Функции ацетилхолина в холинергическом синапсе

Добавил пользователь Евгений Кузнецов
Обновлено: 21.12.2024

Источник: «Наглядная фармакология».
Автор: X. Люльман. Пер. с нем. Изд.: М.: Мир, 2008 г.

Ацетилхолин (АХ) — медиатор в постганглионарных синапсах — накапливается в высокой концентрации в везикулах аксоплазмы нервного окончания. АХ образуется из холина и активированной уксусной кислоты (ацетилкофермент А) под действием фермента ацетилхолинтрансферазы. Высокополярный холин активно захватывается аксоплазмой. На мембране холинергического аксона и нервных окончаний имеется специальная транспортная система. Механизм высвобождения медиатора до конца не раскрыт. Везикулы закреплены в цитоскелете при помощи белка синапсина таким образом, что их концентрация около пресинаптической мембраны высокая, однако контакт с мембраной отсутствует. При возникновении возбуждения повышается концентрация Са2+ в аксоплазме, активируются протеинкиназы, и происходит фосфорилирование синапсина, приводящее к отсоединению везикул и связыванию их с пресинаптической мембраной. Затем содержимое везикул выбрасывается в синаптическую щель. Ацетилхолин мгновенно проходит сквозь синаптическую щель (молекула АХ имеет длину около 0,5 нм, а ширина щели составляет 30-40 нм). На постсинаптической мембране, т. е. мембране целевого органа, АХ взаимодействует с рецепторами. Эти рецепторы возбуждаются также алкалоидом мускарином и поэтому называются мускариновыми ацетилхолиновыми рецепторами (М-холинорецепторы). Никотин имитирует действие ацетилхолина на рецепторы ганглионарных синапсов и концевой пластинки. Никотин возбуждает холинорецепторы ганглионарных синапсов и концевой пластинки мотонейрона, поэтому этот тип рецепторов назван никотиновыми ацетилхолиновыми рецепторами (N-холинорецепторы).

В синаптической щели ацетилхолин быстро инактивируется специфической ацетилхолинэстеразой, находящейся в щели, а также менее специфической сывороточной холинэстеразой (бутирилхолинэстеразой), находящейся в сыворотке крови и интерстициальной жидкости.

По своему строению, способу передачи сигнала и сродству к различным лигандам М-холинорецепторы подразделяются на несколько типов. Рассмотрим M1, М2- и М3-рецепторы. M1-Рецепторы находятся на нервных клетках, например ганглиях, и их активация способствует переходу возбуждения с первого на второй нейрон. М2-Рецепторы расположены в сердце: открытие калиевых каналов приводит к замедлению диастолической деполяризации и уменьшению частоты сердечных сокращений. М3-Рецепторы играют роль в поддержании тонуса гладких мышц, например, кишечника и бронхов. Возбуждение этих рецепторов приводит к активации фосфолипазы С, деполяризации мембраны и повышению тонуса мышц. М3-Рецепторы расположены также в клетках желез, которые активируются посредством фосфолипазы С. В головном мозге имеются разные типы М-холинорецепторов, играющие роль во многих функциях: передаче возбуждения, памяти, обучаемости, болевой чувствительности, контроле активности ствола мозга. Активация М3-рецепторов в эндотелии сосудов может приводить к высвобождению оксида азота N0 и таким образом расширять сосуды.

Ацетилхолин: высвобождение, действие, инактивация

Источник:
Клиническая фармакология по Гудману и Гилману том 1.
Редактор: профессор А.Г. Гилман Изд.: Практика, 2006 год.

Ацетилхолин (лат. Acetylcholinum) — медиатор нервной системы, биогенный амин, относящийся к веществам, образующимся в организме.

Ацетилхолину принадлежит важная роль как медиатору центральной нервной системы. Он участвует в передаче импульсов в разных отделах мозга, при этом малые концентрации облегчают, а большие — тормозят синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга.

Ацетилхолин является посредником передачи нервного импульса к мышце. При недостатке ацетилхолина снижается сила сокращений мышц.

Окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, называют холинорецепторами. Холинорецепторы постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а расположенные в области ганглионарных синапсов и в соматических нервномышечных синапсах — как н-холинорецепторы (никотиночувствительнные). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами: мускариноподобных в первом случае и никотиноподобных — во втором; м- и н-холинорецепторы находятся также в разных отделах ЦНС.

При микроэлектродной регистрации электрических потенциалов постсинаптической мембраны нервно-мышечного синапса Фетт и Катц (Fatt and Katz, 1952) выявили спонтанные небольшие (0,1—3 мВ) деполяризующие потенциалы, возникающие случайным образом примерно 1 раз в секунду. Авторы назвали эти потенциалы миниатюрными потенциалами концевой пластинки. Их амплитуда была существенно ниже пороговой для развития потенциала действия. Они увеличивались под действием ингибитора АХЭ неостигмина и блокировались тубокурарином (конкурентным блокатором N-холинорецепторов); следовательно, они были обусловлены выделением ацетилхолина. В связи с этим было высказано предположение, что ацетилхолин выделяется из пресинаптических окончаний дробными постоянными порциями — квантами. Вскоре был обнаружен и морфологический субстрат квантов — синаптические пузырьки (De Robertis and Bennett, 1955). Когда в окончание аксона мотонейрона приходит потенциал действия, выделяется 100 и более квантов (пузырьков) ацетилхолина (Katz and Miledi, 1965). Закономерности хранения и выделения ацетилхолина, изученные на нервно-мышечном синапсе, применимы и к другим холинергическим синапсам с быстрой передачей.

Предполагается, что в каждом пузырьке содержится от 1000 до 50 000 молекул ацетилхолина, а в пресинаптическом окончании мотонейрона содержится 300 000 и более пузырьков. Кроме того, не исключено, что достаточно существенное количество ацетилхолина диффузно растворено в аксоплазме. Запись токов одиночных каналов постсинаптической мембраны нервно-мышечного синапса при постоянной аппликации ацетилхолина показала, что одна молекула этого медиатора вызывает потенциал порядка 3 х 10”7 В. Из этого следует, что даже минимальное (по расчетам) количество ацетилхолина в одном пузырьке — 1000 молекул — достаточно для того, чтобы вызвать миниатюрный потенциал концевой пластинки (Katz and Miledi, 1972).

Экзоцитоз ацетилхолина и других медиаторов из пресинаптических окончаний подавляется ботулотоксином и столбнячным токсином — ядами Clostridium botulinum и Clostridium tetani соответственно. Этими анаэробными спорообразующими организмами вырабатываются одни из самых сильных из известных токсинов (Shapiro et а. 1998). Токсины Clostridium, состоящие из связанных дисульфидными мостиками тяжелой и легкой цепей, соединяются с неизвестным пока рецептором на холинергическом окончании и затем посредством эндоцитоза переносятся в цитозоль. Легкая цепь представляет собой цинксодержащую эндопептидазу, которая после активации гидролизует компоненты ядра комплекса SNARE, участвующего в экзоцитозе. Различные типы ботулотоксина разрушают разные белки пресинаптической мембраны (синтаксин-1 и SNAP-25) и синаптических пузырьков (синаптобревин). Ботулотоксин А как лекарственное средство рассматривается в гл. 9 и 66.

Столбнячный токсин — это яд центрального действия: он ретроградно переносится по аксонам мотонейронов в тела этих нейронов в спинном мозге, далее переходит в связанные с мотонейронами тормозные нейроны и блокирует экзоцитоз медиатора из последних. Именно это и приводит к характерным для столбняка судорогам. Яд паука черная вдова — а-латротоксин — связывается с трансмембранными белками пресинаптических окончаний нейрексинами, вызывая массивный экзоцитоз синаптических пузырьков (Schiavo et al., 2000).

Функции ацетилхолина в холинергическом синапсе

Ткани и органы. Нервная ткань

345

А. Холинэргические синапсы

Передача сигналов между нейронами и от нейронов к мышечным клеткам (так называемая нейронейрональная и нейромышечная трансдукция) происходит в нервных окончаниях (синапсах). С помощью сигнальных веществ, медиаторов. Синапсы образованы мембранами двух контактирующих клеток, пресинаптической и постсинаптической которые разделены узкой синаптической щелью. Медиатор выделяется в синаптическую щель за счет зкзоцитоза, диффундирует к рецепторам постсинаптической мембраны, связывается с ними и передает сигнал соседней клетке. Белки-рецепторы — это лиганд-активируемые ионные каналы (см. рис. 341) либо мембранные белки, которые управляют ионными каналами посредством G-белков (см. рис. 373).

Ацетилхолин — нейромедиатор моторной концевой пластинки. Ацетилхолиновые рецепторы (никотиновый и мускариновый) — это лиганд-активируемые ионные каналы, которые открываются для прохождения ионов Na + и К + . Никотиновые рецепторы (быстрые) локализованы главным образом в месте контакта аксонов со скелетными мышцами. Мускариновые рецепторы (медленные) локализованы в головном мозге, секреторных клетках, гладких и сердечных мышцах.

Процесс передачи сигнала включает следующие этапы. Потенциал действия достигает пресинаптической мембраны ( 1 ). Это вызывает открывание потенциал-управля емых Сa 2+ -каналов ( 2 ). Ионы Са 2+ проникают из внеклеточного пространства в клетку, их уровень в синапсе резко увеличивается, что инициирует процесс экзоцитоза. Синаптические везикулы выделяют содержимое (ацетилхолин) в синаптическую щель ( 3 ). Молекулы ацетилхолина диффундируют через синаптическую щель, связываются с постсинаптическими рецепторами и активируют их ( 4 ). Поток ионов Na + изменяет потенциал покоя постсинаптической мембраны нервной или мышечной клетки настолько, что открываются соседние потенциал-управляемые Na + каналы и возникает потенциал действия ( 5 , см. рис. 341).

Б. Никотиновый холинэргический рецептор

Наиболее детально изучен рецептор ацетилхолина, активируемый никотином. Это трансмембранный комплекс из пяти субъединиц (α 2 βδγ, 250-270 кДа), образующий лиганд-активируемый (хемовозбудимый) ионный канал, проницаемый для ионов Na + и К + . Участки связывания ацетилхолина локализованы на внеклеточной части α-субъединиц. При связывании лиганда в центре молекулы формируется трансмембранный канал, входное отверстие которого имеет форму воронки диаметром около 2 нм. Предполагается, что в формировании канала принимают участие все пять субъединиц. Канал открывается на короткое время для прохождения ионов Na + и К + . Считается, что открывание и закрывание канала происходит в результате аллостерических изменений в заряженных участках полипептидных цепей молекулы рецептора.

Рецептор может связывать различные лекарственные вещества: например, никотин действует как агонист ацетилхолина.

В. Метаболизм ацетилхолина

Ацетилхолин , уксуснокислый эфир холина, образуется в цитоплазме аксонов из ацетил-КоА и холина [ 1 ]. Нейромедиатор хранится в синаптических везикулах , в каждой везикуле содержится примерно 1000-10000 молекул ацетилхолина. После выделения из везикул ацетилхолин попадает в синаптическую щель. Избыток ацетилхолина расщепляется ацетилхолин-эстеразой [ 2 ]. Этот фермент имеет высокое число оборотов, что гарантирует быстрое удаление сигнального вещества. Продукты гидролиза, холин и уксусная кислота , активно захватываются пресинаптической частью синапса и используются для повторного синтеза ацетилхолина [ 3 ].

Соединения, блокирующие остаток серина в активном центре ацетилхолин-эстеразы [ 2 ], например токсин Е605, пролонгируют действие ацетилхолина и действуют как нейротоксины. Напротив, D-тубокурарин ( яд кураре, которым индейцы пропитывали наконечники стрел) является конкурентным ингибитором ацетилхолина при связывании с рецептором.

Функции ацетилхолина в холинергическом синапсе

Функции ацетилхолина в холинергическом синапсе

Ацетилхолин (АХ) служит медиатором постганглионарных синапсов окончаний парасимпатических нервов. Ацетилхолин (АХ) в высокой концентрации содержится в синаптических пузырьках (везикулах), плотно расположенных в аксоплазме пресинаптических окончаний. АХ образуется из холина и активированного ацетата (ацетилкоэнзима А); эту реакцию катализирует цитоплазматический фермент ацетилхолинтрансфераза.

Перенос высокополярного холина в аксоплазму осуществляет специфический холиновый переносчик, расположенный в мембранах окончаний холинергических аксонов и субпопуляции везикул. Во время непрерывной или интенсивной стимуляции этот переносчик обеспечивает стабильный синтез и высвобождение АХ. Образовавшийся АХ транспортируется в пузырьки везикулярным транспортером (переносчиком) АХ. Механизм высвобождения АХ до конца не изучен.

Заполненные ацетилхолина (АХ) везикулы прикрепляются к цитоскелету белком синапсином. Это обеспечивает группирование везикул вблизи пресинаптической мембраны, одновременно препятствуя их слиянию друг с другом. Предполагается, что во время активации мембраны нервного волокна ионы Са 2+ попадают в аксоплазму через потенциалзависимые каналы и активируют протеинкиназы, фосфорилирующие синапсин.

В итоге расположенные рядом с мембраной везикулы отделяются от цитоскелета и сливаются с пресинаптической мембраной. В результате слияния содержимое везикул попадает в синаптическую щель; одновременно с этим специфический холиновый переносчик встраивается в плазматическую мембрану. АХ быстро диффундирует через синаптическую щель (молекула АХ чуть больше 0,5 нм; размер синаптической щели составляет 20-30 нм). На постсинаптической мембране эффекторной клетки АХ связывается со своими рецепторами.

Эти рецепторы также активируются алкалоидом мускарином, поэтому их называют мускариновыми (М) холинорецепторами. Действие ацетилхолина (АХ) на ганглионарные рецепторы и рецепторы на двигательной концевой пластинке можно воспроизвести никотином; эти рецепторы называются никотиновыми (N)холинорецепторами

Выделившийся ацетилхолин (АХ) быстро подвергается гидролизу и инактивируется специфической ацетилхолинэстеразой (АХЭ), расположенной в пре- и постсинаптических мембранах (базальной пластинке двигательных концевых пластин), либо неспецифической сывороточной холинэстеразой (бутирилхолинэстеразой) — водорастворимым ферментом, который находится в сыворотке и интерстициальной жидкости.

В зависимости от молекулярной структуры, особенностей передачи сигнала и сродства к лигандам М-холинорецепторы можно разделить на пять подтипов. Здесь мы рассмотрим наиболее изученные подтипы М1, М3 и М3. М,-холинорецепторы расположены в нервных клетках, и прежде всего в клетках головного мозга. М2-холинорецепторы передают эффекты АХ на сердце: открытие К + -каналов замедляет диастолическую деполяризацию в клетках синусно-предсердного узла, уменьшая ЧСС.

М3-холинорецепторы отвечаютза регуляциютонуса гладкой мускулатуры. Например, в кишечнике и бронхахактивация этих рецепторов стимулирует фосфолипазу С, деполяризацию мембраны и повышает мышечный тонус. М3-холинорецепторы также находятся в железистом эпителии, в котором происходит активация фосфолипазы С и секреторной активности. В ЦНС представлены все подтипы М-холинорецепторов, где они отвечаютза различные процессы: от регуляции активности коры, процессов памяти и обучения, обработки болевой импульсации до двигательного контроля на уровне ствола мозга.

Ацетилхолин (АХ) расслабляет тонус мышц кровеносных сосудов. Действие это непрямое, оно обусловлено стимуляцией М3-холинорецепторов эндотелиальных клеток, которые в ответ высвобождают NO (оксид азота — эндотелиальный сосудорасширяющий фактор). Оксид азота диффундирует в гладкомышечные клетки, где вызывает расслабление тонуса, обусловленного их сокращением.

Высвобождение, обмен и эффекты ацетилхолина

Учебное видео - строение синапса

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

ФУНКЦИИ ХОЛИНЕРГИЧЕСКИХ СИНАПСОВ

Холинергические синапсы локализованы в ЦНС (ацетилхолин регулирует моторику, пробуждение, память, обучение), а также в вегетативных ганглиях, мозговом слое надпочечников, каротидных клубочках, скелетных мышцах и внутренних органах, получающих постганглионарные парасимпатические волокна.

В скелетных мышцах синапсы занимают небольшую часть мембраны и изолированы друг от друга. В верхнем шейном ганглии около 100000 нейронов упакованы в объеме 2 — 3 мм 3 .

Ацетилхолин синтезируется в аксоплазме холинергических окончаний из ацетилкоэнзима А (митохондриального происхождения) и незаменимого аминоспирта холина при участии фермента холин-ацетилтрансферазы (холинацетилаза). Иммуноцитохимический метод определения этого фермента позволяет установить локализацию холинергических нейронов.

Ацетилхолин депонируется в синаптических пузырьках (везикулах) в связи с АТФ и нейропептидами (вазоактивный интестинальный пептид, нейропептид Y). Квантами выделяется при деполяризации пресинаптической мембраны и возбуждает холинорецепторы. В окончании двигательного нерва находится около 300 000 синаптических пузырьков, в каждом из них депонировано от 1000 до 50000 молекул ацетилхолина.

Весь ацетилхолин, находящийся в синаптической щели, подвергается гидролизу ферментом ацетилхолинэстеразой (истинная холинэстераза) с образованием холина и уксусной кислоты. Одна молекула медиатора инактивируется в течение 1 мс. Ацетилхолинэстераза локализована в аксонах, дендритах, перикарионе, на пресинаптической и постсинаптической мембранах.

Холин в 1000 — 10 000 раз менее активен по сравнению с ацетилхолином; 50 % его молекул подвергается нейрональному захвату и вновь участвует в синтезе ацетилхолина. Уксусная кислота окисляется в цикле трикарбоновых кислот.

Псевдохолинэстераза (бутирилхолинэстераза) крови, печени, нейроглии катализирует гидролиз эфиров растительного происхождения и лекарственных средств.

Холинорецепторы

Холинорецепторы представляют собой гликопротеины, состоящие из нескольких субъединиц. Большинство холинорецепторов являются резервными. На постсинаптической мембране в нервно-мышечном синапсе расположено до 100 млн холинорецепторов, из них не функционируют 40 — 99 %. В холинергическом синапсе на гладкой мышце находятся около 1,8 млн холинорецепторов, резервными являются 90 — 99%.

В 1914г. Генри Дейл установил, что эфиры холина могут оказывать как мускариноподобный, так и никотиноноподобный эффекты. В соответствии с химической чувствительностью холинорецепторы классифицируют на мускариночувствительные (М) и никотиночувствительные (Н) (табл. 20). Ацетилхолин имеет гибкую молекулу, способную в различных стереоконформациях возбуждать М- и Н-холинорецепторы.

М-холинорецепторы возбуждаются ядом мухомора мускарином и блокируются атропином. Они локализованы в нервной системе и внутренних органах, получающих парасимпатическую иннервацию (вызывают угнетение сердца, сокращение гладких мышц, повышают секреторную функцию экзокринных желез) (табл. 15 в лекции 9). М-холинорецепторы ассоциированы с G-белками и имеют 7 сегментов, пересекающих, как серпантин, клеточную мембрану.

Молекулярное клонирование позволило выделить пять типов М-холинорецепторов:

1. М1-холинорецепторы ЦНС (лимбическая система, базальные ганглии, ретикулярная формация) и вегетативных ганглиев;

2. М2-холинорецепторы сердца (снижают частоту сердечных сокращений, атриовентрикулярную проводимость и потребность миокарда в кислороде, ослабляют сокращения предсердий);

3. М3-холинорецепторы:

· гладких мышц (вызывают сужение зрачков, спазм аккомодации, бронхоспазм, спазм желчевыводящих путей, мочеточников, сокращение мочевого пузыря, матки, усиливают перистальтику кишечника, расслабляют сфинктеры);

· желез (вызывают слезотечение, потоотделение, обильное отделение жидкой, бедной белком слюны, бронхорею, секрецию кислого желудочного сока).

Таблица 20.Холинорецепторы

Рецепторы Агонисты Антагонисты Локализация Функции Эффекторный механизм
Мускариночувствительные
м1 Оксотреморин Пиренцепин ЦНС Контроль психических и моторных функций, реакции пробуждения и обучения Активация фосфолипазы С посредством Gq/11-белка
Вегетативные ганглии Деполяризация (поздний постсинаптический потенциал)
M2 Метоктрамин Сердце: синусный узел Замедление спонтанной деполяризации, гиперполяризация Ингибирование аденилатциклазы посредством Gi-белка, активация К + -каналов
предсердия Укорочение потенциала действия, уменьшение сократимости
атриовентрикулярный узел Уменьшение проводимости
желудочки Незначительное уменьшение сократимости
М3 Гексагидросила дифенидол Гладкие мышцы Сокращение Аналогичен М1
Экзокринные железы Повышение секреторной функции
М4 Тропикамид Химбацин Альвеолы легких Аналогичен М2
М5 ЦНС (черная субстанция среднего мозга, гиппокамп) Аналогичен М1
Никотиночувствительные
нH Диметилфенил пиперазин Цитизин Эпибатидин Арфонад ЦНС Аналогичны функциям М, Открытие каналов для Na + , K + , Са 2+
Вегетативные ганглии Деполяризация и возбуждение постганглионарных нейронов
Мозговой слой надпочечников Секреция адреналина и норадреналина
Каротидные клубочки Рефлекторное тонизирование дыхательного центра
Нм Фенилтримети ламмоний Тубокурарин-хлорид a-Бунгаротоксин Скелетные мышцы Деполяризация концевой пластинки, сокращение

Внесинаптические М3-холинорецепторы находятся в эндотелии сосудов и регулируют образование сосудорасширяющего фактора — окиси азота (NО).

4. М4 - и М5-холинорецепторы имеют меньшее функциональное значение.

М1-, М3- и М5-холинорецепторы, активируя посредством Gq/11-белка фосфолипазу С клеточной мембраны, увеличивают синтез вторичных мессенджеров — диацилглицерола и инозитолтрифосфата. Диацилглицерол активирует протеинкиназу С, инозитолтрифосфат освобождает ионы кальция из эндоплазматического ретикулума,

М2- и М4-холинорецепторы при участии Gi- и G0-белков ингибируют аденилатциклазу (тормозят синтез цАМФ), блокируют кальциевые каналы, а также повышают проводимость калиевых каналов синусного узла.

Дополнительные эффекты М-холинорецепторов — мобилизация арахидоновой кислоты и активация гуанилатциклазы.

Н-холинорецепторы возбуждаются алкалоидом табака никотином в малых дозах, блокируются никотином в больших дозах.

Биохимическая идентификация и выделение Н-холинорецепторов стали возможны благодаря открытию их избирательного высокомолекулярного лиганда a-бунгаротоксина — яда тайваньской гадюки Bungarus multicintus и кобры Naja naja. Н-холинорецепторы находятся в ионных каналах, в течение миллисекунд они повышают проницаемость каналов для Na + , K + и Са 2+ (через один канал мембраны скелетной мышцы проходит 5 — 10 7 ионов натрия за 1 с).

Таблица 21.Классификация лекарственных средств, влияющих на холинерги-ческие синапсы (указаны основные препараты)

Холиномиметики
М, Н-холиномиметики ацетилхолин-хлорид, карбахолин
М-холиномиметики пилокарпин, ацеклидин
Н-холиномиметики (ганглиостимуляторы) цитизин, лобелин
Средства, повышающие выделение ацетилхолина
цисаприд
Антихолинэстеразные средства
Обратимые блокаторы физостигмин, галантамин, амиридин, прозерин
Необратимые блокаторы армин
Холиноблокаторы
М-холиноблокаторы атропин, скополамин, платифиллин, метацин, пиренцепин, ипратропия бромид
Н-холиноблокаторы (ганглиоблокаторы) бензогексоний, пентамин, гигроний, арфонад, пахикарпин, пирилен
Миорелаксанты
Антидеполяризующие тубокурарин-хлорид, пипекурония бромид, атракурия бесилат, мелликтин
Деполяризующие дитилин

Н-холинорецепторы широко представлены в организме. Их классифицируют на Н-холинорецепторы нейронального (Нн) и мышечного (Нм) типов.

Нейрональные Нн-холинорецепторы представляют собой пентамеры и состоят из субъединиц a2 — a9, и β2 — β4(четыре трансмембранные петли). Локализация нейрональных Н-холинорецепторов следующая:

· кора больших полушарий, продолговатый мозг, клетки Реншоу спинного мозга, нейрогипофиз (повышают секрецию вазопрессина);

· вегетативные ганглии (участвуют в проведении импульсов с преганглионарных волокон на постганглионарные);

· мозговой слой надпочечников (повышают секрецию адреналина и норадреналина);

· каротидные клубочки (участвуют в рефлекторном тонизировании дыхательного центра).

Мышечные Нм-холинорецепторы вызывают сокращение скелетных мышц. Они представляют собой смесь мономера и димера. Мономер состоит из пяти субъединиц (a1 — a2, β, γ, ε, δ), окружающих ионные каналы. Для открытия ионных каналов необходимо связывание ацетилхолина с двумя a-субъединицами.

Пресинаптические М-холинорецепторы тормозят, пресинаптические Н-холинорецепторы стимулируют высвобождение ацетилхолина.

Холинергические синапсы: строение, функции

Холинергические синапсы представляют собой место, в котором происходит контакт двух нейронов или нейрона и эффекторной клетки, получающей сигнал. Синапс состоит из двух мембран – пресинаптической и постсинаптической, а также из синаптической щели. Передача нервного импульса осуществляется посредством медиатора, то есть вещества-передатчика. Происходит это в результате взаимодействия рецептора и медиатора на постсинаптической мембране. В этом заключаются основные функции холинергического синапса.

Медиатор и рецепторы

классификация средств стимулирующих холинергические синапсы

В парасимпатической НС медиатором является ацетилхолин, рецепторами – холинорецепторы двух типов: Н (никотин) и М (мускарин). М-холиномиметики, обладающие прямым типом действия, могут стимулировать рецепторы на мембране постсинаптического типа.

Синтез ацетилхолина осуществляется в цитоплазме нейронных холинергических окончаний. Он образуется из холина, а также ацетилкоэнзима-А, который имеет митохондриальное происхождение. Синтез происходит под действием цитоплазматического энзима холинацетилазы. В синаптических пузырьках происходит депонирование ацетилхолина. В каждом из таких пузырьков может находиться до нескольких тысяч ацетилхолиновых молекул. Нервный импульс провоцирует высвобождение молекул ацетилхолина в синаптическую щель. После этого он вступает во взаимодействие с холинорецепторами. Строение холинергического синапса уникально.

Строение

По данным, которые имеются у биохимиков, холинорецептор нервно-мышечного синапса может включать 5 белковых субъединиц, которые окружают ионный канал и проходят сквозь всю толщу мембраны, состоящей из липидов. Пара молекул ацетилхолина вступает во взаимодействие с парой α-субъединиц. Это приводит к тому, что открывается ионный канал и постсинаптическая мембрана деполяризуется.

Виды холинергических синапсов

холинергические синапсы влияют

Холинорецепторы по-разному локализованы и так же по-разному чувствительны к воздействию фармакологических веществ. В соответствии с этим различают:

  • Маскариночувствительные холинорецепторы – так называемые М-холинорецепторы. Мускарин представляет собой алкалоид, присущий ряду ядовитых грибов, к примеру мухоморам.
  • Никотиночувствительные холинорецепторы – так называемые Н-холинорецепторы. Никотин представляет собой алкалоид, содержащийся в листьях табака.

Их расположение

Первые располагаются в постсинаптической мембране клеток в составе эффекторных органов. Расположены они у окончаний постганглионарных парасимпатических волокон. Помимо этого они также есть в нейронных клетках вегетативных ганглиев и в коре головного мозга. Установлено, что М-холинорецепторы различной локализации гетерогенны, что обуславливает различную чувствительность холинергических синапсов к веществам фармакологической природы.

функции холинергического синапса

Виды в зависимости от расположения

Биохимики различают несколько видов М-холинорецепторов:

  • Расположенные в вегетативных ганглиях и в ЦНС. Особенностью первых является то, что они локализованы вне синапсов – М1-холинорецепторы.
  • Расположенные в сердце. Некоторые из них способствуют снижению высвобождения ацетилхолина – М2-холинорецепторы.
  • Расположенные в гладких мышцах и в большей части эндокринных желез – М3-холинорецепторы.
  • Расположенные в сердце, в стенках легочных альвеол, в ЦНС – М4-холинорецепторы.
  • Расположенные в ЦНС, в радужной оболочке глаза, в слюнных железах, в мононуклеарных кровяных клетках – М5-холинорецепторы.

Воздействие на холинорецепторы

Большая часть эффектов, оказываемых известными фармакологическими веществами, влияющими на М-холинорецепторы, связана с взаимодействием этих веществ и постсинаптических М2- и М3-холинорецепторов.

Рассмотрим классификацию средств, стимулирующих холинергические синапсы, ниже.

Н-холинорецепторы располагаются в постсинаптической мембране нейронов ганглиев у окончаний каждого из преганглионарных волокон (в парасимпатических и симпатических ганглиях), в синокаротидной зоне, в мозговом слое надпочечников, в нейрогипофизе, в клетках Реншоу, в скелетных мышцах. Чувствительность различных Н-холинорецепторов неодинакова к веществам. Например, Н-холинорецепторы в структуре вегетативных ганглиев (рецепторы нейтрального типа) имеют значительные отличия от Н-холинорецепторов в скелетных мышцах (рецепторы мышечного типа). Именно такая их особенность позволяет избирательно блокировать ганглии специальными веществами. Например, курареподные вещества способны блокировать нервно-мышечную передачу.

средства стимулирующие холинергические синапсы

Пресинаптические холинорецепторы и адренорецепторы участвуют в регуляции процесса высвобождения ацетилхолина в синапсах нейроэффекторной природы. Возбуждение этих рецепторов будет угнетать высвобождение ацетилхолина.

Ацетилхолин взаимодействует с Н-холинорецепторами и изменяет их конформацию, повышает уровень проницаемости постсинаптической мембраны. Ацетилхолин оказывает возбуждающий эффект на ионы натрия, которые проникают затем внутрь клетки, а это приводит к тому, что постсинаптическая мембрана деполяризуется. Изначально возникает локальный синаптический потенциал, который достигает определенной величины и начинает процесс генерации потенциала действия. После этого местное возбуждение, которое ограничено синаптической областью, начинает распространяться по всей клеточной мембране. Если происходит стимуляция М-холинорецептора, то при передаче сигнала значительную роль играют вторичные мессенджеры и G-белки.

Ацетилхолин действует в течение весьма короткого времени. Это обусловлено тем, что он стремительно гидролизуется под действием фермента ацетилхолинэстеразы. Холин, который образуется в процессе гидролиза ацетилхолина, в половине объема будет захвачен пресинаптическими окончаниями и транспортирован в цитоплазму клетки для последующего биосинтеза ацетилхолина.

средства влияющие на холинергические синапсы

Вещества, которые воздействуют на холинергические синапсы

Фармакологические и разнообразные химические вещества способны воздействовать на множество процессов, которые связаны с синаптической передачей:

  • Процесс синтеза ацетилхолина.
  • Процесс высвобождения медиатора. К примеру, карбахолин способен усиливать процесс выделения ацетилхолина, а ботулиновый токсин может препятствовать процессу высвобождения медиатора.
  • Процесс взаимодействия между ацетилхолином и холинорецептором.
  • Гидролиз ацетилхолина энзиматической природы.
  • Процесс захвата холина, образованного в результате гидролиза ацетилхолина, пресинаптическими окончаниями. К примеру, гемихолиний способен угнетать нейроновый захват и транспортировку холина в цитоплазму клетки.

Классификация

строение холинергического синапса

Средства, стимулирующие холинергические синапсы, способны оказывать не только этот эффект, но и холиноблокирующий (угнетающий) эффект. В качестве основы для классификации подобных веществ биохимики используют направленность действия этих веществ на различные холинорецепторы. Если придерживаться такого принципа, то вещества, оказывающие влияние на холинорецепторы, можно классифицировать следующим образом:

холинергические синапсы

  • Вещества, которые оказывают влияние на М-холинорецепторы и Н-холинорецепторы: к холиномиметикам относятся ацетилхолин и карбахолин, а к холиноблокаторам – циклодол. характера. К ним относятся салицилат физостигмина, прозерин, гидробромид галантамина, армин.
  • Вещества, которые влияют на холинергические синапсы. К холиномиметикам относятся гидрохлорид пилокарпина и ацеклидин, к холиноблокаторам – сульфат атропина, матацин, гидротартрат платифиллина, бромид ипратропия, гидробромид скопаламина.

Читайте также: