Энтеральная нервная система чем лечить
Если Вы считаете, что в организме человека есть только один мозг, Вы правы.
Но существует и другая нервная система, сеть нейронов которой настолько большая, что некоторые ученые называют ее “вторым мозгом”.
Это энтеральная нервная система, которая большей частью расположена в животе человека.
Общая информация
Под ЭНС следует понимать внутреннюю нервную систему желудочно-кишечного тракта. Она содержит полные рефлекторные схемы, сообщающие о состоянии желудочно-кишечного тракта, а также обеспечивающие обмен жидкостями между кишечником и его полостями и местным кровотоком. ЭНС единственная часть периферической нервной системы, которая содержит функционирующие автономно обширные нейронные цепи.
Следует отметить, что ЭНС подвергается негативному влиянию многих заболеваний, и, как следствие, неэффективно исполняет свои функции. Среди наиболее распространенных:
- диабетическая вегетативная нейропатия (может привести к гастропарезу, нарушениям толстой кишки — например, ночной диареи);
- инфекционной диареи;
- склеродермы (хроническое аутоимунное заболевание, характеризующееся образованием склеротических бляшек на стенках сосудов или склерозом).
Заболевания центральной нервной системы, такие как болезнь Паркинсона или Альцгеймера, также оказывают влияние на ЭНС. Так, у пациентов с болезнью Паркинсона в кишечнике могут обнаружить тельца Леви (ненормальные белковые образования внутри нейронов в черной субстанции), а у пациентов с болезнью Альцгеймера могут обнаружить амилоидные бляшки вместе с нейрофибриллярнымы клубочками. Эти исследования в будущем могут помочь диагностировать ранние стадии болезни Альцгеймера или болезни Паркинсона при проведении биопсии кишечника.
Как работает
Одной из функций ЭНС является контроль перистальтики кишечника — в желудочно-кишечном тракте имеются наружные мышцы, целью которых является смешивание пищи так, чтобы она подвергалась воздействию ферментов, а также продвижения содержимого пищеварительного тракта.
Хоть считается, что ЭНС функционирует автономно от центрального мозга, они участвуют в постоянной связи. Так, на эту систему возложена функция регуляции гормонов, сообщающих, когда организм нуждается в приеме пищи. Ее нервные клетки сигнализируют мозгу о сытости и могут вызвать тошноту при переедании.
Тем самым она создает цепную реакцию, заставляя чувствовать себя лучше. Эффект объясняется тем, что люди, испытывая стресс, склонны употреблять так называемую комфортную пищу. Благодаря этим выводам, ученые изучают возможность искусственного симулирования кишечной системы для лечения депрессии.
Еще одним примером связи является явление, обычно описываемое как “бабочки в животе” – чувство, которое может быть результатом того, что ЭНС транспортирует кровь от желудка, когда мозг испытывает напряжение или стресс.
Особенности ЭНС
Будучи более простой системой, чем мозг, ЭНС чрезвычайно сложна. Так, в человеческом организме насчитывается от двухсот до шестисот миллионов нейронов. Учитывая вышеуказанное, ученые считают, что если бы мозг исполнял функции ЭНС, то задействованные здесь нервные окончание были бы слишком толстые. Пищеварение требует целого ряда очень точных химических смесей, произведенных в правильное время и доставленных в правильное место. Развитость этой системы ошеломляющая.
Кроме того, ЭНС играет жизненно важную роль в мониторинге кислотности и других химических свойств употребляемой еды.
Представьте пищеварительный тракт как заводскую линию. “Второй мозг” перемещает еду через пищеварительную систему, заставляя сжиматься мышцы вдоль пищеварительного тракта. По мере необходимости изменяет силу и частоту этих кишечных сокращений, для того чтобы он функционировал как линия конвейерных лент.
Она также контролирует функции безопасности. Поглощаемая пища, скорее всего, содержит потенциально вредные бактерии. Неудивительно, что около семидесяти процентов клеток лимфоцитов – жизненно важного компонента иммунной системы – содержатся в животе. Если Вы поглощаете большое количество вредных организмов, ЭНС защищает организм, вызывая сильные сокращения, вытесняя большую часть токсических веществ через рвоту или диарею.
ЭНС продолжает поражать своей сложностью – возможно, большая часть ее возможностей еще не была открыта.
Энтеральная нервная система (ЭНС) является квазиавтономной частью нервной системы. Она включает ряд нервных цепей, которые контролируют моторные функции, местный кровоток, транспорт и секрецию слизистой оболочки и модулируют иммунные и эндокринные функции.
Структура
Энтеральная нервная система человека состоит из около 500 миллионов нейронов (включая различные типы клеток Догеля). Она встраивается в слизистую оболочку желудочно-кишечного тракта (ЖКТ), начиная с пищевода и заканчивая анусом.
Нейроны энтеральной системы собраны в два типа ганглиев: миентеральные и подслизистые сплетения. Первые расположены между внутренним и внешним слоями мышц, а вторые - в подслизистой оболочке.
Также к энтеральной нервной системе относятся:
- первичные афферентные нейроны;
- возбуждающие движущие мышцы моторных нейронов;
- длинные мышцы моторных нейронов;
- восходящие и нисходящие внутренние нейроны.
Организация и отношения
Физиология энтеральной нервной системы происходит из клеток нервного гребня, которые колонизируют кишечник во время внутриутробной жизни. Она становится функциональной в последней трети беременности и продолжает развиваться после рождения.
ЭНС получает данные от парасимпатических и симпатических отделов нервной системы, а ЖКТ имеет обильные запасы афферентных нервных волокон благодаря блуждающим нервам и спинальным афферентным путям. Таким образом, между энтеральной нервной системой, симпатическими превертебральными ганглиями и центральной нервной системой существует богатое взаимодействие в обоих направлениях.
Типы кишечных нейронов
Приблизительно 20 видов кишечных нейронов могут быть определены по их функциям. Среди них выделяется три группы:
- Собственные первичные афферентные. Определяют физическое состояние органов (например, напряжение в кишечной стенке) и химические особенности содержимого просвета.
- Моторные. Включают мышечные, секретомоторные и вазодилататорные нейроны.
- Интернейроны. Соединяются с вышеперечисленными.
Контроль моторики
ЖКТ имеет внешнюю мышечную оболочку. Ее цель - смешивать пищу так, чтобы она подверглась воздействию пищеварительных ферментов и абсорбирующей оболочки и продвигать содержимое пищеварительной трубки. Контуры кишечного рефлекса регулируют движение, контролируя активность как возбуждающих, так и тормозных нейронов, которые иннервируют мышцу. Они имеют со-передатчики для возбуждающих нейронов, ацетилхолина и тахикининов. Энтеральная нервная система организовывает смешивание и движение пищи. При этом происходит переваривание и усвоение питательных веществ.
Внутренние рефлексы ЭНС имеют важное значение для генерации моделей подвижности тонкого и толстого кишечника. Основные движения мышц в тонкой кишке:
- смешивание деятельности;
- двигательные рефлексы;
- мигрирующий миоэлектрический комплекс;
- перистальтические порывы;
- ретропульсия, связанная с рвотой.
Энтеральная нервная система запрограммирована для получения этих различных результатов.
Регуляция обмена жидкости и местного кровотока
ЭНС регулирует движение воды и электролитов между просветом кишечника и тканевой жидкостью. Это осуществляется путем направления деятельности секретомоторных нейронов, которые иннервируют слизистую оболочку в тонком и толстом кишечнике и контролируют ее проницаемость для ионов.
Местный кровоток в слизистую оболочку регулируется с помощью энтеросолюбильных сосудорасширяющих нейронов. Слизистый кровоток является подходящим для баланса питательных потребностей слизистой оболочки и для приспособления обмена жидкости между сосудистой системой, интерстициальной жидкостью и просветом кишечника. Общий кровоток в кишечнике координируется центральной нервной системой через симпатические сосудосуживающие нейроны.
Регуляция желудочной и поджелудочной секреции
Секреция желудочной кислоты регулируется как нейронами, так и гормонами энтеральной системы. Регуляция осуществляется через холинергические нейроны с клеточными телами в стенке желудка. Они получают возбуждающие сигналы как от кишечных источников, так и от блуждающих нервов.
Секреция поджелудочной железы бикарбонатом для нейтрализации содержимого двенадцатиперстной кишки контролируется гормоном секретином в сочетании с активностью холинергических и нехолинергических кишечных нейронов.
Регуляция желудочно-кишечных эндокринных клеток
Нервные волокна проходят близко к эндокринным клеткам слизистой оболочки ЖКТ. Некоторые из них находятся под нервным контролем. Например, клетки гастрина в антральном отделе желудка иннервируются возбуждающими нейронами, которые используют высвобождающий пептид в качестве основного нейротрансмиттера. Эндокринные клетки пробуют просветную среду и высвобождают молекулы обмена в ткань слизистой оболочки, где обнаруживаются нервные окончания. Это необходимая взаимосвязь, потому что нервные окончания отделены от просвета эпителием слизистой оболочки.
Защитные реакции
Кишечные нейроны участвуют в ряде защитных реакций кишечника. Они включают:
- диарею для растворения и выведения токсинов;
- преувеличенную пропульсивную активность толстой кишки, возникающую при наличии патогенных микроорганизмов в кишечнике;
- рвоту.
Секреция жидкости вызывается вредными стимулами, в частности, внутрисветовым присутствием определенных вирусов, бактерий и бактериальных токсинов. Она обусловлена стимуляцией кишечных секретомоторных рефлексов. Физиологическая цель состоит в том, чтобы избавить организм от болезнетворных микроорганизмов и их продуктов.
Энтеральная нервная система и бактерии
Кишечник колонизируется триллионами бактерий, которые регулируют выработку организмом нескольких сигнальных молекул, включая серотонин, гормоны и нейротрансмиттеры. Поддержание сбалансированного микробного сообщества имеет решающее значение для поддержания здоровья и предотвращения хронического воспаления. Энтеральная нервная система - главный регулятор физиологических процессов в кишечнике. Она глубоко влияет на состав кишечной микробиоты.
ЭНС-ЦНС взаимодействия
Пищеварительная система находится в двухсторонней связи с ЦНС (центральной нервной системой). Афферентные нейроны передают информацию о его состоянии. Она заключается в:
- боли и дискомфорте от кишечника;
- сознательного чувства голода и сытости;
- других сигналов (глюкозы в крови, например).
Афферентные сигналы, касающиеся питательной нагрузки в тонком кишечнике или кислотности желудка, обычно не доходят до сознания. ЦНС подает сигналы для управления кишечником, которые передаются через ЭНС. Например, вид и запах пищи вызывает подготовительные мероприятия в желудочно-кишечном тракте, включая слюноотделение и секрецию желудочной кислоты. Другие центральные влияния проходят через симпатические пути.
Более 150 лет в физиологии и медицине изучается энтеральная нервная система (ЭНС). Все исследования можно разделить на три этапа:
Первый этап – анатомическое исследование внутренних систем человека, включая нервную систему. Начинается в 1850 г. с исследований анатомов Ауэрбаха и Мейсснера, открывших две тончайшие нейронные сети, видимые лишь под микроскопом, расположенные в стенке и в подслизистом слое кишечника.
Второй этап – физиология нервной системы внутренних органов. Начинается он с конца ХIХ века с работ двух английских физиологов из Лондона – Бейлиса и Старлинга, а позднее немецкого фармаколога Ульриха Тренделенбурга, открывших перистальтический рефлекс.
Третий этап – понимание функциональной автономности ЭНС. Этот этап активно развивается на протяжении последних тридцати лет. В сследованиях заняты более трехсот ученых из различных стран мира. Среди них Гершон Михаэль (США), Марчело Коста (Австралия), Михаэль Шенеманн (Германия), Эмерен Майер и Антонио Дамазио (США).
В общем плане нервная система состоит из центральной (ЦНС) и периферической нервной системы (ПНС), которые тесно взаимосвязаны друг с другом и следуют точным правилам. Вне этих правил находятся нервные сплетения желудочно-кишечного тракта (ЖКТ), клетки которых расположены в два ряда на протяжении всего пищеварительного тракта, длиной около 9 м у взрослого человека – своего рода чулок, охватывающий пищевод, желудок и кишечник (рис. 1). В начале ХХ века английский физиолог Ньюпорт Ленгли подсчитал количество нервных клеток в желудке и кишечнике – 100 миллионов [1]. Это больше, чем в спинном мозге и периферической нервной системе [2].
На данный момент в категории многочисленных были получены разнообразные данные о строении и функциони ровании ЭНС. В ней присутствует более 30 нейромедиаторов, подобных тем, что присутствуют в головном мозге. Многочисленность нейромедиаторов позволяет предположить, что информация, которой обмениваются клетки ЭНС, очень богата и разнообразна и сходна с той, которой обмениваются клетки головного мозга. Многие психоактивные вещества, вырабатываемые ЭНС, оказывают сильнейшее влияние на высшие органы ЦНС и на психические процессы [5].
Некоторые нейроны ЭНС секретируют гормоны [6]. ЭНС обеспечивает на 70% работу иммунной системы организма. Было доказано, что взаимодействия между ЭНС и местными иммуноцитами ответственны за адаптивные функциональные изменения, включая подвижность и секрецию, а энтеральные нейроны вовлечены в регуляцию воспалительного процесса и могут косвенно влиять на местные нейроиммунные реакции [7].
Как и головной мозг, брюшной мозг погружается в состояние, аналогичное сну, в котором выделяются и стадии быстрого сна, сопровождающиеся появлением соответствующих волн, мышечных сокращений.
У ЭНС есть свои рефлексы и ощущения, что позволяет ей контролировать поведение человека независимо от головного мозга [8]. Выработка условных энтеро-энтеральных рефлексов дает основания говорить о механизмах памяти [9]. При этом к ЭНС не относят сознательные мысли или сознательный процесс принятия решений.
Абсолютно независимо от вышеуказанных исследований А. Менегетти представитель онтопсихологического направления в психологии еще тридцать лет назад в своих работах писал об этом отделе нервной системы. Интересен тот факт, что в 80-х гг. Менегетти описывал этот феномен практически теми же словами, что и современные исследователи.
В качестве заключения хотелось бы отметить, что если раньше существовала тенденция искать линейную зависимость между причиной и заболеванием (как еще постулировал Кох в 1882 г., открыв взаимосвязь между инфекцией туберкулеза и заболеванием), то сегодня рассматривается многофакторность большинства заболеваний с характерными для них факторами риска. Признается, что грань, разделяющая физиологические реакции от патологических, размыта, и многие функциональные расстройства пищеварительного тракта могут представлять собой плохо садаптированный ответ на стимулы окружающей среды [21].
* - Виктория Александровна Дмитриева, кандидат психологических наук, психолог-консультант, и.о. зав. кафедрой онтопсихологии факультета психологии СПбГУ.
** - Вероника Викторовна Одинцова, к. мед. наук, психотерапевт-онтопсихолог, преподаватель САО.
Вегетативная нервная система состоит из нескольких частей: симпатической, парасимпатической и энтеральной. Энтеральная нервная система (ЭНС) состоит из нервов, клеточные тела которых находятся в ЖКТ в количестве, аналогичном количеству нервов в спинном мозге.
Энтеральная нервная система является уникальной системой, хотя считается, что она подобна симпатической и парасимпатической частям нервной системы. В отличие от симпатической и парасимпатической частей, которые непосредственно регулируются ЦНС, ЭНС функционирует независимо от ЦНС.
Энтеральная нервная система (ЭНС) имеет отличную от симпатической и парасимпатической систем ультраструктуру, в которой нейроны кишечника поддерживаются скорее глией, а не шванновскими клетками и имеют недостаточное количество внутреннего коллагена.
Обширная сеть энтеральной нервной системы (ЭНС) — намного более сложная, чем симпатическая или парасимпатическая система, поскольку составлена из многочисленных типов функционирующих нейронов со сложными связующими сетями. Энтеральная нервная система (ЭНС) регулирует моторику, секрецию и транспорт в слизистой оболочке, а также местный кровоток.
Исследование физиологии энтеральной нервной системы базируется на двух основных моментах: миграции и становлении главных структур энтеральной нервной системы, функции ее обширной сети на уровне кишечника. Эти два момента будут рассмотрены отдельно.
Схематичное изображение кишечных нейронов, формирующих перистальтические рефлексы:
(1) внутренние первичные афферентные сенсорные нейроны (IPAN) с клеточным телом в межмышечном сплетении;
(2) восходящий холинергический интернейрон;
(3) нисходящий интернейрон локального пути рефлекса;
(4) нисходящий интернейрон мигрирующего моторного комплексного пути;
(5) тормозящий мышцу мотонейрон;
(6) возбуждающий мышцу мотонейрон;
(7) IPAN с клеточным телом в подслизистом сплетении;
(8) энтероэндокринная клетка, высвобождающая стимулятор окончаний IPAN слизистой
Энтеральная нервная система (ЭНС) формируется, когда кишечник заселяется клетками нервного гребня. Большая часть клеток мигрирует из вагальной области нервного гребня, чтобы заселить весь кишечник в направлении от рострального к каудальному отделу, меньшая часть — мигрирует от сакрального гребня для заселения постумбиликальной кишки и от стволового гребня для заселения пищевода и желудка.
Эти клетки представляют собой гетерогенную популяцию; до конечной формы они развиваются как во время активной миграции, так и после попадания в кишечник, что зависит от их взаимодействия с сигнальными факторами окружающей матрицы. Фундаментальные знания на молекулярном и клеточном уровнях позволили понять этот процесс в деталях, что будет рассмотрено далее при обсуждении соответствующих клинических ситуаций.
Заключительная конфигурация состоит из сплетения Ауэрбаха (межмышечного), которое больше по размерам, чем сплетение Мейсснера (подслизистое), многочисленнее, расположено между циркулярными и продольными мышечными слоями кишки и сплетения Мейсснера, расположенного между продольным мышечным и подслизистым слоями.
На местном уровне энтеральной нервной системы функционирует в субъединицах, каждая из которых состоит из внутренних первичных афферентных сенсорных нейронов, интернейронов и мотонейронов. Внутренние первичные афферентные сенсорные нейроны необходимо отличать от более известного первичного афферентного нейрона, клеточное тело которого расположено в узловатом или дорсальном корне, а действие связано с чувствительностью и болью.
Внутренний первичный афферентный нейрон (клеточное тело расположено в межмышечном или подслизистом сплетениях) ежеминутно контролирует гастроинтестинальую функцию. Эти нейроны могут отвечать на механический стимул, например растяжение кишки, или химические стимулы содержимого просвета, например рН.
Нейроны мультиполярны и приблизительно 50% из них имеют не менее трех отростков, иннервирующих эпителий слизистой оболочки (где они контактируют с энтероэндокринными клетками), подслизистые и межмышечные сплетения или другие внутренние нейроны.
Мотонейроны классифицируют как тормозящие, возбуждающие или управляющие продольной мышцей (два первых типа нейронов в большей степени воздействуют на циркулярную мышцу). Интернейроны подразделяют на восходящие и нисходящие. Мышечные слои в кишке имеют двойную иннервацию (возбуждающими и тормозящими мотонейронами).
Стимуляция слизистой оболочки кишки ведет к ответному сокращению проксимального участка и расслаблению дистального участка области стимуляции. Возникшее расслабление увеличивает просвет, что, в свою очередь, вызывает еще один перистальтический рефлекс: участок релаксации будет сокращаться, а область дистальнее его — расслабляться. Таким образом рефлекс распространяется в дистальном направлении по кишечнику. АСН — ацетилхолин; CCRP — РНКазы, кодирующие пептиды кальцитонина; N0 — оксид азота; SP — субстанция Р; ВИП — вазоактивный интестинальный пептид.
Ацетилхолин является основным нейромедиатором возбуждающих мотонейронов, в то время как другие вещества могут служить комедиаторами для тормозящих мотонейронов, включая NО, ВИП, аденозинтрифосфат (АТФ) и гипофизарный пептид, активирующий аденилатциклазу.
Пространственная схема физиологии энтеральной нервной системы была изучена у морской свинки. В настоящее время считается, что эти структуры функционируют как микросоединения, формирующие отдельные единицы рефлекса, накладывающиеся друг на друга вдоль кишки.
Установлено, что каждый миллиметр кишки содержит 2500 нервных клеток, из которых 650 — внутренние первичные афферентные сенсорные нейроны, 400 — тормозящие мотонейроны, 300 — возбуждающие мотонейроны, 120 — восходящие интернейроны и 120 — нисходящие интернейроны, 500 клеток проводят импульс к продольной мышце.
Каждый кончик ворсинки снабжается 65 внутренними первичными афферентными сенсорными нейронами. Благодаря богатству и сложности сети одиночных рефлекторных единиц, каждая из которых снабжает нейронами участок приблизительно в 2 мм окружности кишки, локальные рефлекторные дуги соединяются через мотонейроны, тогда как информация одновременно передается по длине кишки через интернейроны, чтобы через электрический импульс соединить мышечные клетки в группы.
Внутренние первичные афферентные сенсорные нейроны и мотонейроны взаимодействуют через возбуждающие восходящие интернейроны и нисходящие тормозящие интернейроны. Таким образом, когда один нейрон активирует внутренние первичные афферентные сенсорные нейроны на небольшом участке кишки, от орального отдела к участку активации идет сокращение, которое передается через восходящие холинергические интернейроны, и происходит расслабление нижележащих отделов, передаваемое через нисходящие нейроны.
Когда релаксация достигает анального отдела, она стимулирует активацию, которая, в свою очередь, вызывает мышечное сокращение. Так перистальтический рефлекс продвигается вдоль кишечника в дистальном направлении, толкая содержимое к выходному отверстию. Это упрощенная схема, на самом деле система функционирует значительно сложнее, т.к. интернейроны могут одновременно стимулировать высвобождение гастроинтестинальных гормонов и секрецию, приводить к вазодилатации (для изменения кровотока) и генерировать варианты перистальтики различных отделов ЖКТ.
В верхней строке представлена активность, зарегистрированная в антральном отделе желудка, последующие строки представляют собой активность в отделах, лежащих на 2,5 см дистальнее один от другого. Фазовая активность регистрируется в антральном отделе желудка (+), что по времени согласуется с миграцией фазовой активности на всех трех участках двенадцатиперстной кишки (++). Три других кластера двенадцатиперстной кишки не в состоянии мигрировать. Стрелка указывает на область записи, которую занимает артефакт, вызванный движением ребенка. 12-ПК — двенадцатиперстная кишка
Кишечник — наш второй мозг
От стресса болит живот. Влюбляясь, мы чувствуем, как в животе порхают бабочки. Перед большой дорогой — волнение. А когда нас что-то беспокоит — тяжесть в животе. Все эти часто повторяемые истины указывают на связь мозга с кишечником. И не без причины, убеждает иммунолог, кандидат медицинских наук Павел Гжесьовски, начальник Исследовательского центра трансплантации кишечной микробиоты в Варшаве.
Отвечает кандидат медицинских наук Павел Гжесьовски.
– Вас как-то раз попросили прочитать лекцию в Институте экспериментальной биологии им. М. Ненцкого в Варшаве по случаю организованной там Недели мозга. Это учреждение известно, среди прочего, своими неврологическими исследованиями. Было ли что сказать специалисту по трансплантации кишечной микробиоты нейробиологам?
– К удивлению, очень многое.
– Верите ли вы в эту связь? В то, что наше настроение зависит от того, какие бактерии заселяют наш кишечник?
– Доказательства тому я вижу собственными глазами практически каждый день. Вот уже несколько лет я исследую влияние бактерий на человеческий организм после трансплантации кишечной микробиоты. Это микроорганизмы, полученные из кала здоровых доноров, которые мы трансплантируем пациентам, страдающим от антибиотик-ассоциированной диареи. Эти люди очень больны и измучены, поскольку бактериальные токсины разрушают их кишечник. Данный метод лечения рецидивирующих заражений бактерией Clostridium difficile признан мировыми группами экспертов.
Clostridium difficile может спокойно жить в нашем кишечнике, пока дело не доходит до антибиотиков. В некоторых случаях она начинает вырабатывать огромное количество токсина, способного навредить кишечнику. Такая реакция может наступить у каждого, но болеют в основном пожилые люди старше 65 лет. К сожалению, это часто происходит в больницах или домах престарелых, где нередко может вспыхнуть местная эпидемия.
Занимаясь лечением наших пациентов, мы заметили странную закономерность: похоже на то, что многие из них после трансплантации хорошей бактериальной флоры избавились не только от Clostridium, но и от депрессии.
– Может быть, им просто стало лучше, а потому и настроение улучшилось?
Наши клинические наблюдения имеют глубокое научное обоснование, поскольку доказано, что микробиота вырабатывает множество веществ, непосредственно влияющих на мозг, например серотонин, недостаток которого считается причиной депрессии.
– То, что мы едим, влияет на мозг. Например, сладкие продукты дают ощущение удовольствия, активируя центр системы вознаграждения в мозге. Могут ли продукты бактерий делать то же самое?
– Для того чтобы проверить, действительно ли микробиом влияет на мозг, ученые начали с опытов на животных. Они развели мышей, лишенных кишечной микробиоты. Их поведение оказалось аномальным: мыши были боязливые, депрессивные и имели признаки аутизма. Когда ученые колонизировали их кишечники бактериями от здоровых животных, грызуны перестали бояться и начали социализироваться. Они охотно пребывали в окружении других особей, а аутистические проявления исчезли.
– А у людей?
– В 2014 году было проведено очень простое исследование. Половине участвующих в нем женщин ежедневно давали йогурт с пробиотическими, специально отобранными штаммами бактерий, а другой половине — нет. Спустя месяц оказалось, что женщины, которые пили йогурт, отличались более хорошим настроением и памятью, а также более высокими познавательными способностями. У них появилась активность в новых областях мозга по сравнению с контрольной группой. Следовательно, кишечные бактерии активировали дополнительные нейроны!
Не менее интересным было исследование с участием людей, страдающих от депрессии. Половину из них подвергли классической терапии антидепрессантами, а остальным давали лекарства с добавлением пробиотика, содержащего особый штамм бактерий, в том числе Bifidobacterium infantis и Lactobacillus casei. И вторые лучше реагировали на лечение.
Кишечник и мозг: Как бактерии влияют на психическое здоровье
– Раз кишечные бактерии управляют нашим мозгом, не следует ли в таком случае изменить подход к некоторым болезням? Говорят, что люди с гиперчувствительной нервной системой и склонные к депрессии чаще заболевают синдромом раздраженного кишечника (СРК). Или же, наоборот, у этих людей ненормальная микробиота, которая нарушает их психическое состояние? Говоря простым языком, эти плохие бактерии вызывают у них депрессию и тревожность.
– Сегодня уже почти точно известно, что данное заболевание тесно связано с нарушенной кишечной микробиотой. Думаю, что уже в скором времени мы ознакомимся с целым списком виновников и научимся эффективно выживать их из нашего кишечника. Я могу рассказать о двух наиболее ярких случаях в моей практике.
Первая пациентка пришла к нам после нескольких месяцев лечения боррелиоза антибиотиками. Мало того что не существует доказательства эффективности такого лечения, так у нее еще наступило практически полное истощение кишечника. Ее состояние было серьезным, развился синдром дырявого кишечника, приводящий к симптомам повреждения мозга.
– Что это были за симптомы?
После трансплантации бактериальной флоры пациентка возвращалась к нам буквально изо дня в день. Все симптомы токсической реакции в мозге прошли. Ее психическое состояние и познавательные функции феноменально улучшились. Женщина полностью выздоровела. А семья и коллеги по работе спрашивали, какие таинственные таблетки она принимает, поскольку не могли поверить, что это — результат трансплантации кишечной микробиоты. Второй случай касается десятилетнего мальчика, страдающего от аутизма.
– Мы затрагиваем деликатную тему.
– Я отдаю себе в этом отчет, но осмелюсь описать только то, что мы наблюдали. И то, о чем нам рассказывала мать мальчика, врач по профессии. Она сама обратилась к нам за помощью, прочитав о том, что были проведены новые опыты на животных, доказывающие, что у грызунов с мышиным аналогом расстройств аутистического спектра явно была нарушена микробиота. Впрочем, с людьми тоже проводят такие исследования, и наблюдения схожи. Употребление в пищу полезных бактерий улучшило состояние мышей с аутизмом.
– Как же трансплантация микробиоты помогла ребенку с аутизмом?
– После трансплантации первым изменением у мальчика было то, что он успокоился. У него уменьшилась агрессия, улучшились познавательные навыки, повысилась концентрация. Разумеется, аутизм не отступил, но, скажем, если ранее ребенок говорил невнятно, лишь что-то бормотал на собственном языке, то после серии трансплантаций он начал изъясняться полными предложениями.
Конечно, нет гарантии, что это сработает у каждого и что наступит какое-то изменение. Нельзя также утверждать, что это терапия расстройств аутистического спектра! Но я осмелился рассказать об этом мальчике, поскольку его мать — врач, у нее взвешенное отношение к болезни сына, и она сама заметила улучшение его поведения. Думаю, что об этом следует говорить, ведь чем раньше мы займемся кишечной микробиотой детей с аутизмом, тем больше шансов на положительный эффект. Во всем мире проводятся исследования связи аутизма с микробиотой кишечника и возможностями вспомогательного лечения пробиотиками, а также специальной диетой.
– Было ли больше похожих случаев?
– Связь между нашим мозгом и микробами, обитающими в нашем кишечнике, определенно существует. У многих пациентов после трансплантации изменяется настроение, появляется решительно больше оптимизма. Под нашим присмотром сейчас находится мужчина, который хорошо отреагировал на трансплантацию; у него прошла диарея, но не совсем — время от времени отмечаются рецидивы, однако если раньше он был так называемым депрессивным, тревожным типом, то теперь даже во время пищевых расстройств хорошее настроение его не покидает. Это просто невероятно — ощущение, что вы видите перед собой совершенно другого человека.
– То есть залог хорошего настроения заключается в избегании антибиотиков и соблюдении правильного питания.
Клинические наблюдения отчетливо указывают на то, что существует какая-то связь между мозгом и кишечником. Сегодня это называется кишечно-мозговой осью. Все ведет к блуждающему нерву — сигнальному пути между кишечником и мозгом. Это самый длинный черепной нерв, принадлежащий к вегетативной нервной системе и соединяющий мозг с пищеварительной системой.
Оказывается, что 90 % этих сигналов поступает в одном направлении — из кишечника в мозг. А из мозга в кишечник — лишь 10 %. Это значит, что наш кишечник передает что-то очень важное мозгу, и только иногда бывает наоборот.
Дефектные бактерии – это дефектная изоляция в мозге
Многие годы ученые сосредоточивались на изучении серого вещества, однако появилась новая техника нейровизуализации, называемая визуализацией тензора диффузии, благодаря которой можно исследовать также белое вещество. Используя данный метод, доктор Шумей Ли, радиолог больницы в китайском городе Гуандун, и ее команда исследовали мозг 30 здоровых человек и 23 человек с хронической бессонницей.
Оказалось, что в мозге людей, страдающих хронической бессонницей, для участков в правом полушарии, связанных с обучением, памятью, запахами и эмоциями, была характерна более слабая связь между нейронами, чем у здоровых. Команда также обнаружила, что у людей с хронической бессонницей была хуже связь между нейронами в белом веществе таламуса — отделе головного мозга, который регулирует сознание, бдительность и сон.
По мнению ученых, эти изменения сопряжены с утратой миелиновой оболочки. А согласно исследованию, проведенному в Институте микробиома Ирландского национального университета в Корке, кишечные микроорганизмы могут воздействовать на структуру и функции мозга именно через регуляцию процесса миелинизации.
Джон Крайн и Джерард Кларк решили проанализировать, как именно кишечные микроорганизмы могут влиять на активность генов в определенных участках мозга. Они исследовали, например, экспрессию генов в префронтальной коре головного мозга мышей, которая играет ключевую роль в таких функциях, как планирование и принятие решений.
К удивлению исследователей, оказалось, что некоторые из этих генов участвуют в миелинизации аксонов. Часть из них кодирует белки, которые создают структуральные элементы миелиновой оболочки. Заинтригованные этими результатами, ученые начали более тщательно изучать мозг животных, используя электронный микроскоп для анализа ткани из префронтальной коры. Было отчетливо видно, что различия экспрессии генов отражались на различиях анатомического строения нервных волокон в префронтальной коре.
Исследователи описали свое открытие в журнале Translational Psychiatry. Они подчеркивают, что это яркое доказательство тому, что кишечные бактерии способны непосредственно влиять не только на функционирование, но и на анатомическую структуру мозга. По их предположениям, возможно, однажды демиелинизирующие заболевания (например, рассеянный склероз) можно будет лечить посредством изменения состава микроорганизмов, заселяющих наш кишечник.
Бессонница в кишечнике?
Просыпаетесь несколько раз за ночь? Возможно, что эти пробуждения — результат ночной жизни кишечных бактерий. Трудно поверить, не так ли? Но все по порядку…
– Кишечный микробиом, вероятно, изменяет наши суточные ритмы, цикл сна и бодрствования, а также воздействует на гормоны, регулирующие сон и бодрствование, — заявил британской газете The Guardian доктор Майкл Бреус, клинический психолог и член Американской академии медицины сна.
Можно ли уже из исследований ученых использовать что-то в ежедневной практике, чтобы улучшить качество сна и покончить с ночными пробуждениями? Они предлагают диету, основанную на пребиотиках, то есть соединениях, питающих наши полезные микробы и прием, после консультации с врачом, пробиотических бактерий, доступных в аптеке.
Исследования, проведенные учеными из Колорадского университета и опубликованные в Frontiers of Behavioural Neuroscience, предполагают даже, что пребиотики могут значительно влиять на качество сна. Причем как на фазы быстрого, так и глубокого сна.
Еще до недавнего времени способ питания недооценивался многими психиатрами и терапевтами, занимающимися сном. Считалось, что другие факторы играют ключевую роль в развитии бессонницы. Но ведь человек инстинктивно чувствует, что при плохом питании и спит плохо. Тем не менее мы связывали этот факт скорее с чисто физиологическим процессом пищеварения (впрочем, частично верно), а не с ночной жизнью наших микробов.
Подведем итог
Думая о здоровом образе жизни, мы должны заботиться о здоровье нашего микробиома. Ведь бактерии – это наши друзья!
Они сопутствуют нам с самого начала. Защищают от патогенов, учат иммунную систему реагировать на опасность, вырабатывают вещества для правильной работы головного мозга, образуют соединения, питающие клетки кишечника.
Поэтому без полезных бактерий не получится сохранить здоровье, противостоять депрессии, справиться со стрессом, дожить до ста лет… и даже похудеть.
Читайте также: