Синтез АТФ при расщеплении глюкозы. Выделение энергии из гликогена

Добавил пользователь Alex
Обновлено: 21.12.2024

Синтез АТФ при расщеплении глюкозы. Выделение энергии из гликогена

а) Кратко о механизме образования АТФ при расщеплении глюкозы. Мы можем определить общее количество молекул АТФ, которое образуется при расщеплении 1 молекулы глюкозы при оптимальных условиях.

1. Во время гликолиза образуются 4 молекулы АТФ: 2 молекулы АТФ расходуются на первом этапе фосфорилирования глюкозы, необходимого для хода процесса гликолиза, чистый выход АТФ при гликолизе равен 2 молекулам АТФ.

2. В итоге цикла лимонной кислоты образуется 1 молекула АТФ. Однако в связи с тем, что 1 молекула глюкозы расщепляется на 2 молекулы пировиноградной кислоты, каждая из которых проходит оборот в цикле Кребса, получается чистый выход АТФ на 1 молекулу глюкозы, равный 2 молекулам АТФ.

3. При полном окислении глюкозы суммарно образуются 24 атома водорода в связи с процессом гликолиза и циклом лимонной кислоты, 20 из них окисляются в соответствии с хемоосмотическим механизмом (для облегчения понимания просим вас изучить рисунок ниже) с выделением 3 молекул АТФ на каждые 2 атома водорода. В итоге получается еще 30 молекул АТФ.

4. Четыре оставшихся атома водорода выделяются под влиянием дегидрогеназ и включаются в цикл хемоосмотического окисления в митохондриях помимо первой стадии, приведенной на рисунке ниже. Окисление 2 атомов водорода сопровождается получением 2 молекул АТФ, в итоге получается еще 4 молекулы АТФ.

Сложив все полученные молекулы, получим 38 молекул АТФ как максимально возможное количество при окислении 1 молекулы глюкозы до углекислого газа и воды. Следовательно, 456000 калорий могут сохраняться в виде АТФ из 686000 калорий, получаемых при полном окислении 1 грамм-молекулы глюкозы. Эффективность преобразования энергии, обеспечиваемая этим механизмом, составляет около 66%. Остальные 34% энергии преобразуются в тепловую и не могут быть использованы клетками для выполнения специфических функций.

Последовательность химических реакций, ответственных за гликолиз Химические реакции цикла лимонной кислоты (цикла Кребса), демонстрирующие высвобождение углекислого газа и количество атомов водорода, образующиеся в этом цикле Митохондриальный хемоосмотический механизм окислительного фосфорилирования, служащий для образования большого количества АТФ.
Показаны взаимоотношения этапов окисления и фосфорилирования на наружной и внутренней мембранах митохондрий.
ФМН — флавинмононуклеотид, FeS — белок с негемовым железом, С, C1, А, В, А3 - цитохромы, Q - кофермент убихинон

Выделение энергии из гликогена

а) Регуляция выделения энергии из запасенного гликогена. Влияние концентрации АТФ и АДФ в клетке на управление скоростью процессов гликолиза. Продолжительное высвобождение энергии из глюкозы, когда клетки не нуждаются в энергии, было бы слишком расточительным процессом. Гликолиз и последующее окисление атомов водорода постоянно контролируются в соответствии с потребностями клеток в АТФ. Этот контроль осуществляется многочисленными вариантами управляющих механизмов обратной связи в ходе химических реакций. К числу наиболее важных влияний такого рода можно отнести концентрацию АДФ и АТФ, контролирующую скорость химических реакций в ходе процессов обмена энергии.

Одним из важных путей, позволяющих АТФ управлять обменом энергии, является ингибирование фермента фосфофруктокиназы. Этот фермент обеспечивает образование фруктозо-1,6-дифосфата — одной из начальных стадий гликолиза, поэтому результирующим влиянием избытка АТФ в клетке будет торможение или даже остановка гликолиза, что, в свою очередь, приведет к торможению обмена углеводов. АДФ (равно как и АМФ) оказывает противоположное влияние на фосфофруктокиназу, существенно повышая ее активность. Когда АТФ используется тканями для энергообеспечения большинства химических реакций в клетках, это уменьшает ингибирование фермента фосфофруктокиназы, более того, его активность повышается параллельно увеличению концентрации АДФ. В результате запускаются процессы гликолиза, приводящие к восстановлению запасов АТФ в клетках.

Другой способ управления опосредован цитратами, образующимися в цикле лимонной кислоты. Избыток этих ионов существенно снижает активность фосфофруктокиназы, что не дает гликолизу опережать скорость использования пировиноградной кислоты, образующейся в результате гликолиза в цикле лимонной кислоты.

Третий способ, с помощью которого система АТФ-АДФ-АМФ может контролировать обмен углеводов и управлять выделением энергии из жиров и белков, заключается в следующем. Возвращаясь к различным химическим реакциям, служащим способом выделения энергии, мы можем заметить, что если весь имеющийся в наличии АМФ уже превращен в АТФ, дальнейшее образование АТФ становится невозможным. В результате прекращаются все процессы использования питательных веществ (глюкозы, белков и жиров) для получения энергии в виде АТФ. Лишь после использования образовавшегося АТФ в качестве источника энергии в клетках для обеспечения разнообразных физиологических функций вновь появляющиеся АДФ и АМФ запустят процессы получения энергии, в ходе которых АДФ и АМФ преобразуются в АТФ. Этот путь автоматически поддерживает сохранение определенных запасов АТФ, кроме случаев экстремальной активности клеток, например при тяжелых физических нагрузках.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Высвобождение энергии из глюкозы через пентозофосфатный цикл. Превращение глюкозы в жиры

а) Высвобождение энергии из глюкозы с помощью пентозофосфатного цикла. Большинство мышц организма для получения энергии используют в основном углеводы, для этого они расщепляются посредством гликолиза до пировиноградной кислоты с последующим ее окислением. Однако процесс гликолиза не является единственным способом, с помощью которого глюкоза может расщепляться и использоваться для энергетических целей. Другим важным механизмом расщепления и окисления глюкозы служит пентозофосфатный путь (или фосфоглюконатный путь), который ответствен за 30% распада глюкозы в печени, что превышает ее расщепление в жировых клетках.

Этот путь особенно важен, поскольку обеспечивает клетки энергией независимо от всех ферментов цикла лимонной кислоты, поэтому он является альтернативным путем обмена энергии в случаях нарушений ферментных систем цикла Кребса, что принципиально важно для обеспечения энергией многочисленных процессов синтеза в клетках.

б) Выделение углекислого газа и водорода в пентозофосфатном цикле . На рисунке ниже показано большинство основных химических реакций пентозофосфатного цикла.

Высвобождение энергии из глюкозы через пентозофосфатный цикл. Превращение глюкозы в жиры

Пентозофосфатный путь метаболизма глюкозы

Видно, что на различных этапах превращения глюкозы могут выделяться 3 молекулы углекислого газа и 4 атома водорода с образованием сахара, содержащего 5 атомов углерода, — D-рибулезы. Это вещество может последовательно превращаться в различные другие пяти-, четырех-, семи- и трехуглеродные сахара. В итоге путем различных комбинаций этих углеводов может ресинтезироваться глюкоза.

При этом ресинтезируются только 5 молекул глюкозы на каждые 6 молекул, исходно вступивших в реакции, поэтому пентозофосфатный путь является циклическим процессом, приводящим к метаболическому распаду одной молекулы глюкозы в каждом завершившемся цикле. При повторении цикла вновь все молекулы глюкозы превращаются в углекислый газ и водород. Затем водород вступает в реакции окислительного фосфорилирования, образуя АТФ, однако чаще он используется для синтеза жиров и других веществ следующим образом.

в) Использование водорода для синтеза жиров. Функции никотинамидадениндинуклеотидфосфата. Водород, выделяющийся во время пентозофосфатного цикла, не объединяется с НАД+, как во время гликолиза, но взаимодействует с НАДФ+, который практически идентичен НАД+, за исключением фосфатного радикала. Эта разница имеет существенное значение, т.к. только при условии связывания с НАДФ+ с образованием НАДФ-Н водород может использоваться для образования жиров из углеводов и синтеза некоторых других веществ.

Когда гликолитический процесс использования глюкозы замедляется в связи с меньшей активностью клеток, пентозофосфатный цикл остается действенным (особенно в печени) и обеспечивает расщепление глюкозы, которая продолжает поступать в клетки. Образующийся при этом в достаточных количествах НАДФ-Н способствует синтезу из ацетил-КоА (производного глюкозы) длинных цепочек жирных кислот. Это еще один путь, который обеспечивает использование энергии, заключенной в молекуле глюкозы, но в этом случае для образования не АТФ, а запасов жира в организме.

в) Превращение глюкозы в гликоген или жиры. Если глюкоза не используется сразу на энергетические нужды, но избыток ее продолжает поступать в клетки, она начинает запасаться в виде гликогена либо жиров. Пока глюкоза хранится преимущественно в виде гликогена, который запасается в максимально возможном количестве, этого количества гликогена хватает для обеспечения энергетических потребностей организма в течение 12-24 ч.

Если гликоген-запасающие клетки (главным образом клетки печени и мышц) приближаются к пределу своих возможностей по запасанию гликогена, продолжающая поступать глюкоза превращается в клетках печени и жировой ткани в жиры, которые направляются на хранение в жировые ткани. Другие пути превращения жиров изложены в отдельной статье на сайте (просим вас пользоваться формой поиска выше).

Образование АТФ через хемоосмотический механизм. Образование и синтез АТФ

а) Образование АТФ в митохондриях посредством хемоосмотического механизма. Ионизация водорода, цепь транспорта электронов, образование воды. Первым этапом окислительного фосфорилирования в митохондриях является ионизация атомов водорода, извлекаемых из питательных веществ. Как было изложено ранее, атомы водорода извлекаются парами; при этом один атом незамедлительно становится ионом водорода (Н+), а другой объединяется с НАД+, образуя НАД-Н.

В верхней части рисунка ниже показана последовательность событий, происходящих с НАД-Н и Н+.

Образование АТФ через хемоосмотический механизм. Образование и синтез АТФ

Митохондриальный хемоосмотический механизм окислительного фосфорилирования, служащий для образования большого количества АТФ.
Показаны взаимоотношения этапов окисления и фосфорилирования на наружной и внутренней мембранах митохондрий.
ФМН — флавинмононуклеотид, FeS — белок с негемовым железом, С, C1, А, В, А3 - цитохромы, Q - кофермент убихинон

Начальный этап состоит в отщеплении атома водорода от НАД-Н и образовании при этом еще одного иона водорода. В итоге воссоздается НАД+, который может быть вновь использован.

Электроны отделяются от атомов водорода, в результате водород ионизируется. Электроны сразу поступают в цепь переноса электронов, являющуюся неотъемлемой частью внутренней мембраны (мембраны, снабженной криптами) митохондрий, к акцепторам электронов. Акцепторы электронов могут обратимо восстанавливаться и окисляться, присоединяя и отдавая электроны.

Важным компонентом цепи переноса электронов являются флавопротеины, некоторые протеинаты сульфида железа, убихинон цитохромы В, С1, С, А и А3. Каждый электрон передается от одного акцептора к другому до тех пор, пока не достигнет цитохрома А3, названного цитохромоксидазой за его способность передавать два электрона кислороду и таким образом превращать его в ионизированную форму, которая может образовывать воду путем взаимодействия с ионами водорода.

На рисунке показан перенос электронов по дыхательной цепи с окончательным использованием цитохромоксидазой кислорода с образованием молекул воды. Перенос электронов по дыхательной цепи сопровождается выделением энергии, используемой для синтеза АТФ следующим образом.

б) Закачивание ионов водорода в наружную камеру митохондрий, обеспечиваемое цепью переноса электронов. В процессе прохождении электронов по цепи переноса электронов выделяется большое количество энергии.

Эта энергия используется для перекачивания ионов водорода от внутреннего матрикса митохондрий (правая часть рисунка выше) в наружную камеру, расположенную между внутренней и наружной мембранами (левая часть рисунка выше). Это создает высокую концентрацию положительно заряженных ионов водорода в пространстве между внутренней и наружной мембранами. В то же время формируется высокий отрицательный потенциал матрикса митохондрии.

в) Образование АТФ. Следующий этап окислительного фосфорилирования состоит в превращении АДФ в АТФ. Эта возможность опосредована существованием крупных белковых молекул, расположенных на поверхности внутренней мембраны митохондрий. Прободая ее насквозь, головки молекул выдаются в матрикс. Эти молекулы представляют собой АТФ-азу, схематически изображенную на рисунке выше. Ее называют АТФ-синтетазой.

Высокая концентрация положительно заряженных ионов водорода в наружной камере и высокая разность потенциалов по обе стороны внутренней мембраны вызывают движение ионов водорода во внутренний матрикс митохондрии через молекулу АТФ-азы. Выделяемая при таком продвижении ионов водорода энергия используется АТФ-азой для превращения АДФ в АТФ путем объединения АДФ со свободным фосфатным радикалом (P1). Так формируется вторая макроэргическая фосфатная связь в молекуле.

Окончательным этапом этого процесса является перевод АТФ из матрикса митохондрии наружу в цитоплазму клетки. Этот процесс осуществляется путем облегченной диффузии через внутреннюю мембрану и путем простой диффузии через проницаемую наружную мембрану митохондрии. В свою очередь, АДФ, постоянно движущийся в противоположном направлении, превращается в АТФ. На каждые два электрона, проходящих до конца по цепи переноса электронов (полученных путем ионизации 2 атомов водорода), приходится 3 молекулы синтезируемой АТФ.

Видео где и как происходит окислительное фосфорилирование кратко

Энергетический обмен

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза - диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический и пластический обмен веществ

Энергетический обмен

Энергетический обмен (диссимиляция - от лат. dissimilis ‒ несходный) - обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

Под действием ферментов белки расщепляются на аминокислоты, жиры - на глицерин и жирные кислоты, сложные углеводы - до простых сахаров.

Этапы энергетического обмена веществ

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Этот этап доступен только для аэробов - организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ - в сумме с двух ПВК выход составляет 36 молекул АТФ.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

Энергетический обмен

АТФ - аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ - универсального источника энергии. Молекула АТФ состоит из азотистого основания - аденина, углевода - рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи - ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда "∽".

Строение АТФ

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

Пластической обмен

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Тест по теме Энергетический обмен

5140. Рассмотрите предложенную схему строения молекулы АТФ. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

Задание ЕГЭ по биологии


Верный ответ: Аденин

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 5140.

5242. Установите правильную последовательность стадий клеточного дыхания. Запишите в таблицу соответствующую последовательность цифр.

1) окисление НАД*Н
2) расщепление гексозы на две триозы
3) образование пировиноградной кислоты
4) восстановление НАД*Н в матриксе митохондрий
5) синтез ацетилкофермента A
6) синтез АТФ на мембране митохондрий

Верный ответ: 235416

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 5242.

5301. Какое максимальное число молекул АТФ может синтезироваться в клетке при окислении фрагмента молекулы гликогена, состоящего из 150 мономерных звеньев, до углекислого газа и воды? Ответ поясните. Потерями энергии на транспорт молекул можно пренебречь.

1) Гликоген - биополимер, мономерами которого являются остатки молекул глюкозы; при расщеплении гликогена образуется 150 молекул глюкозы, выделяемая энергия рассеивается в виде тепла (подготовительный этап энергетического обмена)
2) При окислении одной молекулы глюкозы до углекислого газа и воды выделяется 38 молекул АТФ (2 на этапе гликолиза и 36 на кислородном этапе), а при окислении 150 молекул глюкозы: 150 × 38 = 5700 молекул АТФ

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 5301.

5360. Биологическое окисление органических веществ в организмах животных, растений, грибов сходно по химическому процессу со сжиганием обычного топлива, которое использует человек. Какие общие с горением продукты образуются в результате этих процессов? Сравните энергетику процессов биологического окисления и горения. В чём их отличие?

1) В результате окисления молекулярным кислородом органических веществ в клетке, как и в результате горения, образуются углекислый газ и вода
2) При горении вся энергия выделяется в виде тепла или потока лучистой энергии (света); при окислении лишь часть энергии выделяется в виде тепла, а часть запасается в виде энергии макроэргических связей молекулы АТФ
3) В разных структурах организма и клетки биологическое окисление происходит ступенчато, при участии ферментов; при горении ступенчатого окисления не происходит (вещества сгорают до углекислого газа и воды), ферменты в процессе горения также участия не принимают

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 5360.

5420. Рассмотрите предложенную схему классификации нуклеиновых кислот. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

Задание ЕГЭ по биологии

Верный ответ: АТФ

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 5420.

Читайте также: