Карбоангидраза. Сокращение гладких мышц и сетчатка
Добавил пользователь Алексей Ф. Обновлено: 06.11.2024
Сетчатка глаза получает зрительную информацию о внешнем мире, конвертируя ее в электрические сигналы, поступающие в головной мозг. Зрение является основным источником информации для центральной нервной системы, поэтому для ее обработки используют самые большие по площади области коры мозга. Глазные яблоки связаны с центральной нервной системой оптическими нервами.
Глазное яблоко — орган сферической формы, имеющий ~ 25 мм в диаметре. Он образован четырьмя специализированными тканями, формирующими хрусталик и две заполненные жидкостью камеры (рис. 19.1):
- роговица и склера (внешние оболочки глаза);
- увеальный тракт, включающий радужку, цилиарное тело и хориоидею;
- эпителиальным пигмент;
- сетчатка глаза.
Слизистая оболочка глазного яблока (бульбарная конъюнктива) покрывает внутреннюю часть века, переходя в конъюнктивальную оболочку.
Роговица — прозрачная ткань передней стороны глаза, позволяющая свету входить в глазное яблоко и содержащая многочисленные чувствительные нервные окончания. Функции роговицы — преломление и проведение лучей света и защита глазного яблока от неблагоприятных внешних воздействий. Под роговицей расположен увеальный тракт (слой ткани под склерой), который формирует радужку (пигментированные гладкие мышцы), цилиарное тело и хориоидею.
Сетчатка — нервная ткань, содержащая фоторецепторы (палочки и колбочки), которая формирует внутренний слой оболочки глазного яблока. Чтобы быть воспринятыми, фотоны света должны пройти через роговицу, затем через заполненную жидкостью переднюю камеру глаза, хрусталик, заполненную жидкостью заднюю камеру глаза и клеточные слои сетчатки. Все ткани на этом пути должны быть прозрачными, чтобы позволить свету проходить через них беспрепятственно. Любая патология, уменьшающая прозрачность тканей глаза, ухудшает зрение.
Глазное яблоко в пределах орбиты глаза вращают шесть мышц
Существуют шесть экстраокулярных мышц глаза:
- средние и боковые прямые мышцы;
- верхняя прямая и косые мышцы;
- нижняя прямая и косые мышцы.
Эти поперечнополосатые мышцы контролирует ЦНС. В состав эфферентной рефлекторной цепи входят нейроны глазодвигательного, блочного и приводящего нервов. В отличие от большинства поперечнополосатых мышц, имеющих 1-3 нейро-мышечных концевых пластинки, волокна прямой мышцы могут иметь до 80 пластинок.
Яркий свет вызывает миоз (сужение), а уменьшение освещенности — мидриаз (расширение) зрачка. Свет, попадающий в один глаз, заставляет сужаться и зрачок парного глаза. Этот рефлекс, называемый согласованным ответом зрачков, является результатом работы головного мозга. Это происходит только тогда, когда мозг способен обработать визуальную информацию, получаемую с двух сетчаток. Согласованный ответ зрачка — полезный диагностический инструмент для оценки степени повреждения головного мозга у пациентов, находящихся в коматозном состоянии. Для оценки реакции на свет используют маленький фонарь.
Деятельность парасимпатической нервной системы сужает зрачок. Стимуляция симпатической нервной системы, например при испуге, вызывает мидриаз и уменьшает влияние ПСНС, хотя последняя все равно преобладает в рефлекторной регуляции размера зрачков.
Радиальная гладкая мышца радужки, расширяющая зрачок, иннервируется симпатической вегетативной нервной системой через волокна от верхнего шейного нервного узла. Нейромедиатором является норадреналин, который действует на а-адренорецепторы, что вызывает ограниченное расширение зрачка. Препараты, являющиеся агонистами а1адренорецепторов, активируют их и вызывают мидриаз (рис. 19.2).
Круговая гладкая мышца радужки, сужающая зрачок, иннервируется волокнами ресничного узла ПСНС. Нейромедиатором выступает ацетилхолин, который действует на мускариновые рецепторы. Средства, стимулирующие М-рецепторы, вызывают миоз.
Лекарства, вызывающие миоз, называют миотиками. а-Адреноблокаторы (фентоламин и др.) редко используют в клинической офтальмологической практике из-за ограниченного участия норадреналина в регуляции размера зрачка.
Многие средства, действующие на центральную нервную систему, также могут изменять размеры зрачка. Например, опиоиды типа морфия сужают зрачок до размера «булавочной головки».
Механизм фокусировки изображения на сетчатке
Аккомодация глаза позволяет регулировать рефрактерную силу и изменять путь светового потока. Преломляющую функцию тканей глаза обычно измеряют в единицах оптического преломления, известного как диоптрии. Наибольшая преломляющая система глаза расположена на внешней границе роговицы и имеет фиксированное значение. Способность хрусталика изменять радиус кривизны обеспечивает фокусировку изображения на оптической части сетчатки.
Хрусталик в глазном яблоке поддерживает ресничная (цилиарная) мышца на подвешивающих (цинновых) связках. Когда ресничная мышца расслабляется, эти связки вытягивают хрусталик в форму эллипсоида. Малый радиус кривизны хрусталика позволяет сфокусировать на сетчатке изображение отдаленных объектов. Когда под действием ПСНС ресничная мышца расслабляется, хрусталик приобретает сферическую форму. Кривизна хрусталика увеличивается, и на сетчатке фокусируются объекты, расположенные вблизи. Непрерывное сокращение ресничных мышц обеспечивает адаптацию остроты зрения. Этим объясняется утомление глаз от чтения в течение длительного времени.
Эффекты нервно-мышечных блокаторов на органы зрения
- При использовании миорелаксантов типа дитилина внутриглазное давление может увеличиваться
- Для здорового глаза увеличение внутриглазного давления не является проблемой из-за очень короткого времени действия дитилина
- При проникающем ранении глаза его содержимое может пролабировать в результате сокращения экстраокулярных мышц
- Низкий уровень освещенности
- М-холиномиметики
- Стимуляция СНС
- Агонисты a1-адренорецепторов, действующие на радиальные мышцы радужки
Причины миоза
- Высокий уровень освещенности
- М-холиноблокаторы
- Стимуляция ПСНС
- Опиаты, действующие на ЦНС
- Антагонисты а1-адренорецепторов
Во время адаптации зрения зрачки сужаются, ограничивая попадание лучей света в центр хрусталика. Происходит сферическое отклонение, и таким образом улучшается качество изображения на сетчатке. Адаптация зрачка происходит рефлекторно. Средства, блокирующие адаптацию глаза, называют циклоплегиками. Почти все они являются М-холиноблокаторами. В ресничной мышце нет адренорецепторов, поэтому на кривизну зрачка не влияют ни симпатолитики, ни симпатомиметики.
Зрачки способны к максимальной (около 12 диоптрий) степени адаптации в юношеском возрасте, затем эта способность постепенно уменьшается, поскольку хрусталик становится менее эластичным. К 50 годам аккомодативная способность хрусталика уменьшается до 1 или 2 диоптрий, поэтому пожилым людям для чтения обычно нужны очки. Это явление, называемое пресбиопией (старческая дальнозоркость), — естественное проявление старения.
Процесс образования внутриглазной жидкости
Передняя камера глаза заполнена влагой, называемой внутриглазной жидкостью. Она образуется в сосудах цилиарного тела непрерывно в количестве 3 мл/сут. Эта жидкость сначала попадает в заднюю камеру глаза, затем через зрачок — в переднюю камеру (рис. 19.3). Большая часть жидкости оттекает в эписклеральные вены через трабекулы и шлем-мов канал. Около 10% внутриглазной жидкости всасывается в толще склеры.
Рис. 19.3 Образование и отток внутриглазной жидкости. Показано расположение а- и бета-адренорецепторов и фермента карбоангидразы и все мишени для лекарственных средств, уменьшающих образование внутриглазной жидкости.
Образование и последующий отток внутриглазной жидкости поддерживают внутриглазное давление в нормальном диапазоне от 12 до 20 мм рт. ст. Образование внутриглазной жидкости косвенно связано с давлением крови и кровоснабжением цилиарного тела. Активация а1адренорецепторов вызывает спазм кровеносных сосудов в цилиарном теле. Активация β-адренорецепторов увеличивает образование внутриглазной жидкости. а2-Рецепторы уменьшают продукцию внутриглазной жидкости.
Карбоангидраза — фермент, играющий важную роль в образовании внутриглазной жидкости
Фермент карбоангидраза играет важную роль в образовании внутриглазной жидкости. Его действие в органах зрения подобно его действию в почках или в других органах, где образуются тканевые жидкости. Ионный состав внутриглазной жидкости похож на состав плазмы крови, но содержание белка (10 мг/100 мл) намного ниже, чем в плазме (6000 мг/100 мл). Из-за низкого содержания белка внутриглазная жидкость прозрачна. Внутриглазная жидкость не является ультрафильтратом плазмы, на что указывает более высокое содержание в ней бикарбонатов и аскорбиновой кислоты. Это различие в составе предполагает, что внутриглазная жидкость образуется за счет более активных, чем фильтрация, процессов. Этот факт является важным для понимания того, как ингибиторы карбоангидразы уменьшают производство внутриглазной жидкости (см. далее).
Сокращение гладких мышц — важный элемент физиологической регуляции глаза
Расширение и сужение зрачка, тонус кровеносных сосудов и ресничной мышцы зависят от сокращения гладких мышц. Эти процессы регулируются разными отделами вегетативной нервной системы, использующей различные медиаторы и рецепторы. И а1 и М3-рецепторы активируют G-белки, которые, в свою очередь, активируют фермент фосфолипазу С для сокращения гладких мышц (рис. 19.4).
Рис. 19.4 Механизмы регуляции тонуса гладких мышц глаза. Активация агадренорецепторов (а,) норэпинефрином (НЭ) (а) или М3-холинорецепторов (М3) ацетилхолином (АХ) (б) ведет к активации G-белков, которые стимулируют синтез инозитол-1,4,5-трифосфата (1Р3) из фосфатидилинозитолдифосфата (Р1Р2) ферментом фосфолипазой С (ФЛС). 1Р3 стимулирует выброс ионов Са2+ из внутриклеточного депо. Са2+ активизирует киназы легких цепей кальмодулинмиозина и вызывает сокращение.
Сетчатка преобразует свет в электрические импульсы нервных клеток
Сетчатка является частью эмбриональной центральной нервной системы, поэтому может рассматриваться, как часть головного мозга. Сетчатка получает кислород и питательные вещества от сосудистой оболочки (сзади) и ретинальных кровеносных сосудов (спереди). Сетчатка — это единственное место, где систему кровообращения головного мозга можно видеть непосредственно в офтальмоскопе.
Macula lutea с ямкой в центре — область сетчатки, характеризующаяся максимальной плотностью колбочек и отсутствием кровеносных сосудов. В этой части генерируются максимально четкие изображения, воспринимаемые мозгом наиболее детально и в самом высоком качестве.
Сетчатка — высокоорганизованная многослойная структура из нервных клеток. За пигментным эпителием сетчатки расположены два типа фоторецепторов — палочки и колбочки, выполняющие различные функции:
- палочки активируются светом слабой интенсивности (сумеречное зрение);
- колбочки активируются светом высокой интенсивности и отвечают за восприятие цвета. Фоторецепторы превращают свет в электрические импульсы посредством белка из рода опсинов. Генерированные импульсы передаются через биполярные клетки к ганглионарным клеткам сетчатки, аксоны которых формируют зрительный нерв и по нему направляются в головной мозг. Другие клетки сетчатки, включая амакриновые, горизонтальные и межплексиформные, также вовлечены в процесс обработки изображения, который происходит в сетчатке. Для восприятия фотонов света головным мозгом требуется преобразование этих фотонов в электрические импульсы в фоторецепторных клетках таким образом, чтобы смодулировать ими выброс нейротрансмиттеров. Это приводит к активизации нейронов, импульсы от которых в итоге достигают зрительных отделов коры, расположенных в затылочных долях головного мозга.
Рис. 19.5 Механизм световосприятия в палочках. Сс — гуанилилциклаза; ГМФ цГМФ — циклический гуанозинмонофосфат.
Регуляция высвобождения глутамата (нейротрансмиттера фоторецепторных клеток) происходит в несколько этапов (рис. 19.5). В тканях глаза фермент гуанилилциклаза превращает ГТФ в цГМФ. Затем цГМФ посредством ФДЭ превращается в ГМФ. Различают 11 основных изоформ ФДЭ, каждый из которых имеет еще различные подтипы (см. табл. 17.13).
Для фоторецепторов палочек имеет значение изоформа ФДЭ-6. В темноте активность ФДЭ-6 снижена, что приводит к накоплению цГМФ. Регуляция концентрации цГМФ критически важна для фоторецепторов палочек. Фоторецептор содержит родопсин, структура которого совпадает с G-белком, содержащим 11-цис-ретинальную функциональную группу (см. главу 2). Фотон света вызывает конформационные изменения родопсина, активируя специфический G-белок трансдуцин (Gt). К а-цепочке Gt присоединяется β/у-субъединица, что приводит к активации ФДЭ-6 и резко снижает концентрацию цГМФ.
Мембраны фоторецепторных клеток имеют особый вид ионных каналов, которые зависят от цГМФ (так называемые цГМФ-зависимые каналы). В присутствии цГМФ эти каналы пропускают катионы внутрь фоторецепторных клеток, что приводит к деполяризации. Так же как и в нейронах, деполяризация приводит к открытию потенциал-зависимых кальциевых каналов в пресинаптических отделах и высвобождению глутамата. Гиперполяризация фоторецептора приводит к закрытию кальциевых каналов и уменьшению высвобождения глутамата.
При отсутствии света (в темноте) в фоторецепторных клетках накапливаются большие концентрации цГМФ, фоторецепторные клетки деполяризуются и выбрасывают нейротрансмиттер. И наоборот, в присутствии света ФДЭ-6 активирована, что приводит к увеличению преобразования цГМФ в неактивный ГМФ и к снижению концентрации цГМФ. Фоторецепторные клетки гиперполяризуются, что приводит к закрытию потенциал-зависимых кальциевых каналов на пресинаптическом окончании, в результате уменьшается выделение глутамата.
Таким образом, в присутствии света фоторецепторы имеют низкую концентрацию цГМФ, гиперполяризованы и не выделяют нейротрансмиттеры. В первом синапсе зрительной системы воздействие фотонов света на сетчатку приводит к уменьшению выделения глутамата.
Следующие клетки в цепи передачи сигналов — биполярные клетки. Они делятся на два класса. «Включающие» биполярные клетки — это клетки, реагирующие на прекращение нейротрансмиттерной деполяризации. «Выключающие» биполярные клетки — это клетки, реагирующие на прекращение возбуждения, вызванного глутаматной гиперполяризацией. В связи с этим на ранних этапах визуальной обработки сетчатка глаза одновременно кодирует не только свет, но и его отсутствие во «включающих» и в «выключающих» клетках.
Функции различных полей зрения
Бинокулярная область полей зрения составляет приблизительно 200°, обеспечивая периферические функции сетчатки. Эти функции заключаются в обнаружении движения, что позволяет глазам быстро сосредоточиться на новом объекте. Как только в области периферического зрения начинается движение, то для его идентификации глаза сосредоточивают его изображение в macula lutea поскольку изображение, генерирующееся в macula lutea, наиболее детально.
Периферические поля сетчатки отвечают также за ночное и сумеречное зрение, т.к. большинство фоторецепторов-палочек расположено вне macula lutea. Потеря периферийного зрения сопровождается сужением полей зрения и часто связано с врожденной ретинопатией. Такие болезни, как глаукома и сахарный диабет, также могут влиять на сужение полей зрения.
Некоторые из глазных болезней, для лечения которых используют различные лекарственные средства, перечислены в табл. 19.1.
Клинические данные указывают, что лечение витаминами предотвращает и излечивает врожденную дистрофию сетчатки. Пациентам с возрастными изменениями макулы сетчатки необходимо дополнять диету витаминами С, Е и β-каротином, чтобы уменьшить риск развития болезни.
В данной главе рассмотрена терапия глаукомы и воспалительных заболеваний глаз, возрастной макулярной дегенерации, глазодвигательных нарушений, дефицита слезной жидкости и других болезней глаз, которые эффективно лечат лекарственными средствами.
Карбоангидраза. Сокращение гладких мышц и сетчатка
Анатомия глаза. Физиология глаза
Сетчатка глаза получает зрительную информацию о внешнем мире, конвертируя ее в электрические сигналы, поступающие в головной мозг. Зрение является основным источником информации для центральной нервной системы, поэтому для ее обработки используют самые большие по площади области коры мозга. Глазные яблоки связаны с центральной нервной системой оптическими нервами. Глазное яблоко — орган сферической формы, имеющий 25 мм в диаметре. Он образован четырьмя специализированными тканями, формирующими хрусталик и две заполненные жидкостью камеры:
• роговица и склера (внешние оболочки глаза);
• увеальный тракт, включающий радужку, цилиарное тело и хориоидею;
• эпителиальный пигмент;
• сетчатка глаза.
Слизистая оболочка глазного яблока (бульбарная конъюнктива) покрывает внутреннюю часть века, переходя в конъюнктивальную оболочку.
Роговица — прозрачная ткань передней стороны глаза, позволяющая свету входить в глазное яблоко и содержащая многочисленные чувствительные нервные окончания. Функции роговицы — преломление и проведение лучей света и защита глазного яблока от неблагоприятных внешних воздействий. Под роговицей расположен увеальный тракт (слой ткани под склерой), который формирует радужку (пигментированные гладкие мышцы), цилиарное тело и хориоидею.
Глазное яблоко в пределах орбиты глаза вращают шесть мышц. Существуют шесть экстраокулярных мышц глаза:
• средние и боковые прямые мышцы;
• верхняя прямая и косые мышцы;
• нижняя прямая и косые мышцы.
Эти поперечнополосатые мышцы контролирует ЦНС. В состав эфферентной рефлекторной цепи входят нейроны глазодвигательного, блочного и приводящего нервов. В отличие от большинства поперечнополосатых мышц, имеющих 1-3 нейромышечных концевых пластинки, волокна прямой мышцы могут иметь до 80 пластинок.
Величина зрачка зависит от освещенности и регулируется СНС и ПСНС. Яркий свет вызывает миоз (сужение), а уменьшение освещенности — мидриаз (расширение) зрачка. Свет, попадающий в один глаз, заставляет сужаться и зрачок парного глаза. Этот рефлекс, называемый согласованным ответом зрачков, является результатом работы головного мозга. Это происходит только тогда, когда мозг способен обработать визуальную информацию, получаемую с двух сетчаток. Согласованный ответ зрачка — полезный диагностический инструмент для оценки степени повреждения головного мозга у пациентов, находящихся в коматозном состоянии. Для оценки реакции на свет используют маленький фонарь.
Радиальная гладкая мышца радужки, расширяющая зрачок, иннервируется симпатической вегетативной нервной системой через волокна от верхнего шейного нервного узла. Нейромедиатором является норадреналин, который действует на а1-адренорецепторы, что вызывает ограниченное расширение зрачка. Препараты, являющиеся агонистами а1-адренорецепторов, активируют их и вызывают мидриаз.
Лекарства, вызывающие миоз, называют миотиками. а-Адреноблокаторы (фентоламин и др.) редко используют в клинической офтальмологической практике из-за ограниченного участия норадреналина в регуляции размера зрачка.
Многие средства, действующие на центральную нервную систему, также могут изменять размеры зрачка. Например, опиоиды типа морфия сужают зрачок до размера «булавочной головки».
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.
Карбоангидраза — фермент, играющий важную роль в образовании внутриглазной жидкости.
Фермент карбоангидраза играет важную роль в образовании внутриглазной жидкости. Его действие в органах зрения подобно его действию в почках или в других органах, где образуются тканевые жидкости. Ионный состав внутриглазной жидкости похож на состав плазмы крови, но содержание белка (10 мг/100 мл) намного ниже, чем в плазме (6000 мг/100 мл). Из-за низкого содержания белка внутриглазная жидкость прозрачна. Внутриглазная жидкость не является ультрафильтратом плазмы, на что указывает более высокое содержание в ней бикарбонатов и аскорбиновой кислоты. Это различие в составе предполагает, что внутриглазная жидкость образуется за счет более активных, чем фильтрация, процессов. Этот факт является важным для понимания того, как ингибиторы карбо-ангидразы уменьшают производство внутриглазной жидкости.
Сокращение гладких мышц — важный элемент физиологической регуляции глаза. Расширение и сужение зрачка, тонус кровеносных сосудов и ресничной мышцы зависят от сокращения гладких мышц. Эти процессы регулируются разными отделами вегетативной нервной системы, использующей различные медиаторы и рецепторы. И а1, и М3-рецепторы активируют G-белки, которые, в свою очередь, активируют фермент фосфолипазу С для сокращения гладких мышц.
Сетчатка преобразует свет в электрические импульсы нервных клеток. Сетчатка является частью эмбриональной центральной нервной системы, поэтому может рассматриваться, как часть головного мозга. Сетчатка получает кислород и питательные вещества от сосудистой оболочки (сзади) и ретинальных кровеносных сосудов (спереди). Сетчатка — это единственное место, где систему кровообращения головного мозга можно видеть непосредственно в офтальмоскопе.
Сетчатка — высокоорганизованная многослойная структура из нервных клеток. За пигментным эпителием сетчатки расположены два типа фоторецепторов — палочки и колбочки, выполняющие различные функции:
• палочки активируются светом слабой интенсивности (сумеречное зрение);
• колбочки активируются светом высокой интенсивности и отвечают за восприятие цвета. Фоторецепторы превращают свет в электрические импульсы посредством белка из рода опсинов. Генерированные импульсы передаются через биполярные клетки к ганглионарным клеткам сетчатки, аксоны которых формируют зрительный нерв и по нему направляются в головной мозг. Другие клетки сетчатки, включая амакриновые, горизонтальные и межплексиформные, также вовлечены в процесс обработки изображения, который происходит в сетчатке. Для восприятия фотонов света головным мозгом требуется преобразование этих фотонов в электрические импульсы в фоторецепторных клетках таким образом, чтобы смодулировать ими выброс нейротрансмиттеров. Это приводит к активизации нейронов, импульсы от которых в итоге достигают зрительных отделов коры, расположенных в затылочных долях головного мозга.
Регуляция высвобождения глутамата (нейротрансмиттера фоторецепторных клеток) происходит в несколько этапов. В тканях глаза фермент гуанилилциклаза превращает ГТФ в цГМФ. Затем цГМФ посредством ФДЭ превращается в ГМФ. Различают 11 основных изоформ ФДЭ, каждый из которых имеет еще различные подтипы.
Для фоторецепторов палочек имеет значение изоформа ФДЭ-6. В темноте активность ФДЭ-6 снижена, что приводит к накоплению цГМФ. Регуляция концентрации цГМФ критически важна для фоторецепторов палочек. Фоторецептор содержит родопсин, структура которого совпадает с G-белком, содержащим 11-цис-ретинальную функциональную группу. Фотон света вызывает конформационные изменения родопсина, активируя специфический G-белок трансдуцин (Gt). К а-цепочке Gt присоединяется бета/у-субъединица, что приводит к активации ФДЭ-6 и резко снижает концентрацию цГМФ.
Фармакотерапия глаукомы: регуляция внутриглазного давления и механизмы действия основных групп лекарственных средств.
В лечении глаукомы применяют следующие группы препаратов: α-адреномиметики, β-адреноблокаторы, м-холиномиметики, блокаторы карбоангидразы и аналоги простагландинов. Прежде чем перейти их механизмам действия, следует рассмотреть некоторые особенности физиологии глаза.
Величина зрачка зависит от освещённости и регулируется вегетативной нервной системой
Яркий свет вызывает миоз (сужение), а уменьшение освещённости — мидриаз (расширение) зрачка. Свет, попадающий в один глаз, заставляет сужаться и зрачок парного глаза. Этот рефлекс, называемый согласованным ответом зрачков, является результатом работы головного мозга. Согласованный ответ зрачка происходит только тогда, когда мозг способен обработать визуальную информацию, получаемую с двух сетчаток, поэтому он является полезным диагностическим инструментом для оценки степени повреждения головного мозга у пациентов, находящихся в коме. Деятельность парасимпатической нервной системы (ПСНС) сужает зрачок. Стимуляция симпатической нервной системы, например при испуге, вызывает мидриаз и уменьшает влияние ПСНС, хотя последняя всё равно преобладает в рефлекторной регуляции размера зрачков. Радиальная гладкая мышца радужки, расширяющая зрачок, иннервируется симпатической нервной системой через волокна от верхнего шейного нервного узла. Нейромедиатор норадреналин и агонисты α1-адренорецепторов радиальной мышцы вызывают ограниченное расширение зрачка (мидриаз). Круговая гладкая мышца радужки, сужающая зрачок, иннервируется волокнами ресничного узла ПСНС. Нейромедиатором выступает ацетилхолин, который действует на мускариновые рецепторы. Средства, стимулирующие М-холинорецепторы, вызывают миоз и называются миотиками. Блокаторы α-адренорецепторов (фентоламин и др.) редко используют в клинической офтальмологической практике из-за ограниченного участия норадреналина в регуляции размера зрачка.
Сокращение гладких мышц — важный элемент физиологической регуляции глаза
Расширение и сужение зрачка, тонус кровеносных сосудов и ресничной мышцы зависят от сокращения гладких мышц. Эти процессы регулируются разными отделами вегетативной нервной системы, использующей различные медиаторы и рецепторы. И α1, и М3-рецепторы активируют Gq-белки, которые, в свою очередь, активируют фермент фосфолипазу С для сокращения гладких мышц.
Аккомодация глаза
Аккомодация глаза позволяет регулировать рефрактерную силу и изменять путь светового потока. Преломляющую функцию тканей глаза обычно измеряют в единицах оптического преломления — диоптриях. Наибольшая преломляющая система глаза расположена на внешней границе роговицы и имеет фиксированное значение. Способность хрусталика изменять радиус кривизны обеспечивает фокусировку изображения на оптической части сетчатки. Хрусталик в глазном яблоке поддерживает ресничная (цилиарная) мышца на подвешивающих (цинновых) связках. Когда ресничная мышца расслабляется, эти связки вытягивают хрусталик в форму эллипсоида. Малый радиус кривизны хрусталика позволяет сфокусировать на сетчатке изображение отдалённых объектов. Когда под действием ПСНС ресничная мышца расслабляется, хрусталик приобретает сферическую форму. Кривизна хрусталика увеличивается, и на сетчатке фокусируются объекты, расположенные вблизи. Непрерывное сокращение ресничных мышц обеспечивает адаптацию остроты зрения, что объясняет утомление глаз от чтения в течение длительного времени. Во время адаптации зрения зрачки сужаются, ограничивая попадание лучей света в центр хрусталика. Происходит сферическое отклонение, и таким образом улучшается качество изображения на сетчатке. Адаптация зрачка происходит рефлекторно. Средства, блокирующие адаптацию глаза (паралич аккомодации), называют циклоплегиками. Почти все они являются М-холиноблокаторами. Соответственно М-миметики вызывают сокращение ресничной мышцы и спазм аккомодации. В ресничной мышце нет адренорецепторов, поэтому на кривизну зрачка не влияют ни симпатолитики, ни симпатомиметики.
Процесс образования внутриглазной жидкости
Передняя камера глаза заполнена внутриглазной жидкостью. Она образуется в сосудах цилиарного тела непрерывно в количестве 3 мл/сут. Эта жидкость сначала попадает в заднюю камеру глаза, затем через зрачок — в переднюю камеру. Большая её часть оттекает в эписклеральные вены через трабекулы и шлеммов канал. Около 10% внутриглазной жидкости всасывается в толще склеры. Образование и последующий отток внутриглазной жидкости поддерживают внутриглазное давление в нормальном диапазоне от 12 до 20 мм рт. ст. Образование внутриглазной жидкости косвенно связано с давлением крови и кровоснабжением цилиарного тела. Активация α1-адренорецепторов вызывает спазм кровеносных сосудов в цилиарном теле, а α2-рецепторы уменьшают продукцию внутриглазной жидкости. Напротив, активация β-адренорецепторов увеличивает образование внутриглазной жидкости.
Карбоангидраза — фермент, играющий важную роль в образовании внутриглазной жидкости
Фермент карбоангидраза играет важную роль в образовании внутриглазной жидкости. Его действие в органах зрения подобно его действию в почках или в других органах, где образуются тканевые жидкости. Ионный состав внутриглазной жидкости похож на состав плазмы крови, но содержание белка (10 мг/100 мл) намного ниже, чем в плазме (6000 мг/100 мл). Из-за низкого содержания белка внутриглазная жидкость прозрачна. Внутриглазная жидкость не является ультрафильтратом плазмы, на что указывает более высокое содержание в ней бикарбонатов и аскорбиновой кислоты. Это различие в составе предполагает, что внутриглазная жидкость образуется за счет более активных, чем фильтрация, процессов. Этот факт является важным для понимания того, как ингибиторы карбоангидразы уменьшают производство внутриглазной жидкости.
Типы глаукомы
Причины возникновения закрытоугольной глаукомы, основные мишени препаратов и иннервация глаза
Фармакотерапия глаукомы
Глаукома — медицинский термин, означающий снижение функций клеток сетчатки, которое заканчивается прогрессирующим уменьшением остроты зрения и в итоге слепотой. Исторически это состояние связывали с повышенным внутриглазным давлением (ВГД), но повреждение клеток сетчатки может происходить и без повышения ВГД. Это поражение называют глаукомой нормального давления. С другой стороны, повышение ВГД может не повреждать сетчатку. Снижение ВГД — основа лечения глаукомы, но окончательная цель терапии — предотвращение потери зрения.
Открытоугольная глаукома и закрытоугольная глаукома
Открытоугольная глаукома — хроническое заболевание, причиной которого является нарушение оттока внутриглазной жидкости в шлеммов канал. В некоторых случаях заболевание может иметь врождённый характер. В основе фармакотерапии глаукомы лежат две задачи. Первая — уменьшение образования внутриглазной жидкости, вторая — увеличение её оттока. Закрытоугольная глаукома связана с некоторыми анатомическими особенностями радужки глаза, приводящими к её срастанию с хрусталиком, что также сопровождается нарушением оттока внутриглазной жидкости.
1. Средства, уменьшающие образование внутриглазной жидкости
1.1. β-Андреноблокаторы
β-адреноблокаторы являются типичными препаратами выбора, используемыми при глаукоме для уменьшения образования внутриглазной жидкости. Пропранолол для лечения глаукомы не используют, т.к. он оказывает местноанестезирующее действие, лишая роговицу её защитного рефлекса. Неселективные β-адреноблокаторы, используемые в лечении глаукомы (картеолол, левобунолол и тимолол), одинаково блокируют и β1, и β2 адренорецепторы. Блокаторы β-рецепторов уменьшают образование внутриглазной жидкости за счёт блокирования β-рецепторов в цилиарном теле и уменьшения действия адреналина из мозгового вещества надпочечников и норадреналина, высвобождаемого из цилиарного тела. Для уменьшения внутриглазного давления также используют селективные антагонисты β1-рецепторов типа бетаксолола гидрохлорида. Бетаксолол можно применять у пациентов с патологией дыхательных путей (астма и др.), но фармакотерапия таких пациентов требует особого контроля и осторожности.
1.2. α-Адреномиметики
Образование внутриглазной жидкости также может быть уменьшено адреномиметиками. Адреналин не очень эффективен для этой цели, т.к. плохо всасывается с поверхности глаза и быстро метаболизируется моноаминоксидазой. Этого не происходит с пролекарством дипивефрина гидрохлоридом. Он липофилен и при попадании внутрь глаза под действием эстераз роговицы преобразуется в адреналин. Механизм действия адреналина (дипивефрин) при уменьшении внутриглазного давления точно не установлен. Возможно, он действует на β2-рецепторы в цилиарном теле, вызывая снижение продукции внутриглазной жидкости.
Адреналин сначала увеличивает внутриглазное давление, однако длительный приём препарата ВГД снижает; вероятно, адреналин десенсибилизирует β-адренорецептор-опосредованный ответ в глазу. Длительное применение адреналина приводит к уменьшению кровоснабжения цилиарного тела через активацию α1-рецепторов в артериях, что вызывает сужение сосудов и снижение скорости образования внутриглазной жидкости.
Апраклонидин (производное клонидина) — селективный α2-агонист, но в высоких концентрациях он также активирует α1-адренорецепторы. Использование апраклонидина ограничивает его побочные эффекты — увеличение ВГД, аллергический конъюнктивит или дерматит при длительном применении (=40% пациентов). Механизм действия апраклонидина, как и адреналина, в снижении ВГД пока неясен.
Существует несколько теорий:
- активация α2-адренорецепторов в цилиарном теле ингибирует активность аденилатциклазы, снижает количество цАМФ и таким образом уменьшает образование внутриглазной жидкости и повышает увеосклеральный отток. Увеличение увеосклерального оттока при продолжительном использовании можно объяснить увеличением освобождения простагландина в связи с α-адренергической стимуляцией;
- активация α1-адренорецепторов уменьшает приток крови в цилиарное тело подобно адреналину;
- активация пресинаптических α2-рецепторов ведет к ограничению выброса адреналина и уменьшению образования внутриглазной жидкости после уменьшения возбуждения постсинаптических β-рецепторов.
Обычными неблагоприятными побочными эффектами для препаратов группы агонистов α-рецепторов являются гиперемия, ретракция века, вазоконстрикция конъюнктивы и мидриаз.
Бримонидин – высокоселективный α2-адреномиметик. Снижает внутриглазное давление за счет снижения образования и повышения оттока внутриглазной жидкости по увеосклеральному пути. По эффективности сопоставим с тимололом (эффект бримонидина чуть слабее). Наиболее частым побочным эффектом является аллергический конъюктивит. В бримонидин-сожержащем препарате "Альфаган Р" в качестве консерванта использован Purite (как альтернатива бензалконию), что повышает переносимость препарата.
1.3. Ингибиторы карбоангидразы
Ингибиторы карбоангидразы — средства, которые применяют перорально при терапии глаукомы. Преобразование диоксида углерода и воды в угольную кислоту катализируется ферментом карбоангидразой; скорость преобразования зависит от конкретной изоформы фермента. Поскольку образование внутриглазной лекарственной жидкости зависит от активного транспорта бикарбоната и ионов Na, ограничение активности карбоангидразы уменьшает образование внутриглазной жидкости.
Производное сульфонамидов ацетазоламид, синтезированный еще в 1950-х гг., является ингибитором карбоангидразы, эффективно снижающим ВГД. Однако из-за побочных эффектов его применение ограничено. Неблагоприятными эффектами, особенно в пожилом возрасте, могут быть парестезия, гипокалиемия, снижение аппетита, сонливость и депрессия. Выраженность этих эффектов значительно меньше в новых препаратах с замедленным высвобождением лекарственного вещества. Снижение частоты побочных эффектов может быть связано с более низкими пиковыми концентрациями лекарственного вещества.
Ингибитор карбоангидразы дорзоламид блокирует специфическую изоформу карбоангидразы — карбоангидразу II, выделенную в цилиарном теле и эритроцитах. Дорзоламид рекомендуется комбинировать с β-адреноблокаторами и миотиками.
2. Лекарственные средства, увеличивающие отток внутриглазной жидкости
2.1. Миотики
Миотики улучшают отток внутриглазной жидкости в результате увеличения увеасклерального дренажа, но оказывают неблагоприятный эффект — сужают зрачки, что может ухудшать зрение в темноте. Хронический спазм аккомодации, вызванный миотиками, через какое-то время может привести к нарушению зрения и головной боли. Эти неблагоприятные эффекты наблюдаются у большинства пациентов, но обычно уменьшаются со временем у пожилых пациентов. Лекарственные формы с замедленным высвобождением активного вещества (например, пролонгированная форма М-холиномиметика пилокарпина) имеют минимум побочных эффектов у молодых пациентов. В отличие от глазных капель, лекарственные формы с замедленным высвобождением не создают высокую начальную концентрацию лекарственных веществ.
2.2. Аналоги простагландинов
Латанопрост — синтетический аналог простагландинов, увеличивающий увеасклеральный отток посредством того же механизма, что и эндогенный простагландин ПГ2а. Его действие связано с расслаблением цилиарной мышцы. Успех латанопроста привел к созданию его аналогов — биматопроста и травопроста. Побочные эффекты: гиперемия конъюнктивы, повышенный рост ресниц, пигментация радужки и раздражение глаз.
Тафлупрост — фторированный аналог простагландина F2α. Гидролизируется карбоксилэстеразой с образованием активного метаболита кислоты тафлупроста, который обладает высокой активностью и селективностью в отношении F-рецепторов простагландинов (сродство к рецептору в 12 раз выше, чем у ланапроста).
Также к препаратам этой группы относятся биматопрост (синтетический простамид, структурно связанный с ПГF2α, имитирует эффекты простамидов) и травопрост (синтетический аналог ПГF2α).
Эффективность лекарственных средств в терапии глаукомы.
В сравнительных тестах ингибиторы карбоангидразы оказались также эффективны, как и симпатомиметики. Однако клиническая эффективность — не единственный фактор, определяющий выбор препарата, также нужно учитывать побочные эффекты и индивидуальные особенности пациента. Препаратами первой линии являются аналоги простагландинов (латанопрост, травопрост) и тимолол. Ко второй линии фармакотерапии относят ингибиторы КА, α-адреномиметики и β-блокаторы.
3. Особенности терапии
3.1. Фармакотерапия открытоугольной глаукомы.
Тактика лечения глаукомы строится на установлении факторов риска и факта прогрессирования глаукомной оптической нейропатии и влияния на них. Поскольку ведущим фактором патогенеза и гибели ретинальных ганглиозных клеток при глаукомной оптической нейропатии признано повышение внутриглазного давления выше индивидуально переносимого уровня основной задачей в лечении глаукомы является снижение ВГД до целевого уровня. Целевое давление – верхний уровень тонометрического ВГД, при котором возможно остановить или замедлить повреждение внутренних структур глазного яблока и распад зрительных функций. Целевое давление не должно превышать толерантное ВГД (верхняя граница нормального ВГД, присущего данному больному, выше которой оно становится патологическим). Целевое давление определяется с учетом всех факторов риска каждого конкретного больного в результате детального обследования и наблюдения за динамикой поля зрения и изменений диска зрительного нерва. Для 75% здоровых лиц нормальное ВГД составляет 20-21 мм рт.ст.
Оптимальный препарат для лечения пока ещё не найден. Обычно терапию начинают с β-блокаторов, но если целевое ВГД не достигнуто, к терапии добавляют миотики и симпатомиметики. Кажется парадоксальным использование и β-адреноблокаторов, и агонистов этих же рецепторов у одного пациента, но, как это было описано ранее, эти средства, вероятно, действуют через различные механизмы снижения ВГД и могут иметь совместные эффекты. Ингибиторы карбоангидразы, как правило, используют как препараты третьей линии, т.к. они могут оказывать существенные неблагоприятные эффекты. Ингибиторы карбоангидразы типа дорзоламида могут стать более широко используемыми. Латанопрост даёт возможность фармакотерапии стойких случаев повышения ВГД. Биматопрост, агонист рецепторов ПГ2α, используют при лечении глаукомы местно (0,03% раствор), как и травопрост. В конечном счёте выбор препарата при глаукоме зависит от особенностей течения заболевания у конкретного пациента. Например, антагонисты β-рецептора противопоказаны пациентам с астмой. В молодом возрасте и у пациентов с увеличенным риском отслойки сетчатки миотики нужно использовать с осторожностью.
3.2. Фармакотерапия закрытоугольной глаукомы
В критической ситуации используют средства, опосредованно снижающие внутриглазное давление. Маннитол (осмотический диуретик), вводимый внутривенно, и глицерин, назначаемый внутрь, увеличивают осмолярность крови и могут быстро уменьшить высокое внутриглазное давление, являющееся непосредственной угрозой зрению. Миотики типа пилокарпина или карбахолина способны сильно натягивать радужку и временно уменьшать ВГД. Гиперосмотические средства снижают ВГД, сокращая объем стекловидного тела. Увеличение осмолярности плазмы вызывает отток воды от стекловидного тела во внутриглазные кровеносные сосуды, уменьшая его размер на 10%. Это позволяет уменьшить ВГД и углубить переднюю камеру глаза за счёт движения радужки, что особенно полезно.
Строение глаза
Глаукома вызвана нарушением оттока внутриглазной жидкости и может привести к слепоте
Для глаукомы характерны:
- увеличение внутриглазного давления (> 21 мм рт. ст.);
- видимые изменения глазного дна;
- сужение полей зрения.
Глаукома без адекватного лечения постепенно повреждает оптический нерв, что может привести к слепоте. Известны две основные разновидности глаукомы — открытоугольная глаукома и закрытоугольная глаукома.
Открытоугольная глаукома — хроническое заболевание, причиной которого является нарушение оттока внутриглазной жидкости в шлеммов канал. В некоторых случаях заболевание может иметь врожденный характер. В основе фармакотерапии глаукомы лежат две задачи. Первая — уменьшение образования внутриглазной жидкости, вторая — увеличение ее оттока (табл. 19.2).
Закрытоугольная глаукома связана с некоторыми анатомическими особенностями радужки глаза, приводящими к ее срастанию с хрусталиком, что также сопровождается нарушением оттока внутриглазной жидкости.
Возрастная макулярная дегенерация — это ухудшение функции центральной части сетчатки. Данное нарушение — одна из основных причин слепоты в пожилом возрасте. Существуют две формы этого заболевания:
- сосудистая (или влажная);
- несосудистая (или сухая).
Влажная форма начинается с хориоидальной неоваскуляризации и заканчивается кровоизлияниями и отслойкой сетчатки, что сопровождается высокой вероятностью потери зрения. При сухой форме кровоизлияния отсутствуют.
Слезные органы подразделяют на слезопродуцирующие железы и слезоотводящие пути. Нарушения в этих структурах могут привести к состоянию, называемому «сухой глаз». Причиной дефицита слезной жидкости могут быть заболевания глаз, применение лекарств и различные системные заболевания. Например, дефицит слезной жидкости в сочетании с ревматоидным артритом называют синдромом Шегрена.
Читайте также: