Экзогенные ретровирусы. Эндогенные ретровирусы. Свойства ретровирусов.

Добавил пользователь Алексей Ф.
Обновлено: 21.12.2024

Структура и цикл жизни ретровирусов. Онкогенные ретровирусы (Oncovirinae). Лентивирусы (Lentivirinae, «медленные вирусы»). «Пенящиеся вирусы» (Spumavirinae). Инфицированность лентивирусами диких животных. Непатогенная инфекция. Реинтеграция и реинфекция ретровирусов. Коинфекция.

Когда знакомишься с вирусологической литературой, изданной «накануне» обнаружения ВИЧ, то складывается впечатление, что ретровирусы на тот момент были изучены не хуже, чем кишечная палочка (см., например, работы Альштейна А. Д., 1982; Тимакова В. Д. и Зуева В. А., 1977).

Первые ретровирусы открыты еще в начале ХХ столетия, когда была установлена вирусная природа эритробластоза и саркомы кур. Вскоре были обнаружены вирус рака молочных желез мышей и вирус лейкоза мышей. Название семейству дано в 1973 г. W. Parks — оно происходит от англ. «reverse transcriptase» (обратная транскриптаза). В латинском варианте «retro» означает обратный поток информации — не от ДНК к РНК, а, наоборот, от РНК к ДНК. В 1970-х гг. семейство было тщательно классифицировано и изучено. Установлена морфология, химический состав, жизненный цикл и патогенные свойства многих его представителей. Ретровирусы были обнаружены как у животных, составляющих ближайшее окружение человека, так и у его эволюционных предков. Их выявили у норок (эндогенный вирус типа С), мышей (экзогенные и эндогенные вирусы лейкоза, вирус саркомы, вирусы рака молочных желез), крыс (эндогенный вирус типа С), хомяков (эндогенный вирус типа С), кошек (эндогенный вирус типа С, экзогенные вирусы лейкоза и саркомы), крупнорогатого скота (вирус лейкоза), обезьян (эндогенные и экзогенные вирусы типа С, эндогенный вирус типа В, вирус лимфомы гиббонов и др.), свиней (вирус типа С), у пресмыкающихся (вирусы типа С), овец (вирусы висны) и др. «Рука ученого» дотянулась даже до ретровирусов гадюк. Тем более удивительным нам представляется существовавший на тот момент пробел в знаниях по ретровирусам у людей. На этом фоне и так запоздалое обнаружение ВИЧ выглядит до сих пор чуть ли не «как гром с ясного неба», даже роль этого вируса в развитии пандемии СПИДа подвергается сомнению.

Структура и цикл жизни ретровирусов. Ретровирусы — семейство сложных РНК-геномных вирусов, образующих с помощью обратной транскриптазы ДНК-копию генома, которая, интегрируя с геномом хозяина, вызывает интегральную инфекцию. Для включения вируса в семейство Retroviridae обязательны следующие признаки:

1) наличие липидной оболочки и сердцевины (core) и характерная морфология, на основании которой их делят на типы В, С и D;

2) наличие обратной транскриптазы внутри вириона;

3) геном в виде однонитевой линейной РНК, которая образует комплекс, состоящий из двух идентичных субъединиц (т. е. они представляют собой диплоидные организмы, каждый их вирион содержит две идентичные цепи РНК размером от 8 тыс. до 10 тыс. нуклеотидов, соединенных вблизи своих 5’-концов);

4) репликация через стадию образования двунитевого ДНК-провируса, соответствующего по длине одной из субъединиц геномной РНК;

5) интеграция ДНК-провируса с клеточным геномом и осуществление транскрипции клеточной РНК-полимеразой (после интеграции ретровирусная ДНК реплицируется как часть клеточной ДНК), созревание вириона путем почкования на клеточных мембранах (Альштейн А. Д., 1982).

Вирион сферический (диаметр 80-100 нм) оболочечный, с гликопротеиновыми поверхностными выступами (8 нм в длину). Внутреннее ядро включает сферический нуклеокапсид (нуклеоид), расположенный эксцентрично у представителей рода Betaretrovirus, по центру — у Alpharetrovirus, Gammaretrovirus, Deltaretrovirus и Spumavirus, и в виде стержня или усеченного конуса у представителей рода Lentivirus. Традиционно семейство разделяют на подсемейства ленти-, онкорна- и спумавирусов (Dalton F. et al., 1974; Matthews R., 1979). Ретровирусное филогенетическое древо показано на рис. 17.

Рис. 17. Ретровирусное филогенетическое древо

На филогенетическом дереве показаны ретровирусы типа С [вирусы лейкозов грызунов (MuLV) и птиц (АLV), а также вирус, тропный к Т-лимфоцитам человека (НТLV)], лентивирусы [вирусы иммунодефицита человека (ВИЧ-1 и 2), обезьян (SIV), кошек (FIV) и вирус visna-maedi (VMV)], спумавирусы и эндогенные ретровирусы человека (HERV-K и HERV–C) (Пауэр К., 2001).

Схематическое изображение РНК-генома ретровирусов приведено на рис. 18.

Рис. 18. Схематическое изображение РНК-генома ретровируса на примере сравнения геномов лентивирусов кошачьих и приматов (по Woude S.V., Apetrei C., 2006)

Лентивирусы приматов обладают пятью регуляторными генами (vif, rev, tat, vpr и nef), которые обычно «выстроены в шеренгу» в одних и тех же регионах SIV/ВИЧ генома. Гены tat и rev содержат по два экзона. Присутствие в геноме лентивируса двух других регуляторных генов (vpx и vpu) варьирует в зависимости от происхождения вируса. Их сочетания обычно делят на три геномные групы: а) SIVsyk, SIVasc, SIVdeb, SIVblu, SIVtal, SIVagm, SIVmnd-1, SIVlhoest, SIVsun и SIVcol содержат пять добавочных генов (tat, rev, nef, vif и vpr); b) геномы ВИЧ-1, SIVcpz, SIVgsn, SIVmus, SIVmon и SIVden включают дополнительный ген vpu; c) ВИЧ-2, SIVsmm, SIVmac, SIVrcm, SIVmnd-2 и SIVdrl формируют третью геномную группу, характеризующуюся присутствием гена vpx.Гены far, vpx специфичны для SIV, инфицирующих обезьян Papionini (триба павиановые, включают следующие рода: павианы, макаки, мангобеи, мандрилы, джелады) и были приобретены в результате негомологичной рекомбинации (nonhomologous recombination), которая привела к дупликации гена vpr. SIVblu, SIVolc, SIVwrc, SIVasc, SIVbkm, SIVery и SIVagi не были полностью секвенированы, и поэтому пока нет возможности охарактеризовать организацию их генов. Структура геномов трех видов FIV сходна и не обнаруживает явных геномных групп, связанных с патогенностью для кошачьих. FIV несут два других добавочных гена: ген dUTPазы (dUTPase gene; на схеме не показан), расположенный в рамке в пределах гена pol. Он ответственен за предотвращение ошибочного включения урацила (uracil misincorporations) в молекулу РНК вируса во время его репликации и, соответственно, его аттенуации. Вторая открытая рамка считывания, обозначенная как orf-A (также ее называют orf-2), кодирует протеин, состоящий из 77 аминокислот, сходный с Tat ВИЧ. У этого протеина не обнаружена способность к трансактивации (transactivating properties), однако он является критическим на ранней стадии инфицирования клетки и при формировании вирусной частицы, локализован в ядре, что делает его более сходным по свойствам с Vpr. Нарушение функции белка Orf-A ведет к снижению способности вируса к репликации и уменьшению его патогенности. Оrf-3 содержит ATG-кодон в направлении «вниз» (downstream) от потенциального сплайсингакцепторного сайта. кб — килобазы.

Инфекционный ретровирус имеет три основных структурных гена, кодирующих вирусные протеины в следующем порядке: 5’-gag-pol-env-3’. Для ВИЧ их описание следующее:

ген gag — кодирует белки, формирующие «сердцевину» вируса (необходимы для внутриклеточной сборки вируса и его высвобождения из клетки);

ген pol — кодирует ферментную систему вируса (обратную транскриптазу — p66/51; интегразу — p31/33; рибонуклеазу — p31/33);

ген env — определяет способность вируса выходить за пределы клетки и инфицировать другие. Кодирует белки предшественника оболочки вируса — gp160, расщепляющиеся на gp120 и gp41.

Области 5’- и 3’-концов обеих цепей модифицированы, как и у всех эукариотических мРНК (5’-кэпы и 3’-полиадениловые хвосты). Имеются последовательности, необходимые для реализации механизма обратной транскрипции:

1) прямые повторы на 5’- и 3’-концах РНК (LTR — он действует как единица промоции, необходим для транскрипции всего вирусного генома и начала транскрипции отдельных вирусных генов);

2) последовательность из 80–120 нуклеотидов, соседствующая с 5'-концевым прямым повтором (U5);

3) последовательность из 170–1200 нуклеотидов, соседствующая с 3’-концевым прямым повтором (U3);

4) последовательность из 15–20 нуклеотидов (Р), в пределах которой клеточная тРНК спаривается с ретровирусной РНК, что создает праймер для синтеза первой цепи ДНК;

5) сегмент Рu, находящийся непосредственно перед повтором U3 и являющийся сайтом для праймирования второй цепи ДНК.

У ретровирусов кроме структурных есть еще регуляторные гены. У ВИЧ их шесть:

tat (transactivator of transcription) — кодируемый им белок является наиболее активным регулятором, обеспечивающим усиление в 1000 раз репликации вируса и регулирующий экспрессию клеточных генов;

rev (regulator of expression of virus proteins) — кодируемый им белок избирательно активирует синтез структурных белков вируса, обеспечивает экспорт из ядра длинных молекул вирусной РНК. На поздних стадиях ВИЧ-инфекции он замедляет синтез регуляторных белков (см. «Реинфекция»);

nef (negative regulatory factor) — при взаимодействии с LTR кодируемый им белок замедляет транскрипцию вирусных генов. Синхронная функция nef и tat регулируют репликацию вируса таким образом, чтобы она не приводила к гибели клетки-хозяина. Экстрацеллюлярный белок nef увеличивает миграцию моноцитов, тем самым, способствуя распространению по организму ВИЧ и прогрессированию болезни;

vif (virion infectivity factor) — кодируемый им белок необходим для образования функционально полноценных вирусов в определенных типах клеток на поздней стадии инфекции. Белок Vif включается в состав новых вирусов;

vpr — кодируемый им белок вызывает остановку клеточного цикла, способствует входу в ядро прединтеграционного комплекса. Vpr включается в новые вирусы в большом количестве, способен в некоторой степени усиливать экспрессию генов ВИЧ и нарушать экспрессию отдельных клеточных генов;

vpu для ВИЧ-1 (vpx для ВИЧ-2) — кодируемый им белок разрушает комплекс gp120/CD4; снижает экспрессию CD4; способствует высвобождению вируса; усиливает продукцию вируса, связывая цитоплазматический хвост молекулы CD4, пока она находится в эндоплазматическом ретикулуме, и тем самым посттрансляционно сокращает число рецепторов CD4 на поверхности клетки. В результате предотвращается захват Env в эндоплазматическом ретикулуме в комплексе с CD4. В природе не существует других диплоидных семейств ДНК или РНК-вирусов.

Схематично жизненный цикл ретровирусов включает связывание вириона с рецептором клетки хозяина, вход в клетку, затем следует обратное транскрибирование с последующей интеграцией с геномом хозяина. Проникновение в клетку определяется взаимодействием гликопротеина вириона и специфических рецепторов на клеточной поверхности, следствием чего является слияние вирусной оболочки и клеточной мембраны и эндоцитоз. Некоторые из клеточных рецепторов были идентифицированы (более подробно см. в подглаве 3.3). В проникновении ВИЧ в клетку принимают участие как минимум два рецептора: иммуноглобулин-подобный протеин с одним трансмембранным участком CD4 и хемокиновый рецептор, пронизывающий мембрану семь раз (CCR5 или CXCR4). Рецепторы для экотропных (Murine leukemia virus, MLV), амфотропных MLV и Gibbon are leukemia virus (GALV) связаны с участием в транспортировке небольших молекул и имеют сложную структуру с множественными трансмембранными доменами. Для вирусов лейкоза птиц (ALVs) идентифицировано два рецептора: для вирусов подгруппы А — небольшая молекула с одним трансмембранным доменом, отдаленно напоминающая клеточный рецептор для низкоплотностных липопротеинов, тогда как для вирусов подгруппы В — рецепторы семейства протеинов фактора некроза опухоли.

Репликация начинается с обратной транскрипции вирионной РНК в кДНК, с использованием 3’-конца тРНК в качестве праймера. Синтез кДНК сопровождается разрезанием вирусной РНК (за счет РНКазной активности обратной транскриптазы). Продукты гидролиза служат для первичного синтеза кДНК с негативной полярностью. Конечная форма двуспирального ДНК-транскрипта, образуемого из вирусного генома, содержит LTR, состоящие из последовательностей с 3’- и 5’-концов вирусной РНК, фланкирующих сиквенс (R), обнаруженный по обоим концам РНК. Процесс обратной транскрипции характеризуется высокой частотой рекомбинации.

Ретровирусная ДНК интегрируется в хромосомную ДНК клетки, образуя провирус, при участии вирусного протеина интегразы (IN). Ретровирусы имеют собственные «предпочтения» при интеграции в геном "своих" хозяев. Интеграционные сайты для ВИЧ обнаружены в основном в активных транскрипционных участках. Для MLV приблизительно 25 % интеграционных актов происходят вблизи сайтов старта транскрипции и ассоциируются с CpG-островками, тогда как интеграция в пределах транскрипционных участков происходит редко. Этот же вирус удачно интегрируется с хромосомной ДНК у гиперчувствительных к ДНКазе I сайтов (DNase I — hypersensitive sites). Для ASLV характерна «беспорядочность» в выборе сайтов интеграции. Основная роль в выборе сайта интеграции для ретровируса закреплена естественным отбором за интегразой. Этот белок связывается со специфическим белком в близи сайта интеграции, инициируя интеграцию провируса в определенный участок хромосомной ДНК (Lewinski M. K et al., 2006).

Карта интегрированного провируса колинеарна неинтегрированной вирусной ДНК. Интеграция предшествует вирусной репликации. Интегрированный провирус транскрибируется клеточной РНК полимеразой II в вирионную РНК и мРНК в ответ на транскрипционный сигнал в вирусных LTR. У вирусов некоторых родов транскрипция также регулируется вирусными трансактиваторами.

В зависимости от вируса и генетической карты различают несколько классов мРНК. мРНК, включающая весь геном, служит для трансляции генов gag, pro, pol (расположенных в 5’-половине РНК), продуктом которых является полипротеин-предшественник, разрезаемый до структурных протеинов, полимеразы, обратной транскриптазы и интегразы, соответственно. Меньшие РНК, включающие 5’-конец генома, после сплайсинга с сиквенсом 3’-конца генома, и включающие ген env, участки U3 и R, транслируются в предшественники оболочечных протеинов. У вирусов, содержащих дополнительные гены, может происходить другой сплайсинг, но все такие РНК будут иметь общий 5’-концевой сиквенс. Спумавирусы уникальны в том, что могут использовать внутренний промотор, расположенный в гене env выше доступа к рамке считывания. Большинство первично транслированных продуктов представляют собой полипротеины, подвергающиеся протеолитическому разрезанию для приобретения функциональной активности. Продукты генов gag, pro и pol обычно являются вторичными после первичной трансляции продуктов. Для трансляции pro и pol используются обходные трансляционные терминирующие сигналы.

Сборка капсида происходит либо на плазматической мембране (вирусы большинства родов), либо вирусные частицы собираются в цитоплазме (Betaretrovirus и Spumavirus), и высвобождаются из клетки почкованием. Полипротеиновый процессинг внутренних протеинов происходит попутно или последовательно с созреванием вириона.

Онкогенные ретровирусы (Oncovirinae) — для онковирусов в отличие от ретровирусов других подсемейств, характерна способность размножаться в клетке, не повреждая ее жизнеспособности. Они легко становятся эндогенными и передаются вертикально, подобно обычным клеточным генам. К ним относятся вирусы лейкоза грызунов (MuLV); кошек (FeLV) и птиц (ALV); вирусы, тропные к лимфоцитам Т у человека (HTVL-1 и HTVL-2); вирус саркомы шерстистых обезьян (SSV-1) и ряд других. Большинство из них обладают выраженным онкогенным и нейротропным действием. Детально вирусы подсемейства Oncovirinae исследованы еще в 1960-1970-х гг. (см. работу Альштейна А. Д., 1982).

Лентивирусы (Lentivirinae, «медленные вирусы») — в состав подсемейства входят экзогенные вирусы (с горизонтальной и вертикальной передачей) человека и многих других млекопитающих. О существовании родственных эндогенных вирусов сведений нет. Лентивирусы приматов отличаются по использованию хемокинового рецептора и протеина CD4. Некоторые группы проявляют перекрестную активность по антигенам Gag (лентивирусы овец, коз и кошек). Вирусы, родственные Feline immunodificiency virus (FIV), были выделены от других крупных кошачьих (например, Puma lentivirus), а наличие антител к антигену Gag у львов и других крупных кошачьих свидетельствует о существовании других вирусов, близких FIV и лентивирусам овец и коз. На основе различий по спектру восприимчивых хозяев лентивирусы были подразделены на 5 групп (лентивирусы приматов, овец и коз, лошадей, кошек и КРС). Внутри группы лентивирусов приматов HIV-1 отличается от HIV-2, прежде всего по дивергенции нуклеотидных сиквенсов, которая превышает 50 %, и по наличию у HIV-2 гена vpx (табл. 6).

Таблица 6. Семейство ретровирусов

Название вида вируса | Название на русском языке | № генома в | Аббревиатура

Группа лентивирусов КРС

Bovine immunodeficiency virus | Вирус иммунодефицита КРС | M32609 | BIV

Группа лентивирусов лошадей

Equine infectious anemia virus | Вирус инфекционной анемии лошадей | M16575 | EIAV

Группа лентивирусов кошек

Feline immunodeficiency virus (Petu) | Вирус иммунодефицита кошек (Петулума) | M25381 | FIV-P

Feline immunodeficiency virus(Oma) | Вирус иммунодефицита кошек (Ома) | FIU56928 | FIVO

Экзогенные ретровирусы. Эндогенные ретровирусы. Свойства ретровирусов.

Экзогенные ретровирусы. Эндогенные ретровирусы. Свойства ретровирусов.

Экзогенные ретровирусы распространяются горизонтально, и большинство из них не содержит ген onс. К экзогенным вирусам относят вирус саркомы Рауса, Т-лимфотропные вирусы человека и др. Т-лимфотропные вирусы человека I и II типов, или HTLV-I и HTLV-II [от англ. human t-lymphotropic virus, Т-лимфотропный вирус человека], получили своё название из-за избирательной тропности к су б популяции СБ4+-лимфоцитов.

HTLV стали первыми вирусами, участие которых в развитии опухолей человека было более или менее достоверно доказано. HTLV-I вызывает Т-клеточные лимфомы и миелопатии (тропический спастический пара парез) у взрослого населения юго-запада Японии и стран Карибского бассейна. Эпидемиология инфекций, вызванных HTLV-I, напоминает эпидемиологию ВИЧ-инфекции, так как вирус передаётся половым путём и парентерально.

Основные группы риска — наркоманы, пациенты с гемофилией, гомосексуалисты и лица, практикующие бисексуальные контакты. Прямых доказательств патогенного действия HTLV-II нет, однако инфицирование вирусом связывают с развитием волосатоклеточного лейкоза.

Т-лимфотропные вирусы обладают сравнительно низким онкогенным потенциалом и не проявляют непосредственного трансформирующего действия, так как не содержат ген onс. Вирусный геном интегрируется рядом с геном, кодирующим синтез ИЛ-2. Вирусный промотор активирует избыточную продукцию цитокина, усиливающего пролиферацию Т-лимфоцитов. Кроме генов gag, pol и env, общих для всех ретровирусов, HTLV имеют дополнительный ген рХ. Продукты генов env, рХ задействованы в индукции бесконтрольной пролиферации Т-клеток.

Экзогенные ретровирусы. Эндогенные ретровирусы. Свойства ретровирусов

Эндогенные ретровирусы

Часть ретровирусов приобрела способность передаваться вертикально, а их генетическая информация стала составной частью клеточного генома всех органов и тканей человека и животных. Интегрированный онкогенный ировирус может содержать гены, необходимые для формирования полноценного вириона, но в большинстве случаев ведёт себя как группа генов, находящихся под регуляторным контролем клетки. Однако клеточный контроль обычно приводит к частичному или полному подавлению экспрессии вирусных генов.

Активация эндогенных ретровирусов может возникать спонтанно либо под воздействием внешних факторов. По своей организации (расположение кодирующих нуклеотидных последовательностей и др.) эндогенные и экзогенные провирусы ретровирусов сходны; но эндогенные вирусы не патогенны для природных хозяев и редко инфекционны для родительских клеток.

В эксперименте онкогенный потенциал эндогенных ретровирусных последовательностей может реализоваться через трансформацию клеток (после захвата вирусами клеточных протоон ко генов) либо активацию клеточных протоонкогенов вирусными LTR.

- Вернуться в оглавление раздела "Микробиология."

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Что такое эндогенные ретровирусы, и что они делают в геноме человека?

Основной биологической информацией, необходимой для построения и поддержания организма, является геном. В связи с этим особенно пугающим кажется тот факт, что в наших генах содержится 100 тыс. фрагментов ДНК эндогенных ретровирусов (ЭРВ), которые составляют 5–8% человеческого генома. Насколько это существенно, можно судить хотя бы по тому, что в кодировании основных белков нашего организма участвует 20 тыс. генов, что составляет только 1,2% нашей ДНК

Наши внутренние паразиты

Большинство эндогенных ретровирусов довольно старые, они встроились в геном наших предков свыше 25 млн лет назад. Это летопись следов наших встреч с вирусными инфекциями, которые заканчивались по-разному. Вирусы, которым удалось пробраться в половые клетки, получили возможность передаваться по наследству. В дальнейшем в результате мутаций эффективная экспрессия вирусных генов прекращается и ЭРВ превращаются в неактивный наследственный элемент генома. Сейчас все они находятся на той или иной стадии разрушения в разобранном состоянии.

Иногда перед потерей активности ЭРВ успевали размножиться внутри генома, то есть встроить до нескольких сотен своих копий в разные места хозяйских хромосом. Так возникли целые «семейства» вирусных генов. Только 133 ЭРВ, которые есть в наших генах, считаются «молодыми», поскольку они встроились в геном наших предков после отделения эволюционной линии от других обезьян и поэтому являются уникальными для человека.

Среди человеческих ЭРВ пока не обнаружено ни одного активного, однако их активация может возникать спонтанно либо под воздействием факторов окружающей среды. Как правило, клеточный контроль приводит к частичному или полному подавлению экспрессии вирусных генов, но это не исключает опасностей появления заболеваний, тем более что генетики уже добились искусственного «воскрешения» ряда инактивированных человеческих ЭРВ.

Генетический мусор?


ЭРВ являются частью более крупного класса генетического материала, имеющего название «транспозируемые элементы», которые до сих пор по привычке продолжают называть генетическим мусором. Это связано с тем, что большинство включений выполняет неизвестную функцию и поэтому их оценивают как «бесполезную ДНК» (junk DNA), балласт в геноме человека, на который понапрасну тратится энергия клетки при каждом делении.

Понимание функций ЭРВ позволило до определенной степени объяснить главный парадокс генома человека: несоответствие между объемом информации в геноме и многократным превышением объема генетической информации в транскриптоме. Мобильные генетические элементы вирусного происхождения оказались вовлеченными в активное «редактирование» так называемой некодирующей части генома.

Ретровирусы представляют большую опасность для нашего здоровья, находясь в свободном состоянии, но даже после одомашнивания они по-прежнему могут представлять потенциальную угрозу

Многие эндогенные дельта-ретровирусы играют важные роли в биологии хозяина, такие как управление генной транскрипцией и клеточным делением, а также обеспечение устойчивости к экзогенной ретровирусной инфекции. Кроме того, ретровирусы осуществляют функции энхансеров, то есть усилителей регуляторных функций управления генами, повышая их экспрессию. Они сослужили нам хорошую службу в процессе эволюции, передав человеку и другим живым организмам свои структурные элементы, ставшие впоследствии нашими генами, которые в ходе эволюции превратились в «полезную» часть ДНК.

Герои плацентарной революции

Сегодня уже точно известен целый ряд важных генов, берущих свое начало от ретроэлементов. Прежде всего это некоторые гены, участвующие во внутриутробном развитии плода. Структурные белки, кодируемые этими генами, выполняют ряд важнейших функций: управляют слиянием клеток в ходе формирования наружного слоя плаценты, обеспечивают защиту эмбриона от иммунной системы матери и атак «диких» ретровирусов. Таким образом, ретровирусы сыграли весомую роль в эволюции плацентарных животных.

Появление у древних организмов плаценты — важный этап их эволюционного развития в сторону усложнения. Плацента позволила предкам человека продлить внутриутробное развитие. Именно с этим сегодня связывают кардинальные изменения у млекопитающих, живших около 60 млн лет назад, — увеличение размеров мозга и постепенное развитие умственных способностей.

Роль в эволюции человеческого мозга

Выяснилось, что один из 133 ЭРВ, некогда встроивший свой геном в 22-ю хромосому древнего гоминида, изменил систему генной регуляции и повлиял на работу мозга наших предков. Он подвергся «молекулярному одомашниванию» и теперь функционирует в качестве регуляторного элемента, управляющего работой гена PRODH в некоторых отделах мозга, прежде всего в гиппокампе. Этот ген участвует в синтезе нейромедиаторов, а его важность для работы мозга подтверждается тем, что мутации в нем влияют на риск развития шизофрении. Каким образом все это повлияло на функционирование мозга, еще предстоит выяснить, но то, что это событие действительно произошло и было полезным — в этом практически нет сомнений, иначе отбор не одобрил бы такое нововведение.

Эндогенные ретровирусы могут оставаться тихими и незаметными «пассажирами» нашего генома, передаваясь из поколения в поколение в течение нескольких тысяч лет. Однако при определенных условиях они могут возобновить свою активность

Ген PRODH кодирует фермент пролиндегидрогеназу, связанный с синтезом глутамата, одного из нейромедиаторов, стимулирующего передачу сигналов возбуждения в нервной системе. Есть основания полагать, что внедрение ретровируса вблизи этого гена сыграло весомую роль в развитии умственных способностей человека. Несомненно, что эта ретровирусная вставка имела большое значение в эволюции человеческого мозга. Эндогенные ретровирусы принимают активное участие в тонкой регуляции экспрессии генов мозга. Они помогают формировать наше мышление, участвуя в развитии мозга.

Онкологическая угроза

Тем не менее при упоминании о вирусах, обосновавшихся в наших генах, прежде всего предполагаются всевозможные угрозы и опасности, тем более что именно к семейству ретровирусов принадлежит патогенный вирус иммунодефицита человека (ВИЧ), вызывающий СПИД. Кроме того, некоторые из обнаруженных ретровирусов вызывают рак, но далеко не все. Ретровирусы представляют большую опасность для нашего здоровья, находясь в свободном состоянии, но даже после одомашнивания они по-прежнему могут представлять потенциальную угрозу.

ЭРВ могут оставаться тихими и незаметными «пассажирами» нашего генома, передаваясь из поколения в поколение в течение нескольких тысяч лет. Однако при определенных условиях они могут возобновить свою активность. Инициирующими внешними факторами являются ионизирующая радиация, химические канцерогены или воздействие других вирусов. Мутации способны вернуть ЭРВ возможность формировать полноценные вирусы, которые могут вызывать новые эпидемии и становиться причиной развития рака. Из обрывков реликтовых вирусов может «сложиться» супервирус наподобие ВИЧ и тогда уже не избежать мировой пандемии с огромными человеческими жертвами.


Особую угрозу несут так называемые ксенотрансплантации — пересадки органов животных человеку. Как могут проявить себя ретровирусы животных, потенциально способные взаимодействовать с вирусами генома человека, трудно предсказать. Потому многие ученые выступают категорически против проведения таких трансплантаций. Кроме того, рассматривается связь эндогенных дельта-ретровирусов с рядом аутоиммунных заболеваний и, в частности, с рассеянным склерозом.

Опасная вирусная коалиция

Обнаружено, что ЭРВ человека могут взаимодействовать с внешними вирусами. Домашние ретровирусы человека могут отдавать свои ферменты, протеиназы, вирусу иммунодефицита. В ходе этой «дружеской межвирусной кооперации» ЭРВ поставляют белковые комплектующие, необходимые для эффективного внедрения чужеродных вирусных агентов в геном человека. Ученые сравнивают эндогенные ретровирусы с «пятой колонной» ВИЧ. Но главная опасность заключается в том, что с ВИЧ-инфекцией ассоциировано сразу несколько разных вирусов, которые взаимно усиливают пагубное действие друг друга. Именно таким поразительным образом ВИЧ успешно противостоит попыткам людей победить его, поскольку некоторые современные лекарства против ВИЧ рассчитаны именно на подавление протеиназы.

Прогрессивное движение вспять

Мобильные ретроэлементы используют для своих перемещений механизм, на который указывает приставка «ретро» — она означает «движение вспять, в обратном направлении». В основе этого механизма лежит процесс обратной транскрипции. Это перенос генетической информации с ДНК на РНК, при котором ДНК используют в качестве отправной точки, матрицы. Транскрипцию можно наблюдать всякий раз, когда осуществляется синтез новых белков.

Ретровирусы и мобильные ретроэлементы являются действенным инструментом эволюции. Они возникли раньше нас в процессе эволюции, принимали активное участие в создании новых организмов, но при этом вполне способны стать причиной новых проблем для человечества. Иммунная система многоклеточных была создана ретроэлементами и может выполнять роль естественного резервуара для ретровирусов.

Количество ретровирусов время от времени достигает в популяциях «критической массы», вследствие чего происходит вымирание большей части организмов, но при этом выжившие приобретают устойчивость к инфекции. Эти удивительные свойства ретровирусов ученые используют при создании новых лекарств. Понимание механизмов их функционирования позволит противодействовать опасным внешним ретровирусным инфекциям. Изучение ЭРВ открывает перспективы для лечения смертельных генетических заболеваний, что дает надежду на жизнь многим людям.

Публикации в СМИ

Вирусам иногда удается встроить свою ДНК в геном половых клеток хозяина и стать постоянным наследуемым компонентом хозяйского генома. Встроенные вирусные гены обычно не приносят пользы хозяину, но бывают и исключения. Один из таких случаев произошел у предков обезьян более 43 млн лет назад. Два вирусных белка, когда-то служившие для построения оболочки вируса, с тех пор участвуют в работе плаценты у высших приматов, включая человека.

В геноме человека и других животных присутствует множество так называемых эндогенных ретровирусов (ЭРВ) — встроенных вирусных геномов. Обычные, то есть «дикие», или экзогенные ретровирусы, хранят свой наследственный материал в виде молекул РНК, упакованных в белковую оболочку. Клетка, зараженная ретровирусом, синтезирует вирусные белки на основе инструкций, записанных в вирусной РНК. Один из этих белков — фермент обратная транскриптаза — использует вирусную РНК в качестве матрицы для синтеза ДНК. Затем другой вирусный фермент — интеграза — встраивает эту ДНК в геном хозяйской клетки. В результате вирусный геном становится частью генома клетки и начинает размножаться вместе с ним. Такой встроенный вирусный геном называют «провирусом». Молекулы РНК, «считанные» клеткой с провируса, становятся основой для формирования новых вирусных частиц.

До тех пор, пока всё это происходит в соматических (неполовых) клетках, вирусная инфекция не становится наследственной. Но если ретровирусу удается проникнуть в половые клетки, у него появляется шанс стать неотъемлемой частью хозяйского генома на долгие времена. Такие ретровирусы, встроившиеся когда-то в геном половых клеток и устойчиво передающиеся от родителей к потомкам, и называют эндогенными ретровирусами.

В большинстве случаев эти генно-инженерные эксперименты, проводимые вирусами над своими хозяевами, не приносят последним никакой пользы. Если в череде поколений возникает мутация, портящая один из генов ЭРВ, то хозяин от этого либо выигрывает, либо, по крайней мере, ничего не теряет. Поэтому отбор не отсеивает такие мутации, что приводит к постепенной деградации ЭРВ под грузом мутаций. В результате большинство ЭРВ в геномах животных — это неактивные вирусные геномы, находящиеся на той или иной стадии разрушения. Такие ЭРВ, очевидно, представляют собой бесполезный генетический «мусор» (junk DNA). Иногда перед тем, как потерять активность, ЭРВ успевают размножиться внутри генома, то есть встроить множество своих копий (до нескольких сотен) в разные места хозяйских хромосом. Так возникают целые «семейства» похожих друг на друга ЭРВ.

В геноме человека большинство ЭРВ — довольно старые, они встроились в геном наших предков свыше 25 млн лет назад, еще до отделения эволюционной линии человекообразных от других обезьян Старого Света. Но есть и «молодые» ЭРВ, полученные нами уже после разделения линий шимпанзе и человека.

Среди человеческих ЭРВ пока не обнаружено ни одного активного. Все они (возможно, за немногими исключениями) уже утратили способность вести себя как настоящие вирусы, то есть заражать другие организмы. По-видимому, они не могут уже и размножаться внутри клетки и встраиваться в другие места того же генома, то есть функционировать как ретротранспозоны (ретровирус, утративший инфекционность, но сохранивший все остальные свойства, становится, по сути дела, ретротранспозоном). Этим человек отличается от мыши, кошки и свиньи — в геномах этих животных есть молодые ЭРВ, сохранившие в той или иной мере свою вирусную активность. Впрочем, генетики уже умеют искусственно «воскрешать» инактивированные человеческие ЭРВ (см. Lee et al., 2007. Reconstitution of an Infectious Human Endogenous Retrovirus).

Постоянным читателям «Элементов» хорошо известно, что фрагменты мобильных генетических элементов (транспозонов, ретротранспозонов) в ходе эволюции иногда привлекаются для выполнения полезных функций в организме хозяина. Это называют «молекулярным одомашниванием» (см. ссылки внизу).

Поддаются ли «одомашниванию» эндогенные ретровирусы? Результаты недавних исследований позволяют ответить на этот вопрос утвердительно. Генетики из Орхусского университета (Aarhus Universitet, Дания) опубликовали в журнале BMC Evolutionary Biology новые данные, из которых следует, что вирусные гены не раз подвергались «одомашниванию», в том числе и в эволюции наших прямых предков.

Ранее было показано, что несколько генов ЭРВ человека, а именно гены белков вирусной оболочки, экспрессируются (работают) в клетках некоторых тканей, в том числе в плаценте. В отличие от других фрагментов ЭРВ, эти гены не разрушаются под грузом мутаций — очевидно, они находятся под действием очищающего отбора (мутации, портящие эти гены, снижают приспособленность и потому отсеиваются отбором). Для трех человеческих генов вирусного происхождения (syncytin 1, syncytin 2, EnvPb1) недавно была экспериментально показана способность инициировать слияние клеток. Белки вирусной оболочки, помимо прочего, обеспечивают проникновение вируса в клетку. Способность этих белков нарушать целостность клеточных мембран может в некоторых случаях оказаться полезной организму — например, в ходе развития наружного слоя плаценты (синцитиотрофобласта), который образуется в результате слияния множества клеток в единое многоядерное целое.

Датские генетики обнаружили и детально изучили еще один яркий случай «одомашнивания» двух вирусных генов, которые изначально кодировали белки вирусной оболочки. Открытие было сделано в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека. Исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии. Это типичные гены белков оболочки ретровируса. Каждый из них входит в состав своего ЭРВ, причем все остальные части этих ЭРВ давно выведены из строя многочисленными мутациями и вставками транспозонов.

Авторы нашли гены ENVV1 и ENVV2 и в геномах других приматов: у человекообразных (шимпанзе, орангутана), других обезьян Старого Света (макака-резуса, зеленой мартышки), а также у обезьян Нового Света — мармозетки (Marmoset) и беличьей обезьяны, или саймири (Saimiri). Однако у наших более отдаленных родственников — лемуров — этих генов нет. Сопоставив данные по нуклеотидным последовательностям генов ENVV1 и ENVV2 у разных обезьян, исследователи смогли детально реконструировать эволюционную историю этих генов.

Исходный ретровирус проник в геном наших предков и «прижился» там после того, как разделились линии обезьян и лемуров, но до того, как разошлись обезьяны Старого и Нового света, то есть между 77 и 43 млн лет назад. Новый ЭРВ вскоре подвергся двум последовательным дупликациям, и в результате получилось три одинаковых ЭРВ, расположенных по соседству на одной хромосоме. Все участки этих ЭРВ, кроме генов белков оболочки (ENVV1, ENVV2 и ENVV3), стали постепенно дегенерировать. Ген ENVV2 приобрел в результате мутаций какое-то полезное для хозяина свойство и стал бережно сохраняться отбором. Об этом свидетельствует, в частности, резкое преобладание незначимых (синонимичных) нуклеотидных замен над значимыми в этом гене у всех обезьян. Гены ENVV1и ENVV3, по-видимому, тоже приобрели полезные функции (возможно, это произошло еще до утроения исходного ЭРВ), но эти гены оказались не столь незаменимыми, как ENVV2. Поэтому в некоторых эволюционных линиях обезьян эти гены были либо утрачены, либо выведены мутациями из строя. В частности, общий предок человека и шимпанзе потерял ген ENVV3. У их ближайшего родственника орангутана этот ген есть, хотя и в нерабочем состоянии. Ген ENVV1 у орангутана есть, но не работает; у человека и шимпанзе он в полном порядке. Авторы также выяснили, что между генами ENVV1 и ENVV2 в разных эволюционных линиях неоднократно происходил обмен участками (см. генная конверсия). В результате ген ENVV2 мог передать гену ENVV1 свои полезные свойства — полностью или частично.

Весьма интересно, что у обоих видов, у которых это удалось проверить, а именно у человека и павиана, гены ENVV1 и ENVV2 работают в плаценте. Установить экспериментально, какую именно функцию они там выполняют, технически очень сложно, и авторы пока этого не сделали. Но на основе детального анализа структуры белков, кодируемых этими генами, можно заключить, что возможных функций три:
1) управление слиянием клеток в ходе формирования наружного слоя плаценты — синцитиотрофобласта (об этом способе применения вирусных белков говорилось выше);
2) защита эмбриона от иммунной системы матери (у обоих белков есть участок, обладающий иммуносупрессивным действием — это вполне понятно, если вспомнить, что изначально они входили в состав вирусной оболочки);
3) защита эмбриона от «диких» ретровирусов. У ENVV1 и ENVV2 сохранились участки, связывающиеся с теми поверхностными белками клетки, к которым прикрепляются ретровирусы, чтобы проникнуть в клетку. Если к такому поверхностному белку уже прицепился белок ENVV1 или ENVV2, дикий ретровирус не может использовать его для проникновения в клетку. Этот эффект известен под названием «receptor interference».

Исследование убедительно показало, что те генетические модификации, которым нас подвергают ретровирусы, иногда могут оказаться весьма полезными.

Источник: Anders L Kjeldbjerg, Palle Villesen, Lars Aagaard, Finn Skou Pedersen. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution // BMC Evolutionary Biology. 2008. V. 8. P. 266.

Код вставки на сайт

Предки человека заимствовали полезные гены у вирусов

Вирусам иногда удается встроить свою ДНК в геном половых клеток хозяина и стать постоянным наследуемым компонентом хозяйского генома. Встроенные вирусные гены обычно не приносят пользы хозяину, но бывают и исключения. Один из таких случаев произошел у предков обезьян более 43 млн лет назад. Два вирусных белка, когда-то служившие для построения оболочки вируса, с тех пор участвуют в работе плаценты у высших приматов, включая человека.

В геноме человека и других животных присутствует множество так называемых эндогенных ретровирусов (ЭРВ) — встроенных вирусных геномов. Обычные, то есть «дикие», или экзогенные ретровирусы, хранят свой наследственный материал в виде молекул РНК, упакованных в белковую оболочку. Клетка, зараженная ретровирусом, синтезирует вирусные белки на основе инструкций, записанных в вирусной РНК. Один из этих белков — фермент обратная транскриптаза — использует вирусную РНК в качестве матрицы для синтеза ДНК. Затем другой вирусный фермент — интеграза — встраивает эту ДНК в геном хозяйской клетки. В результате вирусный геном становится частью генома клетки и начинает размножаться вместе с ним. Такой встроенный вирусный геном называют «провирусом». Молекулы РНК, «считанные» клеткой с провируса, становятся основой для формирования новых вирусных частиц.

До тех пор, пока всё это происходит в соматических (неполовых) клетках, вирусная инфекция не становится наследственной. Но если ретровирусу удается проникнуть в половые клетки, у него появляется шанс стать неотъемлемой частью хозяйского генома на долгие времена. Такие ретровирусы, встроившиеся когда-то в геном половых клеток и устойчиво передающиеся от родителей к потомкам, и называют эндогенными ретровирусами.

В большинстве случаев эти генно-инженерные эксперименты, проводимые вирусами над своими хозяевами, не приносят последним никакой пользы. Если в череде поколений возникает мутация, портящая один из генов ЭРВ, то хозяин от этого либо выигрывает, либо, по крайней мере, ничего не теряет. Поэтому отбор не отсеивает такие мутации, что приводит к постепенной деградации ЭРВ под грузом мутаций. В результате большинство ЭРВ в геномах животных — это неактивные вирусные геномы, находящиеся на той или иной стадии разрушения. Такие ЭРВ, очевидно, представляют собой бесполезный генетический «мусор» (junk DNA). Иногда перед тем, как потерять активность, ЭРВ успевают размножиться внутри генома, то есть встроить множество своих копий (до нескольких сотен) в разные места хозяйских хромосом. Так возникают целые «семейства» похожих друг на друга ЭРВ.

В геноме человека большинство ЭРВ — довольно старые, они встроились в геном наших предков свыше 25 млн лет назад, еще до отделения эволюционной линии человекообразных от других обезьян Старого Света. Но есть и «молодые» ЭРВ, полученные нами уже после разделения линий шимпанзе и человека.

Среди человеческих ЭРВ пока не обнаружено ни одного активного. Все они (возможно, за немногими исключениями) уже утратили способность вести себя как настоящие вирусы, то есть заражать другие организмы. По-видимому, они не могут уже и размножаться внутри клетки и встраиваться в другие места того же генома, то есть функционировать как ретротранспозоны (ретровирус, утративший инфекционность, но сохранивший все остальные свойства, становится, по сути дела, ретротранспозоном). Этим человек отличается от мыши, кошки и свиньи — в геномах этих животных есть молодые ЭРВ, сохранившие в той или иной мере свою вирусную активность. Впрочем, генетики уже умеют искусственно «воскрешать» инактивированные человеческие ЭРВ (см. Lee et al., 2007. Reconstitution of an Infectious Human Endogenous Retrovirus).

Постоянным читателям «Элементов» хорошо известно, что фрагменты мобильных генетических элементов (транспозонов, ретротранспозонов) в ходе эволюции иногда привлекаются для выполнения полезных функций в организме хозяина. Это называют «молекулярным одомашниванием» (см. ссылки внизу).

Поддаются ли «одомашниванию» эндогенные ретровирусы? Результаты недавних исследований позволяют ответить на этот вопрос утвердительно. Генетики из Орхусского университета (Aarhus Universitet, Дания) опубликовали в журнале BMC Evolutionary Biology новые данные, из которых следует, что вирусные гены не раз подвергались «одомашниванию», в том числе и в эволюции наших прямых предков.

Ранее было показано, что несколько генов ЭРВ человека, а именно гены белков вирусной оболочки, экспрессируются (работают) в клетках некоторых тканей, в том числе в плаценте. В отличие от других фрагментов ЭРВ, эти гены не разрушаются под грузом мутаций — очевидно, они находятся под действием очищающего отбора (мутации, портящие эти гены, снижают приспособленность и потому отсеиваются отбором). Для трех человеческих генов вирусного происхождения (syncytin 1, syncytin 2, EnvPb1) недавно была экспериментально показана способность инициировать слияние клеток. Белки вирусной оболочки, помимо прочего, обеспечивают проникновение вируса в клетку. Способность этих белков нарушать целостность клеточных мембран может в некоторых случаях оказаться полезной организму — например, в ходе развития наружного слоя плаценты (синцитиотрофобласта), который образуется в результате слияния множества клеток в единое многоядерное целое.

Датские генетики обнаружили и детально изучили еще один яркий случай «одомашнивания» двух вирусных генов, которые изначально кодировали белки вирусной оболочки. Открытие было сделано в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека. Исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии. Это типичные гены белков оболочки ретровируса. Каждый из них входит в состав своего ЭРВ, причем все остальные части этих ЭРВ давно выведены из строя многочисленными мутациями и вставками транспозонов.

Авторы нашли гены ENVV1 и ENVV2 и в геномах других приматов: у человекообразных (шимпанзе, орангутана), других обезьян Старого Света (макака-резуса, зеленой мартышки), а также у обезьян Нового Света — мармозетки (Marmoset) и беличьей обезьяны, или саймири (Saimiri). Однако у наших более отдаленных родственников — лемуров — этих генов нет. Сопоставив данные по нуклеотидным последовательностям генов ENVV1 и ENVV2 у разных обезьян, исследователи смогли детально реконструировать эволюционную историю этих генов.

Исходный ретровирус проник в геном наших предков и «прижился» там после того, как разделились линии обезьян и лемуров, но до того, как разошлись обезьяны Старого и Нового света, то есть между 77 и 43 млн лет назад. Новый ЭРВ вскоре подвергся двум последовательным дупликациям, и в результате получилось три одинаковых ЭРВ, расположенных по соседству на одной хромосоме. Все участки этих ЭРВ, кроме генов белков оболочки (ENVV1, ENVV2 и ENVV3), стали постепенно дегенерировать. Ген ENVV2 приобрел в результате мутаций какое-то полезное для хозяина свойство и стал бережно сохраняться отбором. Об этом свидетельствует, в частности, резкое преобладание незначимых (синонимичных) нуклеотидных замен над значимыми в этом гене у всех обезьян. Гены ENVV1и ENVV3, по-видимому, тоже приобрели полезные функции (возможно, это произошло еще до утроения исходного ЭРВ), но эти гены оказались не столь незаменимыми, как ENVV2. Поэтому в некоторых эволюционных линиях обезьян эти гены были либо утрачены, либо выведены мутациями из строя. В частности, общий предок человека и шимпанзе потерял ген ENVV3. У их ближайшего родственника орангутана этот ген есть, хотя и в нерабочем состоянии. Ген ENVV1 у орангутана есть, но не работает; у человека и шимпанзе он в полном порядке. Авторы также выяснили, что между генами ENVV1 и ENVV2 в разных эволюционных линиях неоднократно происходил обмен участками (см. генная конверсия). В результате ген ENVV2 мог передать гену ENVV1 свои полезные свойства — полностью или частично.

Весьма интересно, что у обоих видов, у которых это удалось проверить, а именно у человека и павиана, гены ENVV1 и ENVV2 работают в плаценте. Установить экспериментально, какую именно функцию они там выполняют, технически очень сложно, и авторы пока этого не сделали. Но на основе детального анализа структуры белков, кодируемых этими генами, можно заключить, что возможных функций три:
1) управление слиянием клеток в ходе формирования наружного слоя плаценты — синцитиотрофобласта (об этом способе применения вирусных белков говорилось выше);
2) защита эмбриона от иммунной системы матери (у обоих белков есть участок, обладающий иммуносупрессивным действием — это вполне понятно, если вспомнить, что изначально они входили в состав вирусной оболочки);
3) защита эмбриона от «диких» ретровирусов. У ENVV1 и ENVV2 сохранились участки, связывающиеся с теми поверхностными белками клетки, к которым прикрепляются ретровирусы, чтобы проникнуть в клетку. Если к такому поверхностному белку уже прицепился белок ENVV1 или ENVV2, дикий ретровирус не может использовать его для проникновения в клетку. Этот эффект известен под названием «receptor interference».

Исследование убедительно показало, что те генетические модификации, которым нас подвергают ретровирусы, иногда могут оказаться весьма полезными.

Источник: Anders L Kjeldbjerg, Palle Villesen, Lars Aagaard, Finn Skou Pedersen. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution // BMC Evolutionary Biology. 2008. V. 8. P. 266.

Ретровирусы: «пятая колонна» ДНК


Уже много лет между эволюционистами и креационистами продолжается спор о том, как же все-таки произошел человек — путем эволюции или божественного сотворения? К счастью, древние вирусы на протяжении миллионов лет ведут летопись эволюции и записывают ее в нашу ДНК.

Конечно, для любого человека, который более-менее близко знаком с биологией, вопрос «была ли эволюция живых организмов?» просто не существует. Ведь, как справедливо заметил один из выдающихся биологов прошлого века Феодосий Добжанский, «ничто в биологии не имеет смысла, кроме как в свете эволюции». Но для большинства людей это, конечно же, не так бесспорно. И чтобы наглядно показать очевидность эволюционных процессов, биологи собрали множество весомых аргументов молекулярно-генетического и биохимического свойства. В качестве одного из главных доказательств эволюции выступили, как это ни покажется удивительным, всем известные вирусы.

Речь идет о реликтовых ретровирусных последовательностях — так называемых эндогенных ретровирусах, тихо сидящих в наших клетках. Эти ретровирусы — следы прошлых встреч живых организмов с вирусами типа ВИЧ и другими. Миллионы лет назад они атаковали клетки живших тогда организмов. И если организм не погибал, а успешно справлялся с вирусной атакой, то вирусы в «разобранном» (деактивированном) состоянии оставались в клетках, уже потеряв свою способность к инфицированию. Если вирусом заражались клетки половой линии, то эндогенный ретровирус передавался из поколения в поколение, путешествуя таким образом по геномам иногда миллионы лет.

После расшифровки нуклеотидной последовательности ДНК многих животных, в том числе и человека, стало возможным узнать, где именно в геноме находятся эти остатки древних вирусов. И взору ученых предстала строгая упорядоченность расположения эндогенных ретровирусов — выяснилось, что все они находятся в геномах в строго определенных местах. Некоторые из них характерны лишь для человека или для кошки и не встречаются у других животных. Другие же ретровирусы можно обнаружить в одном и том же месте, к примеру, в геномах гориллы, шимпанзе, орангутанга и человека.

Почти половина генома

Почти половина генома

У разных ретротранспозонов (транспозон — мобильный элемент ДНК) процесс обратной транскрипции имеет свои особенности.

У ретротранспозонов с длинными концевыми повторами (LTR-ретропозоны) обратная транскрипция происходит не в ядре, а в цитоплазме. Так как по своему строению и механизму перемещения LTR-ретропозоны имеют большое сходство с вирусами, данный класс подвижных элементов называют ретровирусоподобными. Их содержание в геноме человека — около 8% всей последовательности нуклеотидов.

Ко второму классу ретротранспозонов, без длинных концевых повторов (non-LTR), относятся элементы LINE (Long Interspersed Elements — длинные перемежающиеся элементы) и SINE (Short Interspersed Elements — короткие перемежающиеся элементы). Перемещение и встраивание ДНК-копии этих элементов происходит не в цитоплазме, а в ядре. Элементы LINE — самые многочисленные из подвижных структур человека: они занимают в ДНК пятую часть (около 20%) от всей последовательности нуклеотидов. И они же единственные из мобильных генов человека, сохранившие до сих пор свою самостоятельную способность к перемещению.

Вероятность того, что вирусы атаковали клетки и случайным образом встроились в геномы разных видов на абсолютно одинаковые позиции среди миллиардов других нуклеотидов, чрезвычайно мала. Это все равно, как если бы несколько миллионов человек взяли в руки «Войну и мир» и, не сговариваясь, указали бы на одно и то же слово на одной и той же странице. Все это говорит в пользу того, что в процессе эволюции обломки вирусов в клетках передавались из поколения в поколение и от одних видов другим. И то, что ретровирусы находятся у двух или более животных на одной и той же позиции в ДНК, недвусмысленно говорит о том, что эти животные произошли от общего предка.

В 2007 году журнал Nature своей редакционной статьей подвел черту под всеми спорами о происхождении человека, заявив решительно и прямо: «При всем уважении к чувствам верующих идею о том, что человек создан по образу Божию, можно уверенно отбросить. И тело, и разум человека произошли путем эволюции от более ранних приматов».

Одомашненные вирусы

Эндогенные ретровирусы относятся к большому классу мобильных элементов генома — к ретроэлементам. Эти мобильные элементы используют для своих перемещений механизм, на который указывает приставка «ретро» в названии элемента — она означает «движение вспять, в обратном направлении». В основе этого механизма лежит процесс обратной транскрипции, открытый в 1970 году двумя нобелевскими лауреатами, американскими учеными Говардом Темином и Дэвидом Балтимором.

Транскрипция — это перенос генетической информации с ДНК на рибонуклеиновую кислоту (РНК), при котором ДНК используется в качестве отправной точки, матрицы. Транскрипцию можно наблюдать всякий раз, когда осуществляется синтез новых белков. До открытия американцами обратной транскрипции считалось, что движение в направлении от РНК к ДНК невозможно. Но, как оказалось, этот генетический метод активно используется в живой природе, в том числе и такими опасными ее представителями, как вирусы (среди которых и самый опасный для человека — ВИЧ).

Жизненный цикл ретровируса

Жизненный цикл ретровируса

Вирус прикрепляется к строго определенным клеткам хозяина благодаря образованию связей белков капсида и рецепторов на поверхности клетки. После проникновения в клетку собственные ферменты или ферменты клетки хозяина разбирают капсид. Вирусная РНК высвобождается и подвергается обратной транскрипции: обратная транскриптаза формирует по матрице РНК цепочки ДНК, а интеграза инициирует проникновение провирусной ДНК в ядро и включение ее в геном хозяина. В ядре происходит процесс репликации (повторной сборки) вирусной РНК, который уже стал неотъемлемой функцией генома хозяина. В хозяйской цитоплазме вирусная РНК обзаводится капсидом. Отпочковываясь от клетки, обновленный вирус прихватывает с собой часть мембраны хозяина, используя ее в качестве собственной оболочки.

Реликты, доставшиеся нам от ископаемых вирусов, атаковавших на заре эволюции наших предков, пришли в полную «негодность» и утратили свою былую силу. Хотя при некоторых условиях они все-таки могут «тряхнуть стариной» и показать свою губительную мощь. Несколько лет назад было обнаружено, что внутренние (эндогенные) ретровирусы человека могут взаимодействовать с внешними вирусами, такими как ВИЧ. Со стороны это выглядит как дружеская кооперация: «домашние» вирусы могут поставлять в случае нужды вирусам, проникшим извне, необходимые «комплектующие» (белковые структуры) для эффективного внедрения последних в геном человека.

Это было доказано в 2009 году группой ученых из Канады, Франции, Швейцарии и США под руководством Ханса Хенгартнера. Исследователи проследили, как внешний РНК-вирус lymphocytic choriomeningitis virus (LCMV) получал помощь от эндогенного ретровируса intracisternal A-type particle (IAP), тихо сидевшего внутри клетки. «Домашний» ретровирус IAP предоставлял попавшему в организм чужаку LCMV свою транскриптазу — фермент, необходимый для внедрения вируса в ДНК животного. Причем ученые ставили эксперименты с геномами разных животных, в том числе и человека, и везде результат был один — вирусы помогали друг другу.

Устройство вириона

Устройство вириона

РНК ретровируса располагается в белковой оболочке под названием капсид. Наружная липидная оболочка покрыта ворсинками длиной 8−10 нм. Вирион имеет форму икосаэдра (двадцатигранника) и диаметр 80−100 нм.

Можно наблюдать и другие случаи удивительной взаимопомощи между вирусами: эндогенные ретровирусы человека могут отдавать свои ферменты, протеиназы, вирусу иммунодефицита. Именно таким поразительным образом ВИЧ успешно противостоит попыткам людей победить его: некоторые современные лекарства против ВИЧ рассчитаны на подавление протеиназы. Не случайно академик РАН Евгений Свердлов, много лет посвятивший изучению вирусов, сравнил эндогенные ретровирусы с «пятой колонной» ВИЧ. Кроме этого, с ВИЧ-инфекцией ассоциировано сразу несколько разных вирусов, которые взаимно усиливают пагубное действие друг друга. От таких фактов даже у опытных ученых захватывает дух: вирусы объединяются против человека!

Двигатель прогресса

Еще в конце 1980-х годов можно было встретить утверждение о том, что ретровирусы не способны вызывать эпидемический процесс. И отсюда — бесплодные попытки ученых создать вакцину против ВИЧ. Ретровирусы и сегодня не утратили своей способности вызвать большую пандемию. Однако ретровирусы, по мнению ученых, могут быть полезными. Предполагается, и не без оснований, что они сослужили нам хорошую службу в процессе эволюции, передав человеку и другим живым организмам свои структурные элементы, ставшие впоследствии нашими генами.

Академик РАН Евгений Свердлов

Как мы строим супервирус

По мнению академика РАН Евгения Свердлова, из обрывков реликтовых вирусов может «сложиться» супервирус наподобие ВИЧ. И тогда уже не избежать мировой пандемии с огромными человеческими жертвами. Особенную угрозу несут так называемые ксенотрансплантации — пересадки органов животных человеку. Как могут проявить себя ретровирусы животных, потенциально способные взаимодействовать с вирусами генома человека, — трудно предсказать. Потому многие ученые выступают категорически против таких трансплантаций.

Сегодня уже точно известен целый ряд важных генов, берущих свое начало от ретроэлементов. Прежде всего это некоторые гены, участвующие во внутриутробном развитии плода. Несколько лет назад появились данные, что ретровирусы могли сыграть весомую роль в эволюции плацентарных животных. Появление у древних организмов плаценты — важный этап их эволюционного развития в сторону усложнения. Плацента позволила предкам человека продлить внутриутробное развитие. Именно с этим сегодня связывают кардинальные изменения у млекопитающих, живших около 60 млн лет назад, — увеличение размеров мозга и постепенное развитие умственных способностей.

Исследователи из Токийского медицинского университета изучили влияние гена Peg10 на развитие плаценты у мышей. Они обнаружили, что мышиные эмбрионы, у которых ген Peg10 был деактивирован, погибали на десятый день после зачатия из-за явного нарушения развития плаценты. Ген Peg10 имеет структуру, схожую с ретротранспозоном Sushi-ichi. Предполагается, что этот транспозон внедрился в геном древних млекопитающих, а затем в процессе эволюции «одомашнился» и стал в качестве одного из генов выполнять важные функции в развитии плаценты.

В 2008 году группа датских генетиков, Андерс Кельдберг и его коллеги, описали еще одну группу генов, которые достались нам в результате «молекулярного одомашнивания». Вирусы имеют в своем составе ген env, ответственный за синтез белков вирусной оболочки. Датские ученые обнаружили, что некоторые из генов env, а именно ENVV1 и ENVV2, оставшиеся от реликтовых вирусов возрастом 50−70 млн лет, в ходе эволюции превратились в «полезную» часть ДНК. Теперь эти гены работают в клетках плаценты человека и обезьян. Предполагается, что они могут управлять слиянием клеток в ходе формирования наружного слоя плаценты и защищать эмбрион от иммунной системы матери. Также возможно, что эти вирусные гены защищают эмбрион от других ретровирусов.

В 2013 году большая группа российских ученых из нескольких лабораторий (А.А. Буздин и его коллеги) обнаружили еще один эндогенный ретровирус, подвергшийся «молекулярному одомашниванию». Они исследовали большую группу ретровирусов, характерных исключительно для человеческого генома, — human-specific endogenous retroviruses (hsERV). Таких ретровирусов, по приблизительным подсчетам, в нашей ДНК имеется более ста копий.

Основной целью российских биологов был поиск ретровирусов hsERV, которые осуществляют функции энхансеров (усилителей). Энхансеры — это нуклеотидная последовательность с регуляторными функциями, которая обычно находится вблизи (или внутри) генов и повышает их экспрессию. Из всех обнаруженных на сегодня hsERV лишь шесть копий находились в районах обычного расположения энхансеров. Изучив эти шесть ретровирусов, исследователи смогли выявить один hsERV, расположенный вблизи важного гена PRODH.

Ген PRODH кодирует фермент пролиндегидрогеназу, связанный с синтезом глутамата, одного из нейромедиаторов, стимулирующего передачу сигналов возбуждения в нервной системе. У шимпанзе аналогичный ген во всех местах его расположения (в гиппокампе, префронтальной коре и хвостатом ядре) не имеет рядом с собой участка ДНК с эндогенными ретровирусами и менее активен по сравнению с человеческим. Есть основания полагать, что внедрение ретровируса вблизи этого гена сыграло весомую роль в развитии умственных способностей человека.

Хозяева Земли

Интересная гипотеза о роли ретроэлементов в эволюции была предложена несколько лет назад микробиологом Михаилом Супотницким, который рассматривает вирусы не как случайную прихоть природы, а как сложный эволюционный инструмент. Им было введено новое понятие — «ретровирусная эволюция».

По мнению Супотницкого, именно ретровирусы (и ретроэлементы) — настоящие хозяева Земли. Они возникли раньше нас в процессе эволюции, принимали активное участие в создании сложных организмов и вполне способны ради большего разнообразия видов сгубить все человечество.

Как следует из гипотезы, иммунная система многоклеточных была создана ретроэлементами и может выполнять роль естественного резервуара для ретровирусов. Количество же ретровирусов время от времени достигает в популяциях «критической массы», вследствие чего происходит вымирание большей части живых организмов и приобретение выжившими устойчивости к вирусам.

Автор выражает большую благодарность
д. б. н. А. А. Буздину (Институт биоорганической химии РАН)
за помощь при написании статьи.

Читайте также: