Репликация ДНК. Ход репликации ДНК клетки
Добавил пользователь Валентин П. Обновлено: 21.12.2024
Клеточный цикл . Все новые клетки образуются путем деления уже существующих. Этот принцип, как уже отмечалось, сформулировал Р. Вирхов еще в середине XIX в. Деление клеток обеспечивает непрерывность существования жизни на нашей планете. Именно благодаря ему осуществляются различные способы бесполого и полового размножения организмов. В основе процессов роста, регенерации и индивидуального развития многоклеточных организмов также лежит деление клеток.
Период существования клетки от момента ее образования из материнской клетки до собственного деления (включая это деление) или гибели называется клеточным циклом.
Продолжительность клеточного цикла у разных организмов и различных клеток в составе одного организма варьирует. Так, у бактерий в благоприятных условиях он длится примерно 20 мин. Короткие клеточные циклы (30—60 мин) характерны для бластомеров рыб и земноводных на этапе дробления, в то время как у млекопитающих промежуток времени между делениями бластомеров может достигать 10 ч и более. У взрослых мышей клетки кишечного эпителия делятся каждые 11—22 ч, а роговицы глаза — приблизительно один раз в трое суток. Для регулярно делящихся клеток многоклеточных организмов длительность клеточного цикла обычно составляет 12—36 ч.
Клеточный цикл состоит из интерфазы и деления клетки (рис. 16.1). Интерфаза — это часть клеточного цикла между двумя последовательными делениями. Как правило, она занимает больше времени, чем само деление. Рассмотрим основные периоды интерфазы на примере эукариотической клетки.
Пресинтетический, или G1-пе риод (от англ. gap — промежуток), начинается с момента образования новой клетки в результате деления материнской. Обычно это самый длительный период интерфазы и клеточного цикла в целом. В течение G1-периода молодая клетка интенсивно растет, в ней увеличивается количество органоидов и синтезируются различные соединения, необходимые для протекания процессов жизнедеятельности. В том числе образуются вещества, которые будут нужны для последующего удвоения молекул ДНК.
Вы уже знаете, что набор хромосом обозначают как n: например, 1n — гаплоидный набор, 2n — диплоидный. Набор молекул ДНК в клетках принято записывать с помощью буквы с. Из § 14 вам известно, что каждая хроматида содержит одну молекулу ДНК, т. е. количество молекул ДНК и хроматид в составе хромосом всегда совпадает. Таким образом, записи типа 1с, 2с, 4с отражают содержание в клетках не только молекул ДНК, но и соответствующих хроматид.
В пресинтетическом периоде каждая хромосома состоит из одной хроматиды. Следовательно, в G1-периоде число хромосом (n) и хроматид (с) в клетке одинаковое. Набор хромосом и хроматид диплоидной клетки в G1-периоде клеточного цикла можно выразить записью 2n2c.
В синтетическом, или S-периоде (от англ. synthesis — синтез), происходит удвоение молекул ДНК — репликация, а также удвоение центриолей клеточного центра (в тех клетках, где он имеется). После завершения репликации каждая хромосома состоит уже из двух идентичных сестринских хроматид, которые соединены друг с другом в области центромеры. Количество хроматид в каждой паре гомологичных хромосом становится равным четырем. Таким образом, набор хромосом и хроматид диплоидной клетки в конце S-периода (т. е. после репликации) выражается записью 2n4c.
Постсинтетический, или G2-период, продолжается от окончания синтеза ДНК (репликации) до начала деления клетки. В это время клетка активно запасает энергию и синтезирует белки для предстоящего деления (например, белок тубулин для построения микротрубочек, образующих впоследствии веретено деления). В течение всего G2-периода набор хромосом и хроматид в клетке остается неизменным — 2n4c.
Итак, интерфаза обычно включает три периода: пресинтетический (G1), синтетический (S) и постсинтетический (G2). На протяжении всей интерфазы хромосомы не спирализованы. Они располагаются в ядре клетки в виде хроматина .
После завершения интерфазы начинается деление клетки. Основным способом деления клеток эукариот является митоз, поэтому данный этап клеточного цикла обозначают как М-период. При митозе происходит спирализация хроматина . Это приводит к формированию компактных двухроматидных хромосом. После этого сестринские хроматиды каждой хромосомы отделяются друг от друга и затем попадают в разные дочерние клетки. Значит, дочерние клетки, образовавшиеся в результате митоза и вступающие в новый клеточный цикл, имеют набор 2n2c.
Обобщенная информация об основных периодах клеточного цикла представлена в таблице 16.1.
Таблица 16.1. Основные периоды клеточного цикла
Период
Содержание наследственного материала в диплоидной клетке
Репликация ДНК. Ход репликации ДНК клетки
Деление клетки, как практически все остальные важнейшие клеточные процессы, начинается в ядре. Первый этап — репликация (дупликация) всех хромосом, только после этого может начаться митоз. Репликация ДНК начинается за 5-10 ч до митоза и длится 4-8 ч. Ее результатом является образование двух точных копий всей ДНК. Во время митоза каждой из дочерних хромосом достается по одной из этих копий. Между окончанием репликации и началом митоза проходит 1-2 ч. В течение этого времени в клетке происходят подготовительные процессы, которые в итоге перерастают в митоз.
Химические и физические превращения в ходе репликации ДНК. Репликация ДНК происходит почти так же, как и транскрипция РНК на матрице ДНК, за исключением нескольких важных отличий.
1. Реплицируется не одна, а обе цепи ДНК каждой хромосомы.
2. Обе цепи ДНК реплицируются полностью — от одного конца до другого, а не частично, как при транскрипции РНК.
3. В отличие от РНК-полимеразы ДНК-полимераза представляет собой комплекс основных ферментов репликации. Этот комплекс прикрепляется к ДНК и начинает двигаться вдоль нее. Другой фермент — ДНК-лигаза, который катализирует образование связей между соседними нуклеотидами, используя для этого энергию фосфатных связей.
4. Дочерние цепи ДНК начинают формироваться одновременно в сотнях участков обеих родительских цепей. Впоследствии концы отдельных сегментов вновь синтезированной ДНК «сшиваются» ферментом ДНК-лигазой.
5. Каждая вновь синтезированная цепь ДНК остается прикрепленной посредством слабых водородных связей к родительской цепи, используемой в качестве матрицы. Впоследствии обе цепи ДНК вместе скручиваются в спираль.
6. Каждая цепь ДНК имеет длину около 6 см и состоит из миллионов витков, поэтому раскрутить две цепи без специального механизма было бы невозможно. Это достигается с помощью ферментов, которые регулярно разрезают каждую спираль по всей длине, поворачивают ее фрагменты так, чтобы они могли расплестись, и затем вновь восстанавливают целостность каждой спирали. Так возникают две новые спирали.
Репарация ДНК, коррекция ДНК и мутации. Как уже упоминалось, между завершением репликации и началом митоза проходит около 1 ч. Все это время в клетке идут активные процессы репарации и коррекции ДНК. Если во время репликации к нуклеотиду материнской цепи ДНК присоединяется некомплементарный нуклеотид дочерней цепи, то с помощью ферментов он будет вырезан и заменен на комплементарный. Эти ферменты представляют собой те же самые ДНК-полимеразы и ДНК-лигазы, которые используются в процессе репликации. Этот процесс называют коррекцией ДНК.
Благодаря репарации и коррекции ДНК ошибки транскрипции, называемые мутациями, встречаются очень редко. Появление мутаций приводит к синтезу в клетке дефектных белков вместо нормальных, вследствие этого ее функции часто нарушаются, и она может даже погибнуть. Геном человека содержит не менее 30000 генов, и период между двумя поколениями составляет в среднем 30 лет, поэтому любой геном, унаследованный от родителей, должен нести не менее 10 мутаций. Однако от этих мутаций можно найти защиту. Как известно, человеческий геном представлен двойным набором хромосом, поэтому из двух аналогичных генов хотя бы один почти наверняка будет нормальным.
Стадии клеточного деления.
А, Б и В - профаза, Г - прометафаза, Д - метафаза, Е - анафаза, Ж и 3 - телофаза.
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.
Репликация ДНК. Механизмы
Деление клеток происходит посредством митоза, при этом, во избежание потери генетической информации, вначале удваивается весь ядерный геном в S-фазе клеточного цикла. Продолжительность S-фазы составляет 8 ч. ДНК центромер хромосом реплицируется во время средней стадии митоза, что предшествует процессу сегрегации хромосом.
Репликация митохондриальной и ядерной ДНК происходит в разные фазы клеточного цикла. Несмотря на то что общая последовательность стадий при репликации ядерной ДНК у высших существ (эукариот) и у бактерий (прокариот) одинакова, сам процесс имеет незначительные отличия. Так, у эукариот во время репликации ДНК (ядерная) остаётся в нуклеосомной конфигурации.
Фрагменты ДНК, богатые парами оснований Г—Ц (R-полосы эухроматина в уплотнённом хроматине), экспрессируют гены «домашнего хозяйства», которые функционируют во всех клетках организма. Данные фрагменты реплицируются на ранней стадии S-фазы. Участки гетерохроматина, богатые парами оснований А—Т (G-полосы), экспрессируют небольшое количество генов и реплицируются на поздней стадии S-фазы.
Гены с большим содержанием пар А—Т, кодирующие различные свойства и функционирующие лишь в определённых клетках, входят в состав факультативного гетерохроматина. Их репликация происходит на ранней стадии S-фазы только в тех клетках, в которых они экспрессируются, и на поздних стадиях — в клетках, где экспрессии не происходит.
Область спирали ДНК, которая в начале репликации раскручивается в первую очередь, называют участком начала репликации (репликоном). В этом месте двойную нить расплетает фермент хеликаза, раскрывающий последовательность оснований. Процесс репликации происходит вдоль одной цепи со скоростью примерно 40-50 нуклеотидов в секунду одновременно в обоих направлениях. У высших существ имеется множество репликонов, расположенных на расстоянии 50 000—300 000 п.н. В месте разделения нити ДНК возникают репликационные вздутия, на каждом конце которого формируется репликационная вилка.
Новая ДНК синтезируется при участии ферментов, называемых ДНК-полимеразами, из дезоксирибонуклеотидтрифосфатов (АТФ, ГТФ и др.), которые превращаются в монофосфатные нуклеотиды (АМФ, ГМФ и др.). Отщепление и гидролиз пирофосфатов из трифосфатов обеспечивают процесс энергией и обусловливают его полную необратимость, делая молекулу ДНК достаточно устойчивой.
Все ДНК-полимеразы могут выстраивать новую ДНК только в направлении от 5'- к 3'-концу. Это означает, что ферменты должны двигаться вдоль матричной цепи от 3'- к 5'-концу. В связи с этим репликация может непрерывно происходить от репликона только по одной цепи, называемой опережающей. Из-за расположения Сахаров репликация по второй, отстающей цепи происходит только на коротких отрезках, известных как фрагменты Оказаки.
Длина новых фрагментов ДНК, образующихся вдоль отстающей цепи, в среднем составляет 100—200 пар нуклеотидов. Во время синтеза фрагменты Оказаки сшивает между собой фермент ДНК-лигаза. В ожидании репликации стабильность первичной одноцепочечной нуклеотидной последовательности отстающей цепи поддерживается белком, связывающим одноцепочечную ДНК (или спиральдестабилизирующим белком).
Для синтеза опережающей цепи необходим фермент ДНК-полимераза S, а для синтеза отстающей — ДНК-полимераза а. Последняя имеет субъединицу, называемую ДНКпраймазой, которая синтезирует короткую РНК-затравку, играющую роль праймера. Репликация мито-хондриальной ДНК происходит независимо от процессов в ядре. При этом используется ряд других ферментов, один из которых — ДНК-полимераза у.
В геноме присутствует большое количество копий пяти гистонных генов, благодаря чему происходит синтез множества гистонов (особенно во время S-фазы), которые сразу после репликации связываются с новой цепью ДНК.
Следует отметить, что процесс репликации носит название полуконсервативного, так как в состав дочерних молекул ДНК входит одна первичная цепь и одна синтезированная.
Репликация теломер ДНК
Основной проблемой синтеза ДНК на конце отстающей цепи служит то, что ДНК-полимеразе а необходимо прикрепиться выше конца последовательности, которая реплицирована, и работать проксимально в направлении от 5'- к 3'-концу. Для решения этой проблемы нужен ДНК-синтетический фермент теломераза, который продлевает отстающую цепь.
Теломераза — рибонуклеопротеин, содержащий матричную РНК с последовательностью 3'-ААУЦЦЦААУ-5', которая комплементарна полутора повторам шестиосновной теломерной ДНК (5'-ГГГТТА-3'). Фрагмент последовательности 3'-ААУ РНК-теломеразы связывается с терминальным концом ТТА-5' матричной отстающей цепи, при этом остальная часть РНК остаётся свободной. Затем к этой матричной РНК присоединяются дезоксирибонуклеотиды, тем самым продлевая повторяющуюся последовательность в ДНК на один сегмент.
После этого теломераза отщепляется и направляется к другому терминальному концу с последовательностью ТТА-5', и процесс повторяется. Как только возникает достаточно длинный терминальный повтор, ДНК-полимераза а прикрепляется к полученному одноцепочечному фрагменту и достраивает вторую цепь по методу комплементарности в проксимальном 5'—3'-направлении, двигаясь к уже существующему двухцепочечному участку, последующее слияние с которым происходит благодаря действию ДНК-лигазы.
Репаративные механизмы ДНК
Иногда в растущую цепь случайно вклинивается неправильное основание, однако, к счастью, у здоровых клеток присутствуют пострепликационные репаративные ферменты и система коррекции ошибочного спаривания оснований, которые исправляют подобные ошибки. В основе механизма действия данных систем лежат удаление и замена ошибочно вставленных оснований в соответствии с последовательностью матричной цепи. Для их функционирования необходимы ДНК-полимеразы b и е.
Значение ДНК для медицины. Патология пострепликационных механизмов репарации иногда обусловливает предрасположенность пациентов к некоторым онкологическим заболеваниям. К ним относят синдром множественной ломкости хромосом (синдром Блума), наследственную предрасположенность к раку молочной железы, вызванную мутациями генов BRCA1 и BRCA2, и аутосомно-доминантную форму рака кишечника (наследственный неполипозный рак толстой кишки).
Существует теория, утверждающая, что после каждого клеточного цикла теломеры укорачиваются на один повтор, а следовательно, количество делений клетки ограничено числом повторов в теломерной цепи. Согласно этому бесконечный рост и деление опухолевых клеток происходят из-за присутствия активных мутантных теломераз, которые препятствуют разрушению теломер.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
• Репликация происходит после прохождения клеткой точки рестрикции или START
• Репликация регулируется поэтапно и скоординирована с наступлением митоза
• Репликация происходит в точках инициации, которые могут обладать особой первичной структурой, специфическим положением, или располагаться в ДНК на определенных расстояниях
• Инициация происходит только в разрешенных точках, способных к репликации
• Осуществив свои функции, до наступления следующего цикла, точки начала репликации не могут использоваться повторно
Когда клетки проанализировали состояние окружающей среды и приняли решение вступить в цикл деления, они проходят точку G1/S и начинают репликацию ДНК. Как клетки объединяют и активируют факторы, необходимые для репликации ДНК? Какие механизмы контроля гарантируют, что клетка лишь однажды реплицировала ДНК, и только один раз в цикле?
Хотя пока невозможно дать полные ответы на эти вопросы, в результате идентификации и анализа последовательности дрожжевых хромосомных ДНК, способных к независимой репликации, было получено много информации о самом процессе репликации ДНК Эти последовательности в хромосоме, называемые автономно реплицирующиеся последовательности (ARS), являются частью точек начала репликации. Точка инициации или начала (ориджин репликации) представляет собой участок последовательности ДНК, на котором начинается репликация.
У почкующихся дрожжей, но не у большинства других организмов, точки начала репликации представлены небольшими консенсусными последовательностями. У сливающихся дрожжей эти точки занимают большие участки ДНК, богатые АД парами, но не отличаются какой-то особой структурой. У остальных эукариот точки начала репликации расположены случайно, в соответствии с распределением по геному белков, неспецифически связанных с ДНК.
Для того чтобы гарантировать своевременную дупликацию генома, на хромосоме должно быть достаточное количество точек начала репликации. У бактерий для репликации единственной кольцевой хромосомы необходима лишь одна точка начала, однако у эукариот, имеющих большой геном, распределенный по многим линейным хромосомам, должно быть много точек начала репликации. У почкующихся дрожжей, величина генома которых составляет около 13 Мб, в 16 хромосомах находится примерно 400 точек начала репликации.
Это создает несколько проблем, связанных с регуляцией процесса репликации. Функционирование точек начала репликации должно быть скоординировано с клеточным циклом таким образом, чтобы репликация начиналась только в течение S фазы. Должна быть полная уверенность в том, что репликация завершилась до перехода клетки в митоз. Каждая из точек начала репликации должна функционировать только один раз, с тем чтобы гарантировать, что ДНК реплицируется лишь один раз за цикл.
В продолжение всего клеточного цикла 0RC связан с точкой начала репликации на хромосоме.
В течение короткого промежутка времени, от поздего митоза до G1, с точкой начала также связываются белки, активирующие репликацию,
Cdc6 и Cdt1, что, в свою очередь, активирует гексамерный МСМ геликазный комплекс (МСМ2-7).
Этот этап завершает снятие блока репликации и сборку пре-RC.
Точки начала репликации связывают факторы, необходимые для активации репликации и инициации синтеза ДНК. Инициация репликации ДНК происходит только в тех точках, которые содержат связанные факторы и которые поэтому относятся к разрешенным точкам. Однако в каждом раунде репликации ДНК в процессе участвует ограниченный набор потенциальных начальных точек, присутствующих в хромосомах. Более того, по мере активации в разное время различных разрешенных начальных точек, события инициации также происходят через различные интервалы времени. Например, некоторые точки активируются в ранней S-фазе, а другие переходят в это состояние позже.
Неизвестно, чем задается этот временной фактор, но похоже, что расположение специфической точки начала репликации на хромосоме определяет время ее наступления.
Ддя того чтобы репликация началась, в точке начала должен сформироваться пререпликативный комплекс (pre-RC). В результате проведения генетических исследований на дрожжах и биохимических экспрериментов на экстрактах яйцеклеток Xenopus, выяснилась картина сборки pre-RC. Процесс начинается со связывания с ДНК комплекса из шести белков, который носит название комплекса, распознающего область начала репликации (origin recognition complex, ORC). Этот комплекс помечает потенциальную точку начала репликации, однако его недостаточно для активации. Он служит платформой для связывания еще двух консервативных белков: Cdc6, который относится к семейству ААА+АТФазы, и Cdt1. (Многие белки, обладающие АТФазным доменом, для выполнения работы используют энергию АТФ.)
Затем к ним присоединяется комплекс поддерживающий минихромосому (minichromosome maintenance complex, МСМ), представляющий собой кольцевую структуру, состоящую из шести родственных белков, которые также относятся к большому семейству ААА+АТФаз. Комплексы МСМ присутствуют в избытке и распространяются за пределы точки начала репликации. После присоединения МСМ, ORC и Cdc6 становятся необязательными компонентами и pre-RC переходит в состояние способное к активации. Порядок событий, происходящих при сборке pre-RC в точках начала репликации, схематически представлен на рисунке ниже.
Сборка pre-RC ограничена промежутком между концом М-фазы и ранней S-фазой, что объясняется следующими причинами. Во-первых, в клетке уровень белка Cdc6 контролируется таким образом, что он присутствует только в этот промежуток времени. В отсутствие белка Cdc6, МСМ белок не связывается с точкой начала репликации. Во-вторых, у Метазоа, белок Cdt1 негативно регулируется другим белком, геминином, который блокирует его активность во всех периодах, за исключением окна в G1. Наконец, сборка самого pre-RC ограничивается активностью митотического CDK-циклинового комплекса.
Субстратами для этого комплекса являются субъединицы ORC, Cdc6 и МСМ. При фосфорилировании Cdc6 инактивируется, а фосфорилирование белка МСМ в S-фазе вызывает его отщепление от ДНК. Поэтому pre-RC может сформироваться только при низкой активности CDK-циклинового комплекса. Это характерно для промежутка между уровнями высокой активности митотического комплекса CDK-циклина в М-фазе, и в S-фазе, когда она снова увеличивается, способствуя активации точки начала репликации.
Каким образом точка начала репликации переходит из пререпликативного в репликативное состояние? Для такого перехода необходимо формирование многих дополнительных белковых комплексов, и процесс находится под контролем двух киназ, комплекса CDK-циклин и Cdc7-Dbf4 (DDK). Таким образом, активность CDK-циклинового комплекса координирует процессы репликации и клеточного цикла. При этом координация может носить как негативный (предотвращая сборку pre-RC и, таким образом, повторное функционирование точек начала репликации), так и позитивный характер (промотируя активацию точек начала репликации). К числу вопросов, ожидающих своего ответа, относится вопрос относительно субстратов киназ, промотирующих инициацию репликации.
Если комплексы CDK-циклин обеспечивают координацию процессов во всем цикле, то DDK действует на уровне отдельных точек, инициирующих синтез ДНК. К числу наиболее известных субстратов этой киназы относятся сами МСМ-белки. Интересно, что точечная мутация в гене Mcm5 отменяет необходимость присутствия DDK. Это позволяет предполагать, что фосфорилирование приводит к изменению струтуры белка МСМ, что служит причиной инициации репликации. Впрочем, имеющиеся данные свидетельствуют о том, что эти изменения крайне незначительны. На показаны контрольные процессы репликации ДНК с участием CDK и DDK.
Вероятно, лимитирующим процессом инициации репликации в отдельных начальных точках является связывание белка Cdc45, для которого необходимы как CDK-циклиновый комплекс, так и DDK. Связывание этого белка, которое сопровождается образованием дополнительного комплекса, называемого GINS, приводит к раскручиванию спирали ДНК в начальной точке, за счет активации комплекса МСМ, действующего как хеликаза. Таким образом, МСМ превращается из фактора сборки, участвующего в формировании pre-RC, в фермент хеликазу, который является частью комплекса элонгации. Раскручивание двойной спирали ДНК в точке начала репликации приводит к образованию однонитевой ДНК, которая связывает специфический белок RPA, относящийся к группе белков, связывающихся с однонитевой ДНК (ssDNA binding proteins).
В свою очередь, белок RPA способствует связыванию комплекса праймаза/ДНК-полимераза альфа, который инициирует синтез ДНК. Комплекс МСМ и Cdc45 движется вдоль ДНК, формируя расширяющуюся репликативную вилку, которая образует большую реплисому, включающую в основном ДНК-полимеразу 6, а не полимеразу а. Процессы инициации репликации ДНК представлены на рисунке ниже. В поддержании функционирования реплисомы и защите ДНК в области репликативной вилки от повреждений участвуют контрольные точки и системы репарации ДНК.
Как только МСМ отошли от точки начала репликации, она считается «использованной» и не может активироваться повторно до окончания следующей М-фазы, пока в начальной точке снова не сформируется pre-RC. По мере прохождения S-фазы, МСМ удаляются из хроматина. Наряду с этим, при движении репликативной вилки устанавливаются связи, соединяющие вместе до наступления митоза вновь образованные сестринские хроматиды. Таким образом, завершение S-фазы связано с формированием структур, необходимых для правильной сегрегации хромосом в митозе, что свидетельствует об образовании связей между различными фазами клеточного цикла.
Функция точек начала репликации также регулируется на уровне целой хромосомы. Целесообразно напомнить, что в клетке ДНК с помощью нуклеосом упакована в хроматин, который накладывает на нее ряд структурных ограничений. Это обстоятельство может влиять на временную организацию репликации; например не на всех точках начала в S-фазе репликация происходит в одно и то же время. В некоторых случаях относительное время наступления активации точек начала репликации может определяться не самой точкой, а ее расположением на хромосоме. Точки, расположенные поблизости от транскрипционно-активного эухроматина, инициируются раньше, чем расположенные вблизи транскрипционно-неактивного гетерохроматина, которые обычно инициируются в поздней S-фазе.
Например, точки, расположенные вблизи теломерных областей хромосом (которые обычно транскрипционно неактивны), реплицируются в конце S-фазы. Это общее правило подтверждается изящными экспериментами, выполненными на почкующихся дрожжах. В этих экспериментах перемещение поздней точки начала репликации в эухроматиновую область приводило к ее ранней репликации, и наоборот Однако время наступления начала репликации контролируется также внутренними факторами, присущими самой точке, и роль структуры хроматина и ядра в динамике репликации выяснена недостаточно.
Таким образом, процесс дупликации генома требует интеграции разнообразных сигналов, связывающих вместе регуляторные системы всего клеточного цикла, контролирующие состояние клетки (CDK), и специфические белки хроматина, которые регулируют индивидуальные cis-сайты. Скоординированное действие CDK и DDK демонстрирует, как различные типы киназ обеспечивают выработку конвергентного сигнала, управляющего прохождением клетки по циклу.
Сборка пре-RC происходит в поздней М-фазе и в G1, когда активность CDK и DDK находится на низком уровне.
По мере роста их активности начинается инициация синтеза ДНК.
После инициации npe-RC разбирается и может быть собран повторно, только когда в конце митоза активность CDK снова понизится. Инициация синтеза ДНК регулируется CDK и DDK.
Репликация ДНК
Репликация — это механизм самокопирования и основное свойство наследственного материала, которым выступают молекулы ДНК.
Особенностью ДНК является то, что обычно ее молекулы состоит из двух комплементарных друг другу цепей, образующих двойную спираль. В процессе репликации цепи материнской молекулы ДНК расходятся, и на каждой строится новая комплементарная цепь. В результате из одной двойной спирали образуется две, идентичные исходной. Т. е. из одной молекулы ДНК образуются две, идентичные матричной и между собой.
Таким образом, репликация ДНК происходит полуконсервативным способом, когда каждая дочерняя молекула содержит одну материнскую цепь и одну вновь синтезированную.
У эукариот репликация происходит в S-фазе интерфазы клеточного цикла.
Описанный ниже механизм и основные ферменты характерны для подавляющего большинства организмов. Однако бывают исключения, в основном среди бактерий и вирусов.
Расхождение цепей исходной молекулы ДНК обеспечивает фермент геликаза, или хеликаза, который в определенных местах хромосом разрывает водородные связи между азотистыми основаниями ДНК. Хеликазы перемещаются по ДНК с затратой энергии АТФ.
Чтобы цепочки снова не соединились, они удерживаются на расстоянии друг от друга дестабилизирующими белками. Белки выстраиваются в ряд со стороны пентозо-фосфатного остова цепи. В результате образуются зоны репликации, называемые репликационными вилками.
Репликационные вилки образуются не в любых местах ДНК, а только в точках начала репликации, состоящих из определенной последовательности нуклеотидов (около 300 штук). Такие места распознаются специальными белками, после чего образуется так называемый репликационный глаз, в котором расходятся две цепи ДНК.
Из точки начала репликация может идти как в одном, так и в двух направлениях по длине хромосомы. В последнем случае цепи ДНК расходятся вперед и назад, и из одного репликационного глазка образуются две репликационные вилки.
Репликон — единица репликации ДНК, от точки ее начала и до точки ее окончания.
Поскольку в ДНК цепи спирально закручены относительно друг друга, то разделение их хеликазой вызывает появление дополнительных витков перед репликационной вилкой. Чтобы снять напряжение, молекула ДНК должна была бы проворачиваться вокруг своей оси один раз на каждые 10 пар разошедшихся нуклеодидов, именно столько образуют один виток спирали. В таком случае ДНК бы быстро вращалась с затратой энергии. Но этого не происходит, т. к. природа нашла более эффективный способ справится с возникающим при репликации напряжением спирали.
Фермент топоизомераза разрывает одну из цепей ДНК. Отсоединенный участок проворачивается на 360° вокруг второй целой цепи и снова соединяется со своей цепью. Этим снимается напряжение, т. е. устраняются супервитки.
Каждая отдельная цепь ДНК старой молекулы используется в качестве матрицы для синтеза новой комплементарной себе цепи. Добавление нуклеотидов к растущей дочерней цепи обеспечивает фермент ДНК-полимераза. Существует несколько разновидностей полимераз.
В репликационной вилке к освободившимся водородным связям цепей согласно принципу комплиментарности присоединяются свободные нуклеотиды, находящиеся в нуклеоплазме. Присоединяющиеся нуклеотиды представляют собой дезоксирибонуклеозидтрифосфаты (дНТФ), а конкретно дАТФ, дГТФ, дЦТФ, дТТФ.
После образования водородных связей фермент ДНК-полимераза связывает нуклеотид фосфоэфирной связью с последним нуклеотидом синтезируемой дочерней цепи. При этом отделяется пирофосфат, включающий два остатка фосфорной кислоты, который потом расщепляется на отдельные фосфаты. Реакция отщепления пирофосфата в результате гидролиза энергетически выгодна, так как связь между первым, который уходит в цепь, и вторым фосфатными остатками богата энергией. Эта энергия используется полимеразой.
Полимераза не только удлиняет растущую цепь, но и способна отсоединять ошибочные нуклеотиды, т. е. обладает корректирующей способностью. Если последний нуклеотид, который должен быть присоединен к новой цепи, не комплементарен матричному, то полимераза его удалит.
ДНК-полимераза может присоединять нуклеотид только к -OH группе, находящейся при 3-м атоме углерода дезоксирибозы. Таким образом цепь синтезируется только со стороны своего 3´-конца. То есть синтез новой цепи ДНК идет в направлении от 5´- к 3´-концу. Поскольку в двуцепочечной молекуле ДНК цепи антипараллельны, то процесс синтеза по материнской, или матричной, цепи идет в обратном направлении – от 3´- к 5´-концу.
Поскольку цепи ДНК антипараллельны, а синтез новой цепи возможен только в направлении 5´→3´, то в репликационной вилке дочерние цепи будут синтезироваться в разных направлениях.
На матрице 3´→5´ сборка новой полинуклеотидной последовательности происходит по большей части непрерывно, так как эта цепь синтезируется в направлении 5´→3´. Антипараллельная матрица характеризуется 5´→3´ направлением, поэтому синтез дочерней цепи по ходу движения вилки здесь не возможен. Здесь он был бы 3´→5´, но ДНК-полимера не может присоединять к 5´-концу.
Поэтому синтез на матрице 5´→3´ выполняется небольшими участками — фрагментами Оказаки (названы в честь открывшего их ученого). Каждый фрагмент синтезируется в обратном ходу образования вилки направлении, что обеспечивает соблюдение правила сборки от 5´- к 3´-концу.
Другим «недостатком» полимеразы является то, что она не может сама начать синтез участка дочерней цепи. Причина этого кроется в том, что ей необходим -OH-конец нуклеотида, уже соединенного с цепью. Поэтому необходима затравка, или праймер. Им выступает короткая молекула РНК, синтезируемые ферментом РНК-праймазой и спаренная с матричной цепью ДНК. Синтез каждого участка Оказаки начинается со своей РНК-затравки. Та цепь, которая синтезируется непрерывно, обычно имеет один праймер.
После удаления праймеров и застраивания брешей ДНК-полимеразой отдельные участки дочерней цепи ДНК сшиваются между собой ферментом ДНК-лигазой.
Непрерывная сборка идет быстрее, чем фрагментарная. Поэтому одна из дочерних цепей ДНК называется лидирующей, или ведущей, вторая — запаздывающей, или отстающей.
У прокариот репликация протекает быстрее: примерно 1000 нуклеотидов в секунду. В то время как у эукариот только около 100 нуклеотидов. Количество нуклеотидов в каждом фрагменте Оказаки у эукариот составляет примерно до 200, у прокариот — до 2000.
У прокариот кольцевые молекулы ДНК представляют собой один репликон. У эукариот каждая хромосома может содержать множество репликонов. Поэтому синтез начинается в нескольких точках, одновременно или нет.
Ферменты и другие белки репликации действуют совместно, образуя комплекс и двигаясь по ДНК. Всего в процессе участвует около 20 разных белков, здесь были перечислены лишь основные.
Читайте также: