Сердечная мышечная ткань. Строение сердечной мышечной ткани.
Добавил пользователь Alex Обновлено: 21.12.2024
Сердечная мышечная ткань развивается из переднего отдела висцеральных листков спланхнотома. Из этих листков выделяются 2 миоэпикардиальные пластинки: правая и левая. Клетки этих пластинок дифференцируются в 2 направлениях: из одних развивается мезотелий, покрывающий эпикард, из других — кардиомиоциты 5 разновидностей: 1 — сократительные, 2 — пейсмекерные, 3 — проводящие, 4 — промежуточные, 5 — секреторные, или эндокринные.
Строение кардиомиоцитов. Кардиомиоциты имеют цилиндрическую форму, их длина 50-120 и диаметр 10-20 мкм. Кардиомиоциты своими концами соединяются друг с другом, образуя функциональные сердечные мышечные волокна. Места соединения кардиомиоцитов называются вставочными дисками (discus intercalatus). В дисках имеются интердигитации десмосомы, места прикрепления актиновых филаментов и нексусы. Через последние происходит обмен веществ между кардиомиоцитами. Снаружи кардиомиоциты покрыты сарколеммой, состоящей из наружной (базальной) мембраны и плазмолеммы. От боковых поверхностей кардиомиоцитов отходят отростки, вплетающиеся в боковые поверхности кардиомиоцитов соседнего волокна. Это мышечные анастомозы.
Ядра кардиомиоцитов (одно-два) — овальной формы, обычно полиплоидные, располагаются в центре клетки. Миофибриллы локализованы по периферии. Органеллы — одни развиты слабо (гранулярная ЭПС, комплекс Гольджи, лизосомы), другие — хорошо (митохондрии, гладкая ЭПС, миофибриллы). В оксифильной цитоплазме имеются включения миоглобипа, гликогена и липидов.
Строение миофибрилл такое же, как и в скелетной мышечной ткани. Актиновые филаменты формируют светлый диск (I), разделенный телофрагмой за счет миозиновых филаментов и концов актиновых образуется диск А (анизотропный), разделенный мезофрагмой. В средней части диска А имеется Н-полоска, ограниченная концами актиновых филаментов.
Волокна сердечной мышцы отличаются от волокон скелетной мускулатуры тем, что состоят из отдельных клеток—кардиомиоцитов, наличием мышечных анастомозов, центральным расположением ядер (в волокне скелетной мышцы — под сарколеммой), увеличенных диаметром Т-каналов, так как в их состав входит и плазмолемма, и базальная мембрана (в волокнах скелетной мышцы — только плазмолемма).
Процесс сокращения в волокнах сердечной мышцы осуществляется по такому же принципу, как и в волокнах скелетной мышечной ткани.
Проводящие кардиомиоциты характеризуются большим диаметром (до 50 мкм), более светлой цитоплазмой, центральным или эксцентричным расположением ядер, малым содержанием миофибрилл, более простым устройством вставочных дисков. В дисках меньше десмосом, интердигитаций, нексусов и мест прикрепления актиновых филаментов. В проводящих кардиомиоцитах отсутствуют Т-каналы. Проводящие кардиомиоциты могут соединяться друг с другом не только своими концами, но и боковыми поверхностями.
Функция проводящих кардиомиоцитов заключается в выработке и передаче сократительного импульса на сократительные кардиомиоциты.
Эндокринные кардиомиоциты располагаются только в предсердиях, имеют более отростчатую форму, слабо развитые миофибриллы, вставочные диски, Т-каналы. В них хорошо развиты гранулярная ЭПС, комплекс Гольджи и митохондрии, в их цитоплазме имеются гранулы секрета.
Функция эндокринных кардиомиоцитов — секреция предсердного натрийуретического фактора (ПНФ), который регулирует сократимость сердечной мышцы, объем циркулирующей жидкости, артериальное давление, диурез.
Регенерация сердечной мышечной ткани — только физиологическая, внутриклеточная. При повреждении волукна сердечной мышцы не восстанавливаются, а замещаются соединительной тканью (гистотипическая регенерация).
Сердечная мышечная ткань. Строение сердечной мышечной ткани.
Гистогенез сердечной мышечной ткани. Источники развития сердечной мышечной ткани находятся в прекардиальной мезодерме. В гистогенезе возникают парные складчатые утолщения висцерального листка спланхнотома — миоэпикардиальные пластинки, содержащие стволовые клетки сердечной мышечной ткани. Последние путем дивергентной дифференцировки дают начало следующим клеточным дифферонам: рабочим, ритмзадающим (пейсмекерным), проводящим и секреторным кардиомиоцитам.
Исходные клетки сердечной мышечной ткани — кардиомиобласты характеризуются рядом признаков: клетки уплощены, содержат крупное ядро, светлую цитоплазму, бедную рибосомами и митохондриями. В дальнейшем происходит развитие комплекса Гольджи, гранулярной эндоплазматической сети. В кардиомиобластах обнаруживаются фибриллярные структуры, но миофибрилл нет. Клетки обладают высоким пролиферативным потенциалом. После ряда митотических циклов кардиомиобласты дифференцируются в кардиомиоциты, в которых начинается саркомерогенез. В цитоплазме кардиомиоцитов увеличивается число полисом, канальцев гранулярной эндоплазматической сети, накапливаются гранулы гликогена, возрастает объем актомиозинового комплекса. Кардиомиоциты сокращаются, но не теряют способность к дальнейшей пролиферации и дифференцировке. Развитие сократительного аппарата в позднем эмбриональном и постнатальном периодах происходит путем надставки новых саркомеров и наслоения вновь синтезированных миофиламентов. Дифференцировка кардиомиоцитов сопровождается увеличением числа митохондрий, распределением их у полюсов ядер и между миофибриллами и протекает параллельно со специализацией контактирующих поверхностей клеток. Кардиомиоциты путем контактов "конец в конец", "конец в бок" формируют клеточные комплексы — сердечные мышечные волокна, и в целом ткань представляет собой сетевидную структуру.
Строение сердечной мышечной ткани.
Структурно-функциональные единицы волокон — кардиомиоциты — это клетки, имеющие вытянутую прямоугольную форму. Длина рабочих кардиомиоцитов составляет 50-120 мкм, а ширина — 15-20 мкм. Одно-два ядра располагаются в центре клетки. Периферическую часть цитоплазмы кардиомиоцитов занимают поперечноисчерченные миофибриллы, аналогичные таковым в симпластах скелетномышечного волокна. Однако каналы саркоплазматической сети и Т-системы менее отчетливо выражены. Кардиомиоциты отличаются большим количеством митохондрий, расположенных тесными рядами между миофибриллами. Снаружи миоциты покрыты сарколеммой, в составе которой выделяются плазмолемма и базальная мембрана. Характерной особенностью ткани является наличие вставочных дисков на границе между контактирующими кардиомиоцитами. Вставочные диски пересекают волокно в виде волнистой или ступенчатой линии и включают межклеточные контакты от простых, по типу десмо-сом и до щелевых (нексусов).
Часть кардиомиоцитов на ранних этапах кардиомиогенеза являются сократительно-секреторными. В дальнейшем в результате дивергентной дифференцировки возникают "темные" (сократительные) и "светлые" (проводящие) миоциты, в которых исчезают секреторные гранулы, тогда как в предсердных миоцитах они сохраняются. Так формируется дифферон эндокринных кардиомиоцитов. Эти клетки содержат центрально расположенное ядро с диспергированным хроматином,
1-2 ядрышками. В цитоплазме хорошо развиты гранулярная эндоплазматическая сеть, диктиосомы комплекса Гольджи, в тесной связи с элементами которого находятся многочисленные секреторные гранулы диаметром около 2 мкм, содержащие электронноплотный материал. В дальнейшем секреторные гранулы обнаруживаются под сарколеммой и выделяются в межклеточное пространство путем экзоцитоза. Выделенный пептидный гормон кардиодилатин циркулирует в крови в виде кардионатрина, который вызывает сокращение гладких миоцитов артериол, увеличение почечного кровотока, ускоряет клубочковую фильтрацию и выделение натрия из организма.
Кардиомиоциты проводящей системы гетероморфны. В них слабо развит мио-фибриллярный аппарат, расположение миофиламентов в составе миофибрилл рыхлое, Z-линии имеют неправильную конфигурацию, эндоплазматическая сеть слабо развита, находится на периферии миоцитов, число митохондрий незначительное. По мере расположения этих кардиомиоцитов в проксимо-дистальном направлении соответственно движению импульсов от синусно-предсердного узла, через предсердно-желудочковый узел, пучок Гиса, его ножки и клетки Пуркиня к рабочим миоцитам проводящие кардиомиоциты по своей ультраструктуре приближаются к рабочим кардиомиоцитам.
Регенерация сердечной мышечной ткани.
В гистогенезе сердечной мышечной ткани специализированный камбий не возникает. Поэтому регенерация ткани протекает на основе внутриклеточных гиперпластических процессов. Вместе с тем для кардиомиоцитов млекопитающих, приматов и человека характерен процесс полиплоидизации. Например, у обезьян ядра до 50% терминально дифференцированных кардиомиоцитов становятся тетра- и октоплоидными. Полиплоидные кардиомиоциты возникают за счет ацитокинетического митоза, что приводит к многоядерности.
В условиях патологии сердечно-сосудистой системы человека (ревматизм, врожденные пороки сердца, инфаркт миокарда и другие) важная роль в компенсации повреждений кардиомиоцитов принадлежит внутриклеточной регенерации, полиплоидизации как ядер, так и кардиомиоцитов.
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.
Сердце. Эндокард. Миокард. Строение сердца.
Сердце — центральный орган системы крово- и лимфообращения. Благодаря способности к сокращениям, сердце приводит в движение кровь.
Стенка сердца состоит из трех оболочек: эндокарда, миокарда и эпикарда.
Эндокард. Во внутренней оболочке сердца различают следующие слои: эндотелий, выстилающий изнутри полости сердца, и его базальную мембрану; подэндотелиальный слой, представленный рыхлой соединительной тканью, в которой много малодиффе-ренцированных клеток; мышечно-эласти-ческий слой, состоящий из гладкой мышечной ткани, между клетками которой в виде густой сети располагаются эластические волокна; наружный соединительнотканный слой, состоящий из рыхлой соединительной ткани. Эндотелий и подэндотелиальный слои аналогичны внутренней оболочке сосудов, мышечно-эластический является "эквивалентом" средней оболочки, а наружный соединительнотканный слой аналогичен наружной (адвентициальной) оболочке сосудов.
Поверхность эндокарда идеально гладкая и не препятствует свободному движению крови. В предсердно-желудочковой области и у основания аорты эндокард образует дупликатуры (складки), именуемые клапанами. Различают предсердно-желудочковые и желудочково-сосудистые клапаны. В местах прикрепления клапанов имеются фиброзные кольца. Клапаны сердца — это плотные пластинки волокнистой соединительной ткани, покрытые эндотелием. Питание эндокарда происходит путем диффузии веществ из крови, находящейся в полостях предсердий и желудочков.
Миокард (средняя оболочка сердца) — многотканевая оболочка, состоящая из поперчнополосатой сердечной мышечной ткани, межмышечной рыхлой соединительной ткани, многочисленных сосудов и капилляров, а также нервных элементов. Основной структурой является сердечная мышечная ткань, в свою очередь состоящая из клеток, формирующих и проводящих нервные импульсы, и клеток рабочего миокарда, обеспечивающих сокращение сердца (кардиомиоцитов). Среди клеток, формирующих и проводяших импульсы, в проводящей системе сердца различают три вида: Р-клетки (клетки-пейсмекеры), промежуточные клетки и клетки (волокна) Пуркиня.
Р-клетки — клетки-водители ритма, располагаются в центре синусного узла проводящей системы сердца. Они имеют полигональную форму и детерминированы на спонтанную деполяризацию плазмолеммы. Миофибриллы и органеллы общего значения в клетках-пейсмекерах выражены слабо. Промежуточные клетки — неоднородная по составу группа клеток, передают возбуждение от Р-клеток к клеткам Пуркиня. Клетки Пуркиня — клетки с небольшим количеством миофибрилл и полным отсутствием Т-системы, с большим по сравнению с рабочими сократительными миоцитами количеством циоплазмы. Клетки Пуркиня передают возбуждение от промежуточных клеток к сократительным клеткам миокарда. Они входят в состав пучка Гиса проводящей системы сердца.
Неблагоприятное влияние на клетки-пейсмекеры и клетки Пуркиня оказывают ряд лекарственных препаратов и другие факторы, способные привести к возникновению аритмий и блокады сердца. Наличие в сердце собственной проводящей системы чрезвычайно важно, поскольку она обеспечивает ритмичную смену систолических сокращений и диастол камер сердца (предсердий и желудочков) и работу его клапанного аппарата.
Основную массу миокарда составляют сократительные клетки — сердечные миоциты, или кардиомиоцитпы. Это клетки вытянутой формы с упорядоченной системой поперечноисчерченных миофибрилл, расположенных на периферии. Между миофибриллами находятся митохондрии с большим количеством крист. В миоцитах предсердий Т-система выражена слабо. Слабо развита в кардиомиоцитах гранулярная эндоплазматическая сеть. В центральной части миоцитов располагается ядро овальной формы. Иногда встречаются двуядерные кардиомиоциты. В мышечной ткани предсердий присутствуют кардиомиоциты с осмиофильными секреторными гранулами, содержащими натрийуретический пептид.
В кардиомиоцитах определяются включения гликогена, служащего энергетическим материалом сердечной мышцы. Содержание его в миоцитах левого желудочка больше, чем в других отделах сердца. Миоциты рабочего миокарда и проводящей системы соединяются между собой посредством вставочных дисков — специализированных межклеточных контактов. В области вставочных дисков прикрепляются актиновые сократительные миофиламенты, присутствуют десмосомы и щелевые контакты (нексусы).
Десмосомы способствуют прочному сцеплению сократительных миоцитов в функциональные мышечные волокна, а нексусы обеспечивают быстрое распространение волн деполяризации плазмолемм с одной мышечной клетки на другую и существование сердечного мышечного волокна как единой метаболической единицы. Характерным для миоцитов рабочего миокарда является присутствие анастомозирующих мостиков — взаимосвязанных фрагментов цитоплазм мышечных клетток разных волокон с находящимися в них миофибриллами. Тысячи таких мостиков превращают мышечную ткань сердца в сетчатую структуру, способную синхронно и эффективно сокращаться и выбрасывать из полостей желудочков необходимые систолические объемы крови. После перенесенных обширных инфарктов миокарда (острых ишемических некрозов стенки сердца), когда диффузно поражаются мышечная ткань сердца, система вставочных дисков, анастомозирующих мостиков и проводящая система, возникают нарушения ритма работы сердца вплоть до фибрилляции. В этом случае сократительная деятельность сердца превращается в отдельные несогласованные подергивания мышечных волокон и сердце не в состоянии выбрасывать нужные систолические порции крови в периферическую циркуляцию.
Миокард состоит в целом из высокоспециализированных клеток, утративших способность делиться митозом. Лишь в определенных участках предсердий наблюдаются митозы кардиомиоцитов (Румянцев П.П., 1982). Вместе с тем, для миокарда характерно наличие полиплоидных миоцитов, что значительно усиливает его рабочий потенциал. Явление полиплоидности наиболее часто наблюдается при компенсаторных реакциях миокарда, когда повышается нагрузка на сердце, и при патологии (недостаточности сердечных клапанов, заболеваниях легких и др.).
Сердечные миоциты в этих случаях резко гипертрофируются, и стенка сердца в том или ином отделе утолщается. В миокардиальной соединительной ткани заключена богато разветвленная сеть кровеносных и лимфатических капилляров, что обеспечивает постоянно работающую сердечную мышцу питанием и кислородом. В прослойках соединительной ткани имеются плотные пучки коллагеновых волокон, а также эластические волокна. В целом, эти соединительнотканные структуры составляют опорный скелет сердца, к которому прикрепляются сердечные мышечные клетки.
Сердце — орган, обладающий способностью к автоматизму сокращений. Оно может функционировать в известных пределах автономно. Однако в организме деятельность сердца находится под контролем нервной системы. В интрамуральных нервных узлах сердца находятся чувствительные вегетативные нейроны (клетки Догеля П-го типа), малые интенсивно флюоресцирующие клетки — МИФ-клетки и эффекторные вегетативные нейроны (клетки Догеля 1-го типа). МИФ-клетки рассматриваются как вставочные нейроны.
Эпикард — наружная оболочка сердца — представляет собой висцеральный листок околосердечной сумки (перикарда). Свободная поверхность эпикарда выстлана мезотелием так же, как и поверхность перикарда, обращенная в перикардиальную полость. Под мезотелием в составе этих серозных оболочек находится соединительнотканная основа из рыхлой волокнистой соединительной ткани.
Мышечные ткани
Мышечные ткани - это ткани, для которых способность к сокращению является главным свойством. Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей).
Общими свойствами всех мышечных тканей является сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечнополосатая скелетная и поперечнополосатая сердечная мышечные ткани. Клетки мышечной ткани имеют хорошо развитый цитоскелет, содержат много митохондрий.
Гладкая (висцеральная) мускулатура
Эта мышечная ткань встречается в стенках внутренних органах (бронхи, кишечник, желудок, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.
Состоит из веретенообразных миоцитов - коротких одноядерных клеток. Между клетками имеются межклеточные контакты - нексусы (лат. nexus - связь). Благодаря нексусам возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.
Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру мочевого пузыря), сокращается медленно, практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает - сокращается и утомляется быстро.
Осуществляется сокращение с помощью клеточных органоидов - миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим).
Особо заметим, что в гладкой мышечной ткани миофиламенты собираются в миофибриллы только во время сокращения. У таких временных миофибрилл не может быть регулярной организации, а значит ни у таких миофибрилл, ни у гладких миоцитов не может быть поперечной исчерченности.
Гладкая мышечная ткань сокращается непроизвольно (неподвластна воле человека). Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой. К примеру невозможно по желанию сузить или расширить бронхи, кровеносные сосуды, зрачок.
Гладкая мышечная ткань называется неисчерченной, так как не обладает поперечной исчерченностью, характерной для поперечнополосатых скелетной и сердечной мышечных тканей.
Скелетная (поперечнополосатая) мышечная ткань
Скелетная мышечная ткань образует диафрагму (дыхательную мышцу), мускулатуру туловища, конечностей, головы, голосовых связок.
В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер - миосимпластами. Миосимпласт (греч. sim - вместе + plast - образованный) представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметров (соответствует длине мышцы).
Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой. Сократительные элементы - миофибриллы (лат. fibra - волоконце) - длинные тяжеобразные органеллы в миосимпласте (около 1400).
Характерная черта данной ткани - поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы - саркомер.
Саркомер (от греч. sarco - мясо (мышца) + mere - маленький)
Саркомер - элементарная сократительная единица поперечнополосатых мышц, структурная единица миофибриллы. В состав саркомера (и миофибриллы в целом) входят миофиламенты (лат. filamentum - нить) двух типов, которые обеспечивают сократимость мышечной ткани.
Саркомер состоит из актиновых (тонких) и миозиновых (толстых) филаментов, которые образованы главным образом белками актином и миозином. Сокращение происходит за счет взаимного перемещения миофиламентов: они тянутся навстречу друг другу, саркомер укорачивается (и мышца в целом).
Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином, что приводит к изменению конформации тропомиозина (тропонин и тропомиозин - регуляторные белки между нитями актина), за счет чего становится возможно соединение актина и миозина. При сокращении мышц выделяется тепло (сократительный термогенез).
Замечу, что трупное окоченение (лат. rigor mortis) - посмертное затвердевание мышц - связано именно с ионами кальция, которые устремляются в область низкой концентрации (в саркоплазму миосимпласта), способствуя связыванию актина и миозина.
После смерти в мышце перестает синтезироваться АТФ, ее уровень быстро снижается. Как следствие этого перестает функционировать Ca-АТФаза - насос, выкачивающий ионы Ca из саркоплазмы в саркоплазматический ретикулум (мембранная органелла мышечных клеток (сходная с ЭПС), в которой запасаются ионы Ca).
В саркоплазме повышается концентрация ионов Ca - замыкаются мостики между актином и миозином, однако разомкнуться они уже не могут, в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura - стягивание, сужение): конечности очень сложно разогнуть или согнуть.
Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.
В процесс возбуждения вовлекается изолированно один миосимпласт, соседние миосимпласты (волокна) не возбуждают друг друга, в отличие от гладких миоцитов, где возбуждение предается между соседними клетками через нексусы. Скелетные мышцы сокращаются быстро и быстро утомляются (у гладких мышц фазы сокращения и расслабления растянуты во времени, мало утомляются) .
Скелетные мышцы сокращаются произвольно: они подконтрольны нашему сознанию. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.
Сердечная поперечнополосатая мышечная ткань
Сердечная мышечная ткань образует мышечную оболочку сердца - миокард (от др.-греч. μῦς «мышца» + καρδία - «сердце»). Миокард - средний слой сердца, составляющий основную часть его массы. При работе сердечная мышечная ткань не утомляется.
Сердечная мышечная ткань состоит из кардиомиоцитов - одиночных клеток, имеющих поперечную исчерченность. Соединяясь друг с другом, кардиомиоциты образуют функциональные волокна.
Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство - автоматизм.
Автоматизм - способность сердечной мышечной ткани возбуждаться и сокращаться самопроизвольно, без влияний извне. Это легко можно подтвердить, наблюдая сокращения изолированного сердца лягушки в физиологическом растворе: сокращения сердца в нем будут продолжаться несколько десятков минут после отделения сердца от организма.
Места контактов соседних кардиомиоцитов - вставочные диски (в их составе находятся нексусы), благодаря которым возбуждение одной клетки передается на соседние, таким образом волнообразно охватываются возбуждением и сокращаются новые участки миокарда.
Большое число контактов между кардиомиоцитами обеспечивает высокую эффективность и надежность проведения возбуждения по миокарду. Сокращается эта ткань непроизвольно, не утомляется.
На рисунке или микропрепарате узнать данную ткань можно по центральному положению ядер в клетках, поперечной исчерченности, наличию вставочных дисков и анастомозов (греч. anastomosis - отверстие) - мест соединений боковых поверхностей функциональных волокон (кардиомиоцитов).
В норме возбуждение проводится по проводящей системе сердца от предсердий к желудочкам (однонаправленно). Участок сердечной мышцы, в котором генерируются импульсы, определяющие частоту сердечных сокращений - водитель сердечного ритма.
Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker - задающий ритм) клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.
Ответ мышц на физическую нагрузку
Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή - еда, пища) - в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.
В условиях гиподинамии (от греч. ὑπό - под и δύνᾰμις - сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии (греч. а – "не" + trophe – питание). В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.
Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца - состояние, требующее вмешательства врача и наблюдения за пациентом.
В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).
Происхождение мышц
Мышцы развиваются из среднего зародышевого листка - мезодермы.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Сердце и сосуды
Сердечно-сосудистая система человека замкнутая. Это означает, что кровь перемещается только по сосудам и отсутствуют какие-либо полости, куда кровь изливается. Благодаря работе сердца и разветвленной системе сосудов, каждая клетка нашего организма получает кислород и питательные вещества, которые необходимы для жизнедеятельности.
Обратите внимание на устоявшееся название - сердечно-сосудистая система. На первое место выносится именно сердечная мышца, которая выполняет важнейшую функцию. Мы переходим к изучению этого уникального органа.
Сердце
Раздел медицины, изучающий сердце, носит название кардиология (от др.-греч. καρδία — сердце и λόγος — изучение). Сердце - полый мышечный орган, сокращающийся с определенным ритмом в течение всей жизни человека.
Снаружи сердце покрыто околосердечной сумкой - перикардом. Состоит из 4 камер: 2 желудочков - правого и левого, и 2 предсердий - правого и левого. Запомните, что между желудочками и предсердиями находятся створчатые клапаны.
Между правым предсердием и правым желудочком расположен трехстворчатый (трикуспидальный) клапан, между левым предсердием и левым желудочком - двустворчатый (митральный) клапан.
В сердце кровь движется однонаправленно: из предсердий в желудочки, благодаря наличию створчатых (атриовентрикулярных) клапанов (от лат. atrium — предсердие и ventriculus - желудочек).
От левого желудочка отходит самый крупный сосуд человека - аорта, диаметром 2.5 см, кровь в которой течет со скоростью 50 см в секунду. От правого желудочка отходит легочный ствол. Между левым желудочком и аортой, а также правым желудочком и легочным стволом находятся полулунные клапаны.
Мышечная ткань сердца представлена одиночными клетками - кардиомиоцитами, обладающими поперечной исчерченностью. Сердце обладает особым свойством - автоматией: изолированное от организма сердце продолжает сокращаться без внешних воздействий. Это связано с наличием в толще мышечной ткани особых клеток - пейсмекерных (клетки водителя ритма, атипичные кардиомиоциты), которые сами периодически генерируют нервные импульсы.
В сердце имеется проводящая система, благодаря которой возбуждение, возникшее в одной части сердца, постепенно охватывает другие части. В проводящей системе выделяют синусный, атриовентрикулярный узлы, пучок Гиса и волокна Пуркинье. Именно благодаря наличию этих проводящих структур сердце способно к автоматии.
Сердечный цикл
- Систола предсердий (от греч. systole - сжимание, сокращение)
Длится 0,1 сек. В эту фазу предсердия сокращаются, их объем уменьшается, и кровь из них поступает в желудочки. Створчатые клапаны в период этой фазы открыты, полулунные - закрыты.
Длится 0,3 сек. Створчатые (атриовентрикулярные) клапаны закрываются, чтобы не допустить обратного тока крови в предсердия. Мышечная ткань желудочков начинает сокращаться, их объем уменьшается: открываются полулунные клапаны. Кровь изгоняется из желудочков в аорту (из левого желудочка) и легочный ствол (из правого желудочка).
Длится 0,4 сек. В диастолу полости сердца расширяются - мышцы расслабляются, полулунные клапаны закрываются. Створчатые клапаны открыты. В эту фазу предсердия наполняются кровью, которая пассивно поступает в желудочки. Затем цикл повторяется.
Мы уже разобрали сердечный цикл, однако я хочу акцентировать ваше внимание на некоторых деталях. В общей сложности один цикл длится 0,8 сек. Предсердия отдыхают 0,7 секунд - во время систолы желудочков и общей диастолы, а желудочки отдыхают 0,5 секунд - во время систолы предсердий и общей диастолы. Благодаря такому энергетически выгодному циклу, сердечная мышца мало утомляется при работе.
Частоту сокращений сердца (ЧСС) можно измерить с помощью пульса - толчкообразных колебаний стенок сосудов, связанных с сердечным циклом. Средняя частота пульса в норме - 60-80 ударов в минуту. У спортсмена ЧСС реже, чем у нетренированного человека. При больших физических нагрузках ЧСС может возрастать до 150 уд/мин.
Возможны изменения сердечного ритма в виде его чрезмерного урежения или учащения, соответственно выделяют: брадикардию (от греч. βραδυ — медленный и καρδιά — сердце) и тахикардию (от др.-греч. ταχύς — быстрый и καρδία — сердце). Брадикардия характеризуется урежением пульса до 30-60 уд/мин, тахикардия - выше 90 уд/мин.
Регуляторный центр деятельности сердечно-сосудистой системы лежит в продолговатом и спинном мозге. Парасимпатическая нервная система замедляет, а симпатическая нервная система ускоряет ЧСС. Оказывают влияние также гуморальные факторы (от лат. humor - влага), главным образом гормоны: надпочечников - адреналин (усиливает работу сердца), щитовидной железы - тироксин (ускоряет ЧСС).
Сосуды
К тканям и органам кровь движется внутри сосудов. Они подразделяются на артерии, вены и капилляры. В общих чертах мы обсудим их строение и функции. Хочу заметить: если вы считаете, что по венам течет венозная, а по артериям - артериальная кровь, вы ошибаетесь. В следующей статье вы найдете конкретные примеры, опровергающие это заблуждение.
По артериям кровь течет от сердца к внутренним органам и тканям. Они обладают толстыми стенками, в составе которых имеются эластические и гладкие мышечные волокна. Давление крови в них наиболее высокое, по сравнению с венами и капиллярами, в связи с чем они и имеют вышеуказанную толстую стенку.
Изнутри артерия выстлана эндотелием - эпителиальными клетками, которые образуют однослойный пласт тонких клеток. Благодаря наличию гладких мышечных клеток в толще стенки, артерии могут сужаться и расширяться. Скорость кровотока в артериях примерно 20-40 см в секунду.
Большей частью артерии несут артериальную кровь, однако нельзя забывать об исключениях: от правого желудочка по легочным артериям к легким идет венозная кровь.
По венам кровь течет к сердцу. По сравнению со стенкой артерии, в венах меньше эластических и мышечных волокон. Давление крови в них небольшое, поэтому стенка вен тоньше, чем у артерий.
Характерный признак вен (который вы всегда заметите на схеме) наличие внутри вены клапанов. Клапаны препятствуют обратному току крови в венах - обеспечивают однонаправленное движение крови. Скорость кровотока в венах около 20 см в секунду.
Только представьте: вены поднимают кровь от ног к сердцу, действуя против силы тяжести. В этом им помогают вышеупомянутые клапаны и сокращения скелетных мышц. Вот почему очень важна физическая активность, противопоставленная гиподинамии, которая вредит здоровью, нарушая движение крови по венам.
Преимущественно в венах находится венозная кровь, однако нельзя забывать об исключениях: к левому предсердию подходят легочные вены с артериальной кровью, обогащенной кислородом после прохождения легких.
Самые мелкие кровеносные сосуды - капилляры (от лат. capillaris — волосяной). Их стенка состоит из одного слоя клеток, что делает возможным газообмен и обменные процессы различными веществами (питательными, побочными продуктами) между клетками, окружающими капилляр, и кровью в капилляре. Скорость движения крови по капиллярам самая низкая (по сравнению с артериями, венами) - составляет 0,05 мм в секунду, что необходимо для процессов обмена.
Суммарный просвет капилляров больше, чему у артерий и вен. Они подходят к каждой клетке нашего организма, именно они являются связующим звеном, благодаря которому ткани получают кислород, питательные вещества.
По мере прохождения крови по капиллярам, она теряет кислород и насыщается углекислым газом. Поэтому на картинке выше вы видите, что поначалу кровь в капиллярах артериальная, а затем - венозная.
Гемодинамика
Гемодинамикой называют процесс циркуляции крови. Важным показателем является кровяное давление - давление, оказываемое кровью на стенки кровеносных сосудов. Его величина зависит от силы сокращения сердца и сопротивления сосудов. Различают систолическое (в среднем 120 мм. рт. ст.) и диастолическое (в среднем 80 мм. рт. ст.) артериальное давление.
Систолическое артериальное давление подразумевает давление в кровеносном русле в момент сокращения сердца, диастолическое - в момент его расслабления.
При физической нагрузке и стрессе артериальное давление повышается, пульс учащается. Во время сна артериальное давление снижается, как и частота сердечных сокращений.
Уровень артериального давления - важный показатель для врача. Артериальное давление может быть повышено у пациента с болезнью почек, надпочечников, поэтому крайне важно знать и контролировать его уровень.
Повышение артериального давления, к примеру 220/120 мм рт. ст. врачи называют артериальной гипертензией (от греч. hyper - чрезмерно; говорить гипертония не совсем верно, гипертония - повышенный тонус мышц), а понижение, например до 90/60 мм. рт. ст. будет называться артериальной гипотензией (от греч. hypo — под, внизу).
Все мы, вероятно, хотя бы раз в жизни испытывали ортостатическую гипотензию - снижение уровня артериального давления при резком подъеме из положения сидя или лежа. Сопровождается легким головокружением, однако может приводить и к обмороку, потере сознания. Ортостатическая гипотензия может (в рамках нормы) проявляться у подростков.
Существует нервная регуляция гемодинамики, заключающаяся в действии на сосуды волокон симпатической нервной системы, которая сужает сосуды (давление повышается), парасимпатической нервной системы, которая расширяет сосуды (давление соответственно понижается).
На просвет сосудов оказывают действия также гуморальные факторы, распространяющиеся через жидкие среды организма. Ряд веществ оказывает сосудосуживающие действие: вазопрессин, норадреналин, адреналин, другая часть оказывает сосудорасширяющее действие - ацетилхолин, гистамин, окись азота (NO).
Заболевания
Атеросклероз (греч. athḗra - кашица + sklḗrōsis - затвердевание) - хроническое заболевание артерий, возникающее в результате нарушения в них обмена жиров и белков. При атеросклерозе в сосуде формируется холестериновая бляшка, которая постепенно увеличивается в размерах, приводя в итоге к полной закупорке сосуда.
Бляшка суживает просвет сосуда, уменьшая количество крови, протекающей по нему к органу. Атеросклероз нередко затрагивает сосуды, которые питают сердце - коронарные артерии. В этом случае болезнь может проявляться болями в сердце при незначительных физических нагрузках. Если атеросклероз затрагивает сосуды головного мозга - у пациента ухудшается память, концентрация внимания, когнитивные (интеллектуальные) функции.
В какой-то момент атеросклеротическая бляшка может лопнуть, в этом случае происходит невероятное: кровь начинает сворачиваться прямо внутри сосуда, ведь клетки реагируют на разрыв бляшки, как на повреждение сосуда! Образуется тромб, который может закупорить просвет сосуда, после чего кровь полностью перестает поступать к органу, который этот сосуд кровоснабжает.
Такое состояние называется инфаркт (лат. infarcire - «начинять, набивать») - резкое прекращения кровотока при спазме артерии или закупорке. Инфаркт выражается в омертвлении тканей органа вследствие острого недостатка кровоснабжения. Инфаркт головного мозга называют - инсульт (лат. insultus - нападение, удар).
Читайте также: