевой ткани, входящие в единую макрофагально-фагоцитарную систему организма.
Все наши кости в процессе эмбрионального (зародышевого) развития образуются из хрящей. У взрослого человека они составляют не более 2% массы тела. Кости растут благодаря диафизарному хрящу, удлиняются они до тех пор, пока не закрываются так называемые зоны роста1. Однако некоторые из них увеличиваются в течение всей жизни человека. Установлено, что постоянно растут, хотя и малыми темпами, нижняя челюсть, нос, ушные раковины, ступни ног и кисти рук.
Наиболее часто, спортсмены покидают спорт из-за травм суставно-связочного аппарата. Его слабое место — хрящ. Проблемы с позвоночником также обусловлены в основном патологией межпозвоночных хрящей.
Можно сказать, что в спортивной травматологии лечение хрящей является заботой № 1. При этом некоторые авторы считают, что восстанавливаются они не более чем на 50%, ставя, таким образом, под сомнение возможность полного восстановления спортивной работоспособности. Попробуем более подробно рассмотреть, что же такое хрящ и определить пределы и методы его регенерации.
Хрящевая ткань — одна из разновидностей соединительной ткани, которая выполняет в организме опорные функции. Непременным атрибутом хряща, за исключением суставного, является надхрящница, обеспечивающая его питание и рост. В суставах хрящ обнажен и контактирует непосредственно с внутренней средой сустава — синовиальной жидкостью. Она выполняет роль своеобразной смазки между трущимися поверхностями суставов, покрытых гладким глиаиновым хрящом. Хрящи костей и позвоночника постоянно испытывают как статическую, так и динамическую нагрузки. Хрящи носа, гортани, бронхов, фиброзных треугольников в сердце осуществляют также и опорную функцию.
Структура хряща позволяет ему испытывать обратимую деформацию и в то же время сохранять способность к обмену веществ и размножению. Главные его компоненты — хрящевые клетки (хендроциты) и внеклеточный матрикс, состоящий из волокон и основного вещества. Причем, большую часть массы хряща составляет именно межклеточное вещество.
В зависимости от преобладания коллагеновых, эластических волокон или основного вещества различают гиалиновый, эластический и волокнистый хрящ.
Особенностью хряща, по сравнению с другими видами тканей в организме является то, что в нем мало клеток и они окружены большим количеством межклеточного пространства — матрикса. Хрящ так плохо восстанавливается после повреждений именно потому, что в нем очень мало клеток, способных размножаться и основная часть репарации (восстановления) идет за счет внеклеточного матрикса. В эластическом хряще (гортани, носа, ушной раковины) содержится много эластина (из него, например, на 30% состоит ухо человека ).
Биомеханические свойства хрящей делают их высокоспецифическими и по существу уникальными компонентами опорно-двигательного аппарата.
Они:
а) принимают на себя действие внешних механических сил сжатия и растяжения; распределяют эти силы равномерно, поглощают и рассеивают их, переводя аксиально направленные силы в тангенциальные (в суставах конечностей, позвоночника и т.д.);
б) образуют устойчивые к износу поверхности сочленений скелета, участвуют в формировании смазочного аппарата в синовиальных суставах;
в) являются местом прикрепления и опорой для мягких тканей и мышц; образуют полости в местах контакта с внешней средой (хрящи носа, ушей, органов дыхания).
Считается, что хрящевой матрикс состоит из 3-х основных компонентов:
1) волокнистый коллагеновый каркас, который образует трехмерную сеть переплетений;
2) молекулы протеогликанов, которые заполняют петли волокнистого каркаса;
3) вода, свободно перемещающаяся между переплетениями каркаса и молекулами протеогликанов.
У суставного хряща нет кровеносных сосудов. Он питается диффузно, поглощая питательные вещества из синовиальной жидкости.
В чем причина низкой метаболической активности хряща? Только в одном — в малом количестве клеток (1-10%) в единице объема ткани. В пересчете на чистую клеточную массу уровень метаболизма хондроцитов ничуть не меньше, чем у других клеток организма. Особенно низким метаболизмом отличаются суставные хрящи и пульподные ядра межпозвонковых дисков. Именно эти структуры отличаются самым малым количеством хондроцитов (1% от общей массы хряща) и именно они хуже всех других восстанавливаются после повреждений.
Окислительные процессы в хряще протекают в основном анаэробным (бескислородным) путем. Так, например, хондроциты пульпозных ядер межпозвоновых дисков на 99% питаются анаэробно и лишь на 1% аэробно. В среднем же кислородные окисление в хрящевой ткани как минимум в 50 раз менее интенсивно, чем в обычных тканях организма. Анаэробный характер окисления в хондроцитах — это защитно-приспособительная реакция, сложившаяся в процессе эволюции. И это неудивительно, если учесть, что хрящ не имеет (глаиновый, фиброзный) или почти не имеет (эластический) кровоснабжения. Если начать введение кислорода в пространство, пограничное с хрящом, то диффузия в хрящ О2 не только не улучшает его трофику, но, наоборот, резко ухудшает ее.
Насколько низка метаболическая активность хряща, можно понять из следующего сравнения. Белковый состав печени полностью обновляется за 4(!) дня. Коллаген хрящей обновляется всего лишь на 50% за 10(!) лет. Поэтому становится понятным, что любая травма хрящевой ткани практически неизлечима, если только не принять специальных мер, направленных на увеличение числа хондроцитов, которые сформируют новый матрикс.
Регенерация хрящевой ткани как физиологическая, так и репаративная (восстановительная) напрямую зависит от гормонального фона и модулирующего действия тех или иных гормонов. Так, например, глюкокортикоидные гормоны угнетают анаболические реакции в хондроцитах, ингибируют синтез коллагена и протеогликанов, вызывают дефицит глауроновой кислоты в синовиальной жидкости и в матриксе. И это угнетающее действие глюкокортикоидов более выражено, если оно сочетается со сдавлением (компрессией) хряща. В принципе, в этом нет ничего удивительного, если учесть, что глюкокортикоиды подавляют гликолиз — анаэробное окисление глюкозы в хряще. Регенерация без энергетического обеспечения становится попросту невозможной. Инсулин стимулирует синтез коллагена в матриксе хрящевой ткани, однако эта стимуляция невелика и носит опосредованный характер.
Самым сильным фактором, стимулирующим как физиологический, так и репаративный синтез в хрящевой ткани является соматотропный гормон. Сродство хрящей к соматотропному гормону отсутствует как таковое. Однако под действием соматотропного гормона в печени образуется инсулиноподобный фактор роста (ИРФ-1), который и обладает собственно анаболическим действием на все ткани, включая хрящевую. Сам по себе гормон роста способен оказывать анаболическое действие на клетки лишь в том случае, если его концентрация в 2000 раз превышает физиологическую. Такое возможно только в пробирке и полностью исключается в реальной жизни. Применяя соматотропин с репаративной целью необходимо помнить, что его влияние на синтез ИРФ-1 возможно лишь в условиях нормальной работы печени, при отсутствии серьезных заболеваний, иначе ИРФ-1 просто не будет синтезироваться и введение соматотропина не даст никакого результата. Способность соматомедина усиливать регенерацию хрящевой ткани в 100 раз превышает эффект от введения в организм инсулина и тестостерона. ИРФ-1 — это единственный фактор, вызывающий деление (размножение) хондроцитов. Другие анаболические факторы организма (а их довольно много) такой способностью не обладают.
Тестостерон — основной андроген организма умеренно стимулирует биосинтетические процессы в хрящах, а эстрогены — женские половые гормоны, наоборот, тормозят ее.
Анаболические стероиды обладают способностью вызывать регенерацию хряща в намного большей степени, нежели чистый тестостерон и это неудивительно, если учесть, что они обладают анаболическим действием в несколько раз превышающим анаболическое действие тестостерона.
Интересно, что матрикс — порождение хондроцитов — живет своей самостоятельной жизнью. Он способен модулировать действие различных гормонов на хондроциты, ослабляя, либо усиливая их действие. Воздействуя на матрикс, можно изменить состояние хондроцитов как в лучшую, так и в худшую сторону. Удаление части матрикса вызывает немедленную интенсификацию биосинтеза недостающих в нем макромолекул. Более того, одновременно усиливается пролиферация (разрастание) хондроцитов. Количественные изменения в матриксе способны вызвать их качественные изменения.
Длительное ограничение движений в суставе (гипсовая иммобилизация и др.) приводит к уменьшению массы хрящей. Причина на удивление проста: в неподвижном суставе отсутствует перемешивание синовиальной жидкости. При этом диффузия молекул в хрящевую ткань замедляется и питание хондроцитов ухудшается. Недостаток прямой компрессивной нагрузки (на сжатие) так же приводит к ухудшению питания хондроцитов. Хрящу нужна хотя бы минимальная компрессионная нагрузка для поддержания нормальной трофики. Чрезмерная нагрузка на растяжение в эксперименте вызывает перерождение хряща с развитием грубых фиброзных волокон.
Очень сложное влияние на состояние внутрисуставных хрящей оказывает синовиальная оболочка. Она может как усиливать анаболизм хрящевой ткани, так и усиливать ее катаболизм. Удаление синовиальной оболочки резко ухудшает трофику хрящей, которая восстанавливается лишь после ее отрастания.
Хондроциты способны и к ауторегуляции. Они синтезируют специальные факторы роста, стимулирующие разрастание соседних хондроцитов. Пока их структура полностью не расшифрована. Известно лишь то, что они имеют полипептидную природу.
Если в шейном отделе позвоночника негативные явления развиваются с подросткового возраста, то в поясничном отделе, где нагрузка на единицу поперечного сечения намного ниже — начиная с 25-30 лет. В целом они носят такой же морфологический характер, как и в шейном отделе, но отличаются клиническими (медицинскими) признаками. В шейном отделе позвоночника сквозь поперечные отростки шейных позвонков проходят крупные артерии, питающие все основание мозга и его стволовую часть, где находится жизненно важные центры (дыхания, кровообращения и т.д.). С развитием шейного остеохондроза происходит постепенное незаметное сдавливание этих артерий с развитием недостаточности мозгового кровообращения. При этом практически не бывает (или они бывают очень редко) никаких болевых признаков процесса. В поясничном отделе позвоночника картина несколько иная. Из этого отдела выходят нервные корешки, несущие чувствительные волокна от нижних конечностей и двигательные волокна к мышцам ног. Поясничный остеохондроз прежде всего проявляется различными болевыми симптомами, нарушением чувствительности и двигательной сферы. При этом никаких жизненно важных функций организма он не нарушает. Шейный остеохондроз никакими болевыми признаками себя не обнаруживает и особых неудобств не доставляет, однако может привести к серьезным нарушениям мозгового кровообращения, вплоть до инсультов с развитием параличей.
Возрастные изменения эластических хрящей не носят фатального характера. Они выражаются в основном в оссификации — накоплении кальция и не приводят ко сколько-нибудь заметному нарушению функций.
В глиаминовых хрящах суставов уже начиная с 30-летнего возраста обнаруживается фибриляция — разволокнение хрящевой поверхности. При микроскопическом исследовании на поверхности хряща обнаруживаются разломы и расщепления. Расщепление хряща происходит как вертикальном, так и в горизонтальном направлении. При этом местами встречаются скопление клеток хрящевой ткани как ответная реакция организма на разрушение хряща. Иногда отмечается возрастное увеличение (!) толщины суставных хрящей как ответное действие на действия механических (тренировка) факторов. Возрастную эволюцию хрящей коленного сустава многие исследователи отмечают начиная уже с 40-летнего возраста. Наиболее существенное изменение, отмечаемое при старении хряща — это уменьшение содержания воды, что автоматически приводит к снижению его прочности.
Потенциальные возможности регенерации хряща достаточно велики. Он может регенерировать за счет собственного потенциала (размножение хондроцитов и рост матрикса) и, что не менее важно, за счет других видов соединительной ткани, которые имеют общее с ним происхождение. Примыкающие к хрящу ткани обладают способностью к переориентации своих клеток и превращению их в хрящеподобную ткань, которая неплохо справляется со своими функциями. Возьмем для примера самый частый вид повреждений — повреждение внутрисуставного хряща.
При поверхностных повреждениях можно добиться полного восстановления хряща применяя сильнодействующие фармакологические средства. За последние 40 лет экспериментальных и клинических работ свою высокую эффективность доказал лишь один единственный препарат — соматотропный гормон (СТГ). Он стимулирует рост хрящевой ткани в 100 раз сильнее, чем введение тестостерона и инсулина. Еще больший эффект оказывает комбинированное введение СТГ и тиреокальцитонина — особого рода гормона щитовидной железы, который усиливает репарацию как костной, так и хрящевой ткани. Исключительная эффективность действия СТГ на репарацию хряща обусловлено тем, что он стимулирует непосредственно деление хондроцитов. Используя СТГ теоретически можно довести количество хондроцитов до любого нужного количества. Они, в свою очередь, восстанавливают матрикс до необходимого объема, синтезируя все его компоненты, начиная с коллагеновых волокон и кончая протеогликанами. Недостатком СТГ является то, что его нельзя применять местно, вводя непосредственно в зону поражения хрящевой ткани, поскольку действует он опосредованно. СТГ вызывает образование в печени инсулиноподобного фактора роста (ИРФ-1) который и оказывает сильнейший анаболический эффект. Парентеральное (инъекционное) его введение вызывает рост не только поврежденных хрящей, но и нормальных тоже, а это нежелательно, ведь в организме существуют кости, в которых хрящевые зоны роста не закрываются на протяжении всей жизни. Длительное введение больших доз СТГ в сформировавшийся организм может вызвать диспропорции скелета. Хотя следует отметить, что на пораженный хрящ он действует сильнее, и явных деформаций скелета при лечении СТГ в научной литературе не встречается.
В последние годы синтезирована лекарственная формы ИРФ-1, которую все шире применяют инъекционно вместо соматотропина. Поскольку ИРФ-1 действует непосредственно на ткани (в т.ч. и на хрящевую), то возникает заманчивая перспектива использовать его для местного введения (электрофорез, ультразвук и т.д.). Такое применение ИРФ-1 позволило бы локализовать его действие местом пораженного хряща и исключить действие на здоровые хрящи организма.
Неплохое действие на восстановление хряща и окружающего его соединительной ткани оказывают анаболические стероиды (АС). По эффективности они стоят на втором месте после ИРФ-1 и соматотропного гормона, хотя непосредственно деления хондроцитов они не вызывают. Анаболические стероиды, однако, ускоряют физиологическую регенерацию и потенцируют анаболическое действие инсулина и других эндогенных анаболических факторов, блокируют действие катаболических гормонов (глюкокортикоидов). Практическое применение АС в хирургической и травматологической практике доказало их высокую эффективность. Очень жаль, что до сих пор не разработаны лекарственные формы АС для локального применения. Это позволило бы создавать высокие концентрации лекарственного вещества именно в месте повреждения и предотвращать системные (на уровне всего организма) побочные действия. К сожалению, исследования в данной сфере никем не финансируются из-за причисления АС к допинговым средствам в спорте.
Некоторые исследователи в области молекулярной биологии представили очень убедительный материал, доказывающий, что стимуляторы (2-адренергических рецепторов способны симулировать анаболические эффекты соматомединов и, в частности, по отношению к хрящевой ткани. Механизм такого действия не вполне ясен. Не исключено, что просто повышается чувствительность печени к эндогенному соматотропному гормону и возрастает синтез в печени ИРФ-1. Одним из наиболее сильных избирательных стимуляторов (2-адренергических рецепторов является кленбутерол. Этот препарат не обладает гормональными эффектами и, в то же время, оказывает хорошее анаболическое действие. Подобно ИРФ-1 он стимулирует рост хрящевой ткани и может с успехом применяться в посттравматическом восстановительном периоде. Препаратов, стимулирующих (2-адренорецепторы много, но особо хотелось бы отметить такое старое и проверенное средство как адреналин. Адреналин — гормон мозгового вещества надпочечников даже при длительном курсовом применении не вызывает привыкания. В больших дозах адреналин воздействует в основном на а-адренорецепторы. Происходит сужение сосудов кожи, повышение артериального давления, подъем уровня сахара в крови. Малые дозы адреналина не затрагивают а-адренорецепторов, стимулируют (2-адренорецепторы. Расширяются сосуды мышц, снижаются уровень сахара в крови и артериальное давление. Развивается общее анаболическое действие и, в особенности по отношению к хрящевой ткани. Ежедневное введение малых (именно малых!) доз адреналина хорошо зарекомендовало себя как средство, способствующее регенерации.
Некоторые витамины в больших фармакологических дозировках способны существенно увеличить выброс в кровь эндогенного соматотропина. Пальму первенства здесь держит никотиновая кислота (витамин РР). Внутривенное введение сравнительно небольших доз никотиновой кислоты способно увеличить базальную секрецию СТГ в 2-3 раза. Увеличивает секрецию гормона роста витамин К, только применять его необходимо в умеренных дозах, чтобы не повысить чрезмерно свертываемость крови.
1 Прекращение роста большинства костей в длину могут служить признаком того, что уже возможно лечение, например, анаболическими стероидами, которые приводят к преждевременному закрытию ростовой зоны хряща, если ростовые зоны узе закрыты, (что явствует из рентгеновского снимка лучевой кости молодого человека), то уже отсутствует опасность слишком быстро закрыть зоны роста применения стероиды, а значит, их применение можно начинать.
Читайте также: