Генетический контроль патогенности и вирулентности. Генотипическое снижение вирулентности. Фенотипическое снижение вирулентности. Аттенуация.
Добавил пользователь Валентин П. Обновлено: 14.12.2024
Все вышеназванные факторы и параметры патогенности и вирулентности подвержены фея типическим и генотипическим изменениям. Причины таких изменений — эффекты различных физических и химических факторов. В первую очередь патогенные свойства бактерий находятся под контролем хромосомных и плазмидных генов. Способность к образованию экзотоксинов детерминируют внехромосомные tox-гены конвертирующих бактериофагов и плазмид (например, синтез дифтерийного гистотоксина, ботулинического нейротоксина и др.). Образование эндотоксинов кодируют хромосомные гены.
Генотипическое снижение вирулентности возможно при мутациях, рекомбинациях,утере внехромосомных наследственных факторов (плазмид, транспозонов, вставочных (IS-) последовательностей).
Фенотипическое снижение вирулентности возможно при попадании возбудителяв неблагоприятные условия. In vitro оно возникает в результате неблагоприятного режима культивирования и состава питательной среды, воздействия селективных неблагоприятных факторов либо обработки популяции гомологичной антисывороткой. In vivo снижение вирулентности возникает вследствие селекции маловирулентных штаммовв гетерогенной популяциивозбудителя под действием защитных факторов, антимикробных препаратов и др. Выжившая популяция приобретает устойчивость к этим воздействиям, но «платит» своими патогенными свойствами (например, за счёт утери плазмидных или хромосомных генов патогенности). Со времён Пастёра искусственное снижение вирулентности —аттенуация [от лат. atteiu ослаблять] — положено в основу производства ряда вакцин.
Таким образом, патогенность - качественный признак болезнетворного микроба, а вирулентность — количественное проявление патогенности.
Рекомендуем для прочтения:
Тест по теме №8 372. ТЗ 372 Тема 6-30-0 Вопрос: Развитие персонала - это: Закрытые ответы (альтернативы): поступательное движение личности в.
Коммуникативные качества речи Культурная речь обладает определенными свойствами, которые помогают организовать общение и сделать его эффективным.
Местное самоуправление в РФ Местное самоуправление — это самостоятельная и под свою ответственность деятельность населения по решению вопросов местного.
Вопрос. Юридические свойства Конституции РФ Юридические свойства Конституции - это совокупность юридических характеристик.
Техника постановки очистительной клизмы. Алгоритм № 11. Алгоритм постановки очистительной клизмы Цель: добиться отхождения каловых масс.
Влюбчивость - это как горение хвороста. Если к тебе она быстро пришла, то так же быстро и потухнет. © Александр Дьяков ==> читать все изречения.
Понятие о патогенности и вирулентности
Для того чтобы вызвать инфекционный процесс, возбудитель должен обладать патогенностъю (болезнетворностью). Патогенность (от греч. pathos — страдание, болезнь, genos — рождение) — это видовой многофакторный признак, обозначающий потенциальную способность микроба вызывать инфекционный процесс.
Патогенность проявляется лишь в восприимчивом макроорганизме и характеризуется специфичностью, т.е. способностью вызывать определенное инфекционное заболевание. Например, возбудитель брюшного тифа вызывает только брюшной тиф, возбудители бруцеллеза — бруцеллез и т.д. Многие патогенные микробы приобрели способность поражать клетки тканей и органов, наиболее «подходящие» по своим биохимическим особенностям для их жизнедеятельности.
Например, возбудитель коклюша поражает трахею и бронхи, возбудитель холеры паразитирует в тонкой кишке и т.д. Это свойство называется органотропностью.
Для того чтобы вызвать инфекционный процесс, патогенные микробы должны проникать в организм в определенной критической инфицирующей дозе (патогенной), т.е. в минимальной дозе, которая вызывает стойкую адгезию, колонизацию, проникновение в ткани возбудителя и дальнейшее развитие инфекционного процесса. Для каждого вида микроба имеется своя минимальная инфицирующая доза, т.е. число особей, способных вызвать заболевание. В естественных условиях для возникновения инфекционного процесса патогенные микробы должны проникать через определенные входные ворота инфекции — ткани и органы, через которые микроб попадает в макроорганизм. Например, для возбудителей кишечных инфекций входные ворога — слизистая оболочка желудочно-кишечного тракта (ЖКТ), а для воздушно-капельных инфекций — слизистая оболочка дыхательных путей. Однако есть патогенные микробы, которые в естественных условиях могут проникать через разные входные ворота, т.е. они обладают пантропностью (поражают многие ткани и органы). К ним относятся возбудители зоонозов (чумы, туляремии и др.).
Патогенность микробов зависит от многих факторов и подвержена большим колебаниям в различных условиях. Для обозначения степени патогенности введено понятие вирулентности.
Вирулентность (от лат. virulentus — ядовитый) — это динамическое индивидуальное свойство (способность) данного штамма микроба вызывать инфекционный процесс, качественная характеристика патогенности или фенотипическое проявление генотипа, свойственное микробу. По этому признаку все штаммы микроба данного вида могут быть подразделены на высоко-, умеренно-, слабо- и авирулентные.
О вирулентности патогенных микробов в лабораторных условиях судят по величине летальной и инфицирующей дозы для экспериментальных животных. При этом необходимо учитывать вид, пол, массу, условия содержания, полноценность питания и способ заражения экспериментальных животных, т.е. те факторы, которые влияют на достоверность и стандартность результатов опытов. Для снижения влияния индивидуальных колебаний резистентности эксперимент проводят на значительном числе животных. Летальная доза (LD) — это наименьшее количество возбудителя или токсина, вызывающее в определенный срок гибель конкретного количества (%) животных, взятых в опыт.
Так, Del гибель 100 % особей, Dim — 95 %, LD (Letalis dosis90 — 90 %, LDn — 70 %, LZ)50 — 50 % и т.д. Инфицирующая доза (ID) — минимальное количество микробов, способное вызвать инфекционное заболевание у определенного количества (%) животных, взятых в опыт. Например, IDm — это 100 % заболеваемость, ID50 — 50 % и т.д. В лабораторной практике чаще пользуются показателями LD50 и ID50 как обеспечивающими достоверность и стандартность оценки летальной и инфицирующей доз возбудителя.
Под действием физических, химических и биологических факторов вирулентность подвержена фенотипическим и генотипическим изменениям как в сторону ослабления, так и усиления. Снижение вирулентности (аттенуация) может происходить при длительном пассировании культур на питательных средах, через организм мало восприимчивых животных и т.п. Полная утрата вирулентности связана с изменением генотипа. Повышение вирулентности наблюдается в процессе пассирования культуры через организм высоковосприимчивых животных, при лизогении мутациях и рекомбинациях. Примером изменения вирулентности могут служить образование капсул у бактерий при попадании в организм, температурозависимый синтез инвазивных белков у иерсиний и К-антигена у Salmonella typhi, образование индуцибельных ферментов и др.
3. Патогенность и вирулентность. Факторы вирулентности. Количественное определение вирулентности. Аттенуация.
Патогенность — видовой признак, передающийся по наследству, закрепленный в геноме микроорганизма, в процессе эволюции паразита, т. е. это генотипи-ческий признак, отражающий потенциальную возможность микроорганизма проникать в макроорганизм (инфективность) и размножаться в нем (инвазионность), вызывать комплекс патологических процессов, возникающих при заболевании.
Фенотипическим признаком патогенного микроорганизма является его вирулентность, т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулентность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL« (доза, вызывающая гибель 50 % экспериментальных животных). При этом учитывают вид животных, пол, массу тела, способ заражения, срок гибели.
К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).
Адгезия является пусковым механизмом инфекционного процесса. Под адгезией понимают способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. Адгезины очень разнообразны по строению и обусловливают высокую специфичность - способность одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других - кишечного тракта или мочеполовой системы и т.д. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др.
Инвазия. Под инвазивностью понимают способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение микроорганизма в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани.
Агрессия. Под агрессивностью понимают способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы - ферменты, разрушающие иммуноглобулины; коагулаза - фермент, свертывающий плазму крови; фибринолизин - растворяющий сгусток фибрина; лецитиназа - фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток. Патогенность может быть связана и с другими ферментами микроорганизмов, при этом они действуют как местно, так и генерализовано.
Токсины. Многие факторы вирулентности — это белки, которые патоген вырабатывает, а затем выделяет (секретирует) в окружающую среду и которые вызывают повреждение тканей хозяина. Например, при пищевых отравлениях именно токсины вызывают симптомы заболевания.
Количественное определение вирулентности.
Для характеристики вирулентности пользуются количественными показателями, определяющими способность исследуемой микробной культуры вызывать гибель искусственно зараженных ею подопытных животных. Изучение вирулентности бывает сопряжено с рядом трудностей, так как она определяется не только комплексом культурно-морфологических, токсигенных и биологических свойств микроба, но и резистентностью микроорганизма, подверженной большим колебаниям в связи с видом, возрастом животных, режимом их питания, температурой внешней среды, а также способом заражения, принятым в опыте. Поэтому при установлении вирулентности микроба очень важно вести исследование, точно соблюдая стандартность всех условий опыта.
Для определения вирулентности микробных культур чаще всего используют белых мышей. В том случае, когда белые мыши невосприимчивы к исследуемому возбудителю заболевания, пользуются другими видами животных: крысами, морскими свинками или кроликами.
Для определения вирулентности применяют молодую культуру микроба, так как старые культуры содержат большое количество мертвых клеток.
Культуру микроба для заражения выращивают на мясо-пептонном агаре или другой плотной питательной среде, так как бульон, представляя собой сложный белковый субстрат, небезразличен для животного организма и может извращать результаты опыта. Исследуемую культуру микроба, выращенную на скошенном мясо-пептонном агаре, смывают изотоническим раствором хлорида натрия и стандартизуют по оптическому стандарту так, чтобы в 1 мл этого раствора содержалось определенное количество микробных тел. В зависимости от вида культуры, патогенности ее для животных, взятых в опыт, а также от цели и задач исследования количество микробных тел, содержащееся в 1 мл взвеси, может колебаться от единиц до миллиардов. В тех случаях, когда по каким-либо причинам получить агаровую культуру невозможно, пользуются суточной бульонной культурой. Для определения минимальной летальной дозы из бульонной культуры готовят ряд последовательных десятикратных разведений: 1:10, 1:100, 1:1000, 1:10000, 1:100000 и т.д.
Исследуемую взвесь бактерий вводят различными способами: внутривенно, внутрибрюшинно, внутримышечно, подкожно, интраназально—в зависимости от целей и задач исследования.
Отстандартизованную взвесь микробов в изотоническом растворе хлорида натрия, а также разведения бульонной культуры готовят с таким расчетом, чтобы различные дозы микроба, используемые в опыте, содержались в одинаковых объемах жидкости.
Каждую дозу культуры вводят одновременно нескольким животным. При определении минимальной смертельной дозы учитывают и отмечают в протоколе опыта следующие данные:
количество микробов, введенных в организм животного;
способ их введения;
масса тела зараженного животного;
сроки гибели после заражения.
Степень вирулентности чаще всего характеризуют тремя следующими показателями:
Минимальная смертельная доза Dlm (Dosis letalis minima), т.e. наименьшая доза микробов, которая при определенном способе заражения, в определенных условиях опыта вызывает гибель около 95% подопытных животных.
Наименьшая безусловно смертельная доза Dll (Dosis lerie letalis) — наименьшая доза микробов, являющаяся смертельной для всех 100% животных, взятых в опыт.
Средняя смертельная доза микробов LD50 (Dosis letalis 50%)—доза микробов, вызывающая гибель 50% зараженных животных.
Показатель LD50 позволяет получить более достоверные результаты, и потому он чаще других используется в практике экспериментальных исследований.
В отличие от Dlm и Dll, определявшихся непосредственно по результатам опыта, LD50 вычисляется путем довольно сложных математических расчетов. Более прост метод Кербера, в котором простота расчета удачно сочетается с достаточно высокой точностью получаемых результатов.
Аттенуация — искусственное стойкое ослабление вирулентности патогенных микроорганизмов, сохраняющих способность вызывать иммунитет. Аттенуация используется при изготовлении живых вакцин против туберкулеза, оспы. Термин произошел от латинского слова attenuatio — уменьшение.
4. Микробные токсины и их свойства. Генетические детерминанты токсигенности (tox + - гены).
Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины. Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов. По молекулярной организации экзотоксины делятся на две группы:
экзотоксины состоящие из двух фрагментов;
экзотоксины, составляющие единую полипептидную цепь.
По степени связи с бактериальной клетки экзотоксины делятся условно на три класса.
Класс А - токсины, секретируемые во внешнюю среду;
Класс В - токсины частично секретируемые и частично связанные с микробной клеткой;
Класс С - токсины, связанные и с микробной клеткой и попадающие в окружающую среду при разрушении клетки.
Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток.
Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК). Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами. При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин. Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.
Генетические детерминанты токсигенности (tox + - гены)
Синтез белковых токсинов кодируется генами, локализованными в хромосоме и сцепленными с генами, участвующими в спорообразовании или входящими в состав профага, а также генами, локализованными в плазмидах. Это tox+ гены, ответственные за токсиген-ность. Активность tox+ генов контролируется белками-репрессорами микробной клетки. Первоначальной функцией этих генов у сапрофитов был синтез структурных белков фага, компонентов оболочек спор или синтез ферментов, необходимых для усвоения аминокислот. По мере закрепления паразитического образа жизни эти специализированные адаптивные ферменты превратились в яды — белковые токсины.
Способность микроорганизмов образовывать белковые токсины необходимо учитывать также при проведении микробиологической диагностики. При этом необходимо помнить, что все патогенные штаммы данного вида могут продуцировать только один тип токсина по антигенной структуре и механизму действия(С. diphtheriae, С. tetani), разные по антигенной структуре, но одинаковые по механизму действия токсины (С. botulinum). С другой стороны, один и тот же вид микроба может образовывать разные типы белковых токсинов, а также эндотоксины, например диареегенные Е. coli, шигеллы и сальмонеллы, возбудитель холеры.
Изменение вирулентности
Вирулентность микробов не является постоянной. Изменение вирулентности может быть фенотипическим и генотипическим. Так, вирулентность фенотипически может изменяться в зависимости от возраста культуры, температуры выращивания, что связано с индуктивным характером синтеза некоторых биологически активных веществ (температурозависимый синтез ряда антигенов чумных палочек, Vi-антигена брюшнотифозных бактерий, некоторых ферментов).
Вирулентность микроорганизма можно повысить или понизить искусственными приемами.
Длительное выращивание культур вне организма на обычных питательных средах, выращивание культур при максимальной температуре (опыты Л. Пастера и Л. С. Ценковского), добавление к культурам антисептических веществ (двухромовокислый калий, карболовая кислота, щелочь, сулема, желчь и т. д.) ослабляют вирулентность микроорганизмов. Основываясь на этом принципе, готовят ослабленные живые вакцины, которые затем применяют против заразных болезней. Вирулентность микроба может понижаться и в естественных условиях под действием солнечных лучей, высушивания и пр.
Пассирование (последовательное проведение) возбудителя какой-либо инфекционной болезни через определенный вид животного от зараженного к здоровому, например возбудителя рожи свиней через организм кролика, ослабляет вирулентность для свиней, но усиливает ее для самих кроликов. Действие бактериофага (биологический фактор) может привести к ослаблению вирулентности микроорганизмов. В естественных условиях вирулентность бактерий повышается путем пассажа через восприимчивый организм, поэтому больных заразной болезнью животных необходимо немедленно изолировать от здоровых.
Усиление вирулентности под действием протеолитических ферментов можно наблюдать у Сl. perfringens при естественной ассоциации с возбудителями гниения (например, сарцинами) или при искусственном воздействии ферментом животного происхождения (например, трипсином).
Связан этот эффект со способностью протеаз активизировать протоксины, т. е. предшественники эпсилон-токсина типов В и D и йота-токсина типа Е Cl. perfringens.
Таким образом, вирулентность как мера патогенности - величина переменная. Она может быть повышена, понижена и даже утеряна.
Стабильная утрата патогенных свойств определяется понятием «авирулентность». Снижение (аттенуация) или полная потеря вирулентности наблюдается при пересевах культур в лабораторных условиях и при воздействии различных физико-химических и биологических факторов. Полная утрата вирулентности, как и аттенуация, связана с изменением генотипа штамма.
Генетические факторы, детерминирующие вирулентность, изучены пока лишь у некоторых патогенных микроорганизмов. Хромосомное картирование таких факторов и знание маркеров, коррелирующих с вирулентностью позволит в будущем в короткие сроки получать штаммы с нужными для микробиологов характеристиками.
Измерение вирулентности
Патогенность и вирулентность не являются синонимами. Микроорганизм считается вирулентным, если он при внедрении в организм животного, даже в исключительно малых дозах, приводит к развитию инфекционного процесса. Никто не сомневается в патогенности сибиреязвенной бациллы, между тем среди культур этого микроба изредка, но встречаются авирулентные штаммы, не способные вызвать заболевания у овец и даже кроликов. Бактерии рожи свиней принадлежат к патогенному виду, но немало разновидностей этого микроба было выделено из организма совершенно здоровых свиней, индеек, рыб.
За единицу измерения вирулентности условно приняты летальная и инфицирующая дозы. Минимальная смертельная доза - DLM (Dosis letalis minima) - это наименьшее количество живых микробов или их токсинов, вызывающее за определенный срок гибель большинства взятых в опыт животных определенного вида. Но поскольку индивидуальная чувствительность животных к патогенному микробу (токсину) различна, то была введена безусловно смертельная доза - DCL (Dosis certa letalis), вызывающая гибель 100 % зараженных животных. Наиболее точной является средняя летальная доза - LD50, т. е. наименьшая доза микробов (токсинов), убивающая половину животных в опыте. Для установления летальной дозы следует принимать во внимание способ введения возбудителя, а также массу и возраст подопытных животных, например, белые мыши 16-18 г, морские свинки - 350 г, кролики - 2 кг. Таким же образом определяют инфицирующую дозу (ID), т. е. количество микробов или их токсинов, которое вызывает соответствующую инфекционную болезнь.
Высоковирулентные микроорганизмы способны вызвать заболевание животных или человека в самых малых дозах. Так, например, известно, что 2-3 микобактерии туберкулеза при введении в трахею вызывают у морской свинки туберкулез со смертельным исходом. Вирулентные штаммы сибиреязвенной бациллы в количестве 1-2 клеток могут вызвать смерть у морской свинки, белой мыши и даже крупного животного.
2. Методы определения вирулентности, единицы. Генетический контроль патогенности и вирулентности.
Изучая болезнетворные бактерии либо получая живые вакцины, определяют степень их патогенности, или вирулентность. Выражают вирулентность Dim (Dosis letalis minima) или DL50, т.е. минимальным количеством бактерий, вызывающих полную или частичную (50 %) гибель животных соответствующего вида.
Поскольку трудно подобрать точную дозу, которая бы вызвала гибель 50 % взятых в опыт животных, применяют метод статистического учета и вычисления LD50. При исследовании культуры, разведенной от 10 -1 до 10 -8 , требуется 8 групп животных. Прекратив наблюдения, отмечают количество погибших животных в каждой группе и при помощи специальных таблиц определяют LD50. Вирулентность бактерий в большой мере обусловливается выработкой ими экзо- и эндотоксинов, сила которых определяется теми же Dlm и LD50.
Единицы измерения вирулентности: Dlm - Dosis letalis minima, LD50, Dcl - Dosis certa letalis (100%),
ID - инфицирующая доза (количество возбудителя, способное вызвать инфекционный процесс в его явной форме, т.е. инфекционное заболевание).
Чаще используется LD50 - 50% летальная доза - количество патогенных микроорганизмов, позволяющая вызвать гибель 50% зараженных животных. Все они вычисляются по одинаковому принципу, хорошо иллюстрирующемуся определение 1 DLM для дифтерийного токсина: минимальное его количество, которое при внутрибрюшинном заражении морской свинки массой 250-300 г вызывает ее гибель на 4 сутки. На практике вирулентность всегда измеряют на группе подопытных животных и, как видно из приведенного определения, при этом учитывают четыре фактора, от которых зависит величина вирулентности: способ заражения, вид животного, вес животного, время наступления гибели животного (50% взятых в опыт животных - при вычислении LD50, 95% - при вычислении DLM и 100% при вычислении DCL).
Читайте также:
- Продукция слезы и размеры роговицы в норме
- ЭКГ при трансмуральном инфаркте. ЭКГ при инфаркте переднеперегородочной области
- Принципы ампутации пальцев кисти и костей запястья
- Понимание медицинских тестов и их результатов
- Разрыв сухожилия длинной головки двуглавой мышцы плеча (проксимальный): атлас фотографий