Особенности транслокации по флоэме растения. Строение ситовидных трубок растения.
Добавил пользователь Skiper Обновлено: 14.12.2024
Ксилема.Восходящий ток - ток минеральных солей, растворенных в воде, идущих от корней по стеблю к листьям. Восходящий ток осуществляется по сосудам и трахеидам ксилемы (древесины).
Ксилема состоит из:
1. Проводящих элементов (сосуды и трахеиды)
2. Механических элементов (волокна либриформа = древесинные волокна)
3. Запасающих элементов (древесинная паренхима)
Проводящие элементы ксилемы. Наиболее древние проводящие элементы ксилемы трахеиды представляют собой вытянутые клетки с заостренными концами. Трахеиды имеют одревесневшую клеточную стенку. По характеру утолщения оболочек, размерам и расположению в них участков первичных оболочек различают четыре типа трахеид: кольчатые, спиральные, пористые и лестничные. К наиболее древним относят лестничные трахеиды.
Сосуды (или трахеи) представляют собой однорядный продольный тяж клеток, называемых члениками. В филогенезе членики трахеи произошли из трахеид. Благодаря перфорациям между члениками вдоль всего сосуда свободно осуществляется ток жидкости. Утолщения клеточных оболочек у сосудов, так же как и у трахеид, бывают кольчатыми, спиральными, лестничными, сетчатыми и пористыми.
· Мертвые клетки, без протопласта
· Одревесневшие вторичные оболочки
· Трахеиды не имеют перфораций, растворы фильтруются через поры
· Сосуды имеют перфорации - сквозные отверстия в КС
Флоэма. Нисходящий ток - ток органических веществ, направляющийся от листьев к корням по ситовидным элементам флоэмы (луба).
Флоэма состоит из:
1. Проводящих элементов (ситовидные трубки и клетки-спутницы)
2. Механических элементов (лубяные волокна = камбиформ)
3. Запасающих элементов (лубяная паренхима)
Проводящие элементы флоэмы. У архегониальных растений, кроме мхов, проводящие элементы флоэмы представлены ситовидными клетками. На их продольных стенках имеются сквозные отверстия, напоминающие сито, и поэтому их называют ситовидными полями.
У покрытосеменных растений в процессе эволюции сформировался второй тип проводящих элементов - ситовидные трубки. Ситовидная трубка представляет собой продольный тяж клеток, называемых члениками. Конечные стенки члеников превращены в ситовидные пластинки - простые, если они имеют по одному ситовидному полю, и сложные, если есть несколько ситовидных полей. Ситовидные поля могут встречаться и на боковых стенках члеников (у березы). В ситовидном элементе разрушается тонопласт (оболочка вакуоли) и вакуолярный сок смешивается с гиалоплазмой. Ядро, как правило, разрушается. Каждому членику ситовидной трубки сопутствуют (одна или несколько) специализированные паренхимные клетки - клетки-спутницы, выполняющие вспомогательную роль в транспорте органических веществ, создавая нисходящий ток.
· Клетки живые, с первичными неодревесневшими клетками
· На стенках имеются ситовидные поля - группы мелких отверстий через которые соединяются протопласты соседних клеток
Ситовидные клетки - заметно вытянутые в длину клетки, с заостренными концами, ситовидные поля рассеяны по боковым стенкам.
- в зрелом состояние имеют ядра
- лишены ситовидных пластинок
- лишены сопровождающих клеток
- у высших споровых и голосеменных
Ситовидные трубки - состоят из члеников и сопровождающих клеток-спутниц. Характерны для покрытосеменных.
- в зрелом состоянии не имеют ядер, но имеют клетки-спутниц (с ядром)
- имеют ситовидные пластинки - ситовидные поля с более крупными отверстиями
Основные ткани
Ассимиляционная ткань (хлоренхима)
Ассимиляционная - синтезирующая. За счет содержания хлорофилла в данной ткани, здесь активно идет процесс фотосинтеза, хлоропласты в ее клетках выстроены вдоль стенок одним слоем, не затеняя друг друга, подобно солнечным батареям. Наиболее яркий пример местоположения этой ткани - столбчатая ткань мякоти листа (палисадная ткань, от франц. palissade - частокол, загородка), или мезофилл - мягкая ткань, заключенная между двумя слоями эпидермиса в листьях растений.
Хлоренхима расположена непосредственно под эпидермисом, это обеспечивает ее хорошее освещение и газообмен с окружающей средой. Она встречается в надземных органах растений, таких как листья, молодые побеги. Но это не исключает возможность ее возникновения на освещенных корнях, к примеру, в корнях водных растений, воздушных корнях.
Воздухоносная ткань (аэренхима)
Главная ее функция - газообмен. Отличается, прежде всего, наличием межклетников - тканевых пространств, служащих вместилищем для газов. Сквозь устьица воздух межклетников путем диффузии уравнивается по составу с атмосферным воздухом. В межклетниках из атмосферного воздуха клетки растения поглощают углекислый газ и выделяют в полость кислород, который затем поступает в окружающую среду.
Запомните одно из стратегически важных расположений этой ткани - губчатая ткань листа.
У аэренхимы имеется еще одна значимая функция - уменьшение удельного веса растения. Вообразите внутреннюю среду растения, сплошь забитую клеточной массой без всяких промежутков и полостей. Если бы не было аэренхимы, растения, оказавшись тяжелее воды - тонули и опускались на дно, не имея достаточной прочности механической ткани.
Благодаря наличию межклетников в ткани ее удельный вес уменьшается, и она замечательно держится на плаву.
А мы с вами имеем возможность (благодаря аэренхиме! :) получить истинное эстетическое удовольствие от цветущих кувшинок и наслаждаться видом многих других водных растений.
В листьях (на картинке ниже) встречаются клетки с друзой - представляют собой внутриклеточные сростки кристаллов в вакуолях растительных клеток.
Запасающая ткань
Главные функции: запасание и хранение питательных веществ: белков, жиров и углеводов. Преобладает в плодах, сердцевине, луковицах и семенах, клубнях и корневищах. Отдельно отметим, что запасным питательным веществом растений является крахмал.
На рисунке ниже изображен поперечный разрез зоны всасывания корня, видны корневые волоски ризодермы (эпиблемы).
Водоносная паренхима
Клетки этой ткани отличаются большим запасом в вакуолях слизистых веществ, удерживающих влагу. Таким образом, эта ткань способствует удержанию и запасанию воды. Она хорошо развита у растений, приспособленных к жизни в засушливых местах с сухим климатом. Такие растения получили название - суккуле́нты от лат. succulentus, «сочный», к ним относятся алоэ, кактусы. Как правило, они произрастают в местах с засушливым климатом.
Водоносная паренхима при наступлении засухи постепенно отдает свои запасы воды другим, жизненно важным для растения тканям, в первую очередь хлорофиллоносной паренхиме.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
БИОЛОГИЯ Том 2 - руководство по общей биологии - 2004
Фотосинтез происходит не во всех частях растения. Тем из них, которые удалены от фотосинтезирующих структур, например корням, нужна специальная транспортная система снабжения ассимилятами. У сосудистых растений органические продукты переносятся из главных органов фотосинтеза — листьев — ко всем остальным частям растения по флоэме. На рис. 13.21 приведена общая схема связей между автотрофными клетками, образующими органические питательные вещества, и клетками, получающими эти вещества. Как видно из этого рисунка, органические вещества у растений могут перемещаться по побегам как вверх, так и вниз. Это отличает флоэму от ксилемы, по которой транспорт осуществляется только вверх. Следует также отметить, что запасающие органы в разное время могут функционировать то как источники ассимилятов, то как их потребители.
Рис. 13.21. Движение органических веществ в зеленом растении.
Обычно около 90% всех переносимых по флоэме питательных веществ составляет дисахарид глюкоза. Это сравнительно инертный и хорошо растворимый углевод, который не играет почти никакой роли в метаболизме и поэтому служит идеальной транспортной формой, так как маловероятно, чтобы он расходовался в процессе переноса. Основное предназначение сахарозы — вновь превратиться в более активные моносахариды — глюкозу и фруктозу. Высокая растворимость позволяет ей достигать во флоэмном соке очень высокой концентрации, например у сахарного тростника она составляет до 25% (масса/объем).
Флоэма переносит в различной форме и некоторые элементы минерального питания, например азот и серу в составе аминокислот, фосфор в виде неорганического фосфата и фосфорилированных сахаров, калий в виде ионов. В ней могут содержаться небольшие количества витаминов, растительных гормонов (таких как ауксины и гиббереллины), вирусов и других ингредиентов.
Наглядно продемонстрировать циркуляцию углерода в растении можно, если дать листьям поглощать углекислый газ, меченный радиоактивным изотопом 14 С. Радиоактивная углекислота будет фиксироваться в процессе фотосинтеза, и 14 С окажется в составе органических соединений, включая сахарозу. Затем движение изотопа по растению можно проследить с помощью известных методов, например радиоавтографии, подсчета счетчиком Гейгера импульсов у поверхности растения или экстрагирования из его частей этого изотопа. В конечном итоге, и флоэма, и ксилема будут непосредственно участвовать в циркуляции углерода. Например, достигнув в составе сахарозы корней, углерод может использоваться там для синтеза аминокислот из нитратов и углеводов, а затем синтезированные аминокислоты, содержащие меченый углерод, могут транспортироваться в ксилемном соке вверх по стеблю.
13.8.1. Особенности транслокации по флоэме
Прежде чем рассматривать возможные механизмы транслокации по флоэме, полезно перечислить некоторые факты, которые не должны противоречить любой выдвигаемой гипотезе.
1. Количество транспортируемых флоэмой растворенных веществ очень велико. Подсчитано, например, что вниз по стволу крупного дерева за вегетационный период перемещается до 250 кг сахара.
3. Транспорт может осуществляться на очень большие расстояния. Эвкалипты достигают в высоту более 100 м. Листья этих деревьев располагаются главным образом у вершины, а значит, ассимиляты должны перемещаться вниз почти по всей длине ствола, а часто еще и на значительное расстояние по корням.
4. Относительная масса флоэмы невелика. Толщина слоя функционально активной флоэмы, расположенного по окружности древесного ствола, близка к толщине почтовой открытки. Флоэма образует самый внутренний слой коры (точнее — ее луба) одревесневших стеблей и корней, при этом более старые слои флоэмы растягиваются и отмирают по мере роста органов и увеличения их диаметра.
5. Флоэмный сок движется у цветковых растений но ситовидным трубкам, диаметр которых очень мал — не более 30 мкм (как у тончайшего человеческого волоса). Через примерно равные интервалы эти трубки разделены ситовидными пластинками со сквозными отверстиями еще меньшего диаметра. Чем меньше диаметры трубок и отверстий, тем больше сопротивление потоку жидкости и тем большая сила нужна для приведения ее в движение. Давление внутри ситовидных трубок велико.
6. Помимо ситовидных пластинок, ситовидные трубки обладают другими структурными особенностями, которые также должны приниматься во внимание (см. след. разд.).
13.24. Сколько ситовидных пластинок пройдет молекула сахарозы, если она переместится на 1 м по ситовидным трубкам, состоящим из отдельных элементов длиной 400 мкм каждый? (Элементы, или членики, ситовидной трубки - это вытянутые клетки, соединенные своими горцами, которые и образуют ситовидные пластинки.)
Биологическая библиотека - материалы для студентов, учителей, учеников и их родителей.
Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.
Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.
Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.
Строение флоэмы по данным световой микроскопии описано в разд. 6.2.2. Эта ткань содержит проводящие трубки, называемые ситовидными, которые образованы клетками — члениками ситовидных трубок, - соединенными в ряд своими торцами. Членики отделены друг от друга торцевыми ситовидными пластинками с отверстиями, позволяющими жидкости перетекать из клетки в клетку 1 .
В отличие от сосудов ксилемы, представляющих собой мертвые полые трубки, по которым раствор течет, почти или вообще не встречая никаких препятствий, ситовидные трубки флоэмы являются живыми, и движение растворов по ним затруднено из-за наличия ситовидных пластинок и в меньшей степени из-за наличия цитоплазмы. На рис. 13.22 приведена электронная микрофотография зрелого членика ситовидной трубки, а на рис. 13.23 — схема с указанием всех основных деталей ситовидных элементов и примыкающих к ним клеток-спутниц.
Рис. 13.22. Электронная микрофотография места контакта зрелых члеников ситовидной трубки. КС — клетка-спутница; П — ситовидная пора; Пл — пластида; ФБ — флоэмный белок.
В процессе развития ситовидного элемента из меристематической клетки ядро этой клетки дегенерирует, и перед нами оказывается необычный пример живой клетки, не имеющей ядра; в этом отношении она сходна с эритроцитом млекопитающего. Одновременно происходит множество других важных изменений, результаты которых схематически представлены на рис. 13.23. Клеточная стенка на обоих «торцах» членика превращается в ситовидные пластинки. Здесь плазмодесмы, соединяющие между собой соседние цитопласты, сильно утолщаются, образуя тем самым многочисленные ситовидные поры, сквозь которые они проходят. Вид ситовидной пластинки с поверхности показан на рис. 6.13. Конечный итог всех этих преобразований — формирование трубчатой структуры, выстланной тонким пристенным слоем живой цитоплазмы, окруженной плазмалеммой. Центральная часть ситовидной трубки занята как бы единой гигантской вакуолью, которая, впрочем, не отделена от цитоплазмы тонопластом.
Рис. 13.23. Схематическое изображение элементов ситовидной трубки и клетки-спутницы, как они выглядят на продольном срезе в электронном микроскопе. Если ситовидная трубка повреждена, например пасущимся животным, то в ней быстро откладывается дополнительное количество каллозы, закрывающей поры в ситовидной пластинке и тем самым предотвращающей утечку из флоэмы ценных растворенных веществ.
К каждому членику прилегают одна или несколько клеток-спутниц, которые возникают из той же самой родительской клетки путем ее продольного деления. Клетки-спутницы имеют очень плотную цитоплазму с ядром, мелкими вакуолями и обычными клеточными органеллами. Судя по многочисленным митохондриям и рибосомам, метаболически клетки-спутницы весьма активны (рис. 13.23). В физиологическом отношении они очень тесно связаны с ситовидными элементами и совершенно необходимы для их жизнедеятельности: в случае гибели клеток-спутниц погибают и ситовидные элементы.
У некоторых растений в ситовидных элементах образуется большое количество волокнистого белка, называемого флоэмным белком (Ф-белком). Иногда он образует крупные отложения, различимые в световом микроскопе. Раньше его функция вызывала много споров, но сейчас признано, что особой роли в транслокации он не играет.
1 Это строение типично только для цветковых растений; у споровых и голосеменных выраженных ситовидных трубок и пластинок нет, но проводящие элементы их флоэмы — ситовидные клетки — функционируют по описанному здесь принципу. — Прим. перев.
Флоэма (луб)
Состав и строение элементов флоэмы.Флоэма, как и ксилема, — ткань сложная и состоит из проводящих (ситовидных) элементов, нескольких типов паренхимных клеток и флоэмных (лубяных) волокон. Рассмотрим вначале проводящие элементы флоэмы. Проводящие элементы флоэмы называют ситовидными потому, что на их стенках имеются группы мелких сквозных отверстий (перфораций), похожие на ситечки. Эти участки клеточной оболочки окружены утолщенными валиками и называются ситовидными полями. Ситовидные элементы в отличие от трахеальных — живые клетки. Через перфорации ситовидных полей проходят тяжи цитоплазмы, по которым и перемещаются растворы органических веществ.
Ситовидные элементы, как и трахеальные, бывают двух типов: ситовидные клетки и ситовидные трубки. Ситовидные клетки — длинные прозенхимные, с ситовидными полями на продольных стенках. Ситовидные трубки образованы вертикальным рядом расположенных друг над другом клеток-члеников, поперечные перегородки между которыми превращены в ситовидные пластинки с более широкими, чем у ситовидных полей, перфорациями. На продольных стенках сохраняются ситовидные поля. На ситовидных пластинках располагаются «ситечки» (ситовидные поля). Если на ситовидной пластинке одно «ситечко», ее называют простой, а если несколько — сложной.
Ситовидные клетки более примитивны и встречаются у папоротникообразных и голосеменных. Ситовидные трубки функционально более совершенны, чем ситовидные клетки и свойственны исключительно покрытосеменным растениям. Членики ситовидных трубок физиологически зависимы от соседних с ними клеток-спутниц и имеют общее с ними происхождение, так как формируются из одних и тех же инициальных клеток.
В эволюции ситовидных элементов прослеживается ясный параллелизм с эволюцией трахеальных элементов. Ситовидные клетки дали начало членикам ситовидных трубок, которые в процессе эволюции укорачивались, расширялись, их поперечные стенки занимали сначала косое, а затем горизонтальное положение, сложные перфорационные пластинки сменялись простыми.
Гистогенез ситовидной трубки.Ситовидная трубка имеет ряд замечательных особенностей, которые удобнее рассмотреть в онтогенетическом развитии.
Схема гистогенеза членика ситовидной трубки и сопровождающих клеток:
1 - исходная клетка с вакуолью и тонопластом; 2 -образование членика ситовидной трубки с Ф-белком и сопровождающей клеткой; 3 - распад ядра, тонопласта и эндоплазматического ретикулума, формирование ситовидных перфораций; 4 - ситовидные перфорации окончательно сформированы; 5, 6 -закупоривание ситовидных перфораций каллозой; В - вакуоль; Ка - каллоза; Пл - пластиды; Пр - перфорации; СК - сопровождающие клетки; Т- тонопласт; Я— ядро
Клетка меристемы, дающая начало членику ситовидной трубки, делится продольно. Две сестринские клетки в дальнейшем сохраняют многочисленные плазматические связи между собой. Одна из клеток (большей величины) превращается в членик ситовидной трубки, другая - в сопровождающую клетку (или в две-три клетки в случае дополнительного деления). Возникший элемент растягивается, принимая окончательные размеры. Оболочка несколько утолщается, но остается неодревесневшей. На концах образуются ситовидные пластинки с перфорациями на месте плазмодесм. На стенках этих отверстий откладывается каллоза — особый полисахарид, химически близкий к целлюлозе. В функционирующей ситовидной трубке слой каллозы лишь сужает просвет отверстий, но не прерывает в них плазматические связи. Лишь с окончанием деятельности трубок каллоза закупоривает перфорации.
Протопласт ситовидной трубки обнаруживает ряд замечательных изменений, свойственных только этим элементам. Сначала он занимает постенное положение, окружая центральную вакуоль с хорошо выраженным тонопластом. В цитоплазме возникают округлые тельца флоэмного белка (Ф-белок), особенно многочисленные у двудольных растений. По мере развития ситовидного элемента тельца Ф-белка теряют отчетливые очертания, расплываются и сливаются вместе, образуя скопления около ситовидных пластинок. Через перфорации фибриллы Ф-белка проходят через перфорации из членика в членик.
В протопласте разрушается тонопласт, центральная вакуоль теряет определенность, а центр клетки заполняется смесью вакуолярного сока с содержимым протопласта.
Наиболее примечательно, что в процессе созревания элемента его ядро разрушается. Однако элемент остается живым и деятельно проводит вещества.
Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам), которые сохраняют ядра и многочисленные активные митохондрии. В мелких жилках листьев митохондрии могут принимать форму митохондриального ретикулума. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные плазматические связи. Скорость линейного передвижения ассимилятов по флоэме (50-150 см/ч) выше той скорости, которая могла бы обеспечиваться только свободной диффузией в растворах. Остается предположить, что живое содержимое ситовидных элементов и особенно сопровождающих клеток активно, т.е. с затратой энергии, участвует в передвижении ассимилятов. С этим предположением согласуется тот факт, что передвижение ассимилятов требует интенсивного дыхания клеток флоэмы: если дыхание затруднено, то передвижение останавливается.
У двудольных растений ситовидные трубки работают обычно один-два года. Затем ситовидные пластинки покрываются сплошным слоем каллозы, тонкостенные элементы флоэмы раздавливаются, а камбий образует новые элементы.
У растений, лишенных ежегодного камбиального прироста, ситовидные элементы значительно долговечнее. Так, у некоторых папоротников отмечена работа ситовидных элементов до 5-10 лет, у некоторых однодольных (пальм) даже до 50-100 лет, хотя последние сроки ставятся под сомнение.
Читайте также: