Передача импульсов в вегетативной нервной системе: нейромедиаторы, рецепторы, вегетативная рефлекторная дуга
Добавил пользователь Валентин П. Обновлено: 14.12.2024
Вегетативная (автономная) нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желез внутренней и внешней секреции, кровеносных и лимфатических сосудов.
Вегетативная нервная система иннервирует весь организм, все органы и ткани. Деятельность вегетативной нервной системы не зависит от воли человека. Однако все вегетативные функции подчиняются центральной нервной системе, в первую очередь — коре больших полушарий.
Функции:
- нервная регуляция функций всех органов и тканей организма (кроме скелетных мышц);
- регуляция обмена веществ;
- поддержание гомеостаза организма;
- приспособительные реакции всех позвоночных.
Особенности вегетативной нервной системы:
- очаговое расположение в мозге вегетативных нервных центров;
- эффекторные (двигательные) нейроны расположены за пределами центральной нервной системы в узлах вегетативных нервных сплетений;
- двухнейронный эфферентный нервный путь от мозга до рабочего органа;
- преобладают немиелинизированные нервные волокна, т.е. скорость проведения нервных импульсов ниже, чем в соматической нервной системе.
строение вегетативной нервной системы
Анатомически и функционально вегетативная нервная система подразделяется на симпатическую, парасимпатическую и метасимпатическую.
Все структуры и системы организма иннервируются волокнами вегетативной нервной системы. Отделы вегетативной нервной системы находятся в относительном функциональном антагонизме, обеспечивая автоматическую регуляцию органов и систем без участия сознания человека.
Важнейшие органы имеют двойную иннервацию. П олые внутренние органы имеют тройную (симпатическую, парасимпатическую и метасимпатическую) иннервацию.
В симпатическом и парасимпатическом отделах имеются центральная и периферическая части.
Центральную часть вегетативной нервной системы образуют вегетативные ядра — тела нейронов, лежащих в спинном и головном мозге. Они осуществляют координацию работы всех трех частей вегетативной нервной системы.
Периферическую часть вегетативной нервной системы образуют отходящие от ядер нервные волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, и нервные сплетения в стенках внутренних органов.
Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамуса.
Ядра в боковых рогах спинного мозга:
- VIII шейного сегмента
- всех грудных сегментов
- I и II поясничных сегментов
4 ядра в стволе головного мозга:
- глазодвигательного нерва
- лицевого нерва
- языкоглоточного нерва
- блуждающего нерва
Ядра во II — IV сегменте крестцового отделе спинного мозга
парный симпатический ствол;
нервные узлы в стенках внутренних органов или рядом с органами;
Симпатический отдел вегетативной нервной системы
Симпатические ядра расположены в спинном мозге на уровне грудных позвонков. Отходящие от ядер нервные волокна заканчиваются за пределами спинного мозга всимпатических узлах, расположенных по бокам позвоночника. От них берут начало нервные волокна, которые подходят ко всем органам.
Симпатическая нервная система усиливает обмен веществ, повышает возбуждаемость большинства тканей, мобилизует силы организма на активную деятельность.
Симпатический отдел возбуждается при воздействии адреналина.
параСИМПАТИЧЕСКИЙ ОТДЕЛ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ
Парасимпатические ядра лежат в продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения. Парасимпатические нервные узлы располагаются в стенках внутренних органов или возле органов.
Парасимпатическая система способствует восстановлению израсходованных запасов энергии, регулирует работу организма во время сна.
Парасимпатический отдел нервной системы возбуждается под воздействиемацетилхолина.
метаСИМПАТИЧЕСКИЙ ОТДЕЛ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ
Метасимпатическая нервная система представлена нервными сплетениями и мелкими ганглиями в стенках пищеварительного тракта, мочевого пузыря, сердца и некоторых других органов.
Функция: осуществляет связь между внутренними органами (минуя головной мозг); местные вегетативные рефлексы..
Известно, что многие внутренние органы, извлеченные из организма, продолжают выполнять присущие им функции. Например, сохраняется перистальтическая и всасывательная функция тонкой кишки. Такая относительная функциональная независимость объясняется наличием в стенках этих органов метасимпатического отдела вегетативной нервной системы.
Особенности метасимпатического отдела нервной системы:
- Обладает собственным нейрогенным ритмом и имеет полный набор необходимых для самостоятельной рефлекторной деятельности звеньев: чувствительный, вставочный и эффекторный нейрон с соответствующим медиаторным обеспечением.
- Имеет собственные сенсорные элементы (механо-, хемо-, термо-, осморецепторы), которые посылают в свои внутренние сети информацию о состоянии иннервируемого органа, а также способны передавать сигналы в ЦНС.
- Ограничена: охватывает только некоторые внутренние органы.
- Не имеет своего центрального аппарата; ее связь с ЦНС осуществляется нейронами симпатического и парасимпатического отделов.
Существование специальных местных метасимпатических механизмов регуляции функций имеет определенный физиологический смысл. Их наличие увеличивает надежность регуляции функций. Эта регуляция может происходить в случае выключения связи с центральными структурами. При этом ЦНС освобождается от избыточной информации.
Органы с разрушенными метасимпатическими путями утрачивают способность к координированной моторной деятельности и другим функциям.
Влияние симпатического и парасимпатического отделов на отдельные органы
СИМПАТИЧЕСКИЙ ОТДЕЛ:
- повышает частоту и силу сердечных сокращений;
- стимулирует выброс адреналина;
- повышает уровень глюкозы в крови;
- повышает артериальное давление;
- вызывает расширение артерий головного мозга, легких и коронарных артерий;
- угнетает перистальтику кишечника и работу пищеварительных желез (в том числе слюнных), сокращает гладкомышечные сфинктеры;
- угнетает перистальтику мочеточников, расслабляет мускулатуру и сокращает сфинктер мочевого пузыря;
- расширяет бронхи и бронхиолы, усиливает вентиляцию легких;
- расширяет зрачки.
ПАРАСИМПАТИЧЕСКИЙ ОТДЕЛ:
- уменьшает частоту и силу сердечных сокращений;
- понижает уровень глюкозы в крови;
- снижает артериальное давление;
- усиливает перистальтику кишечника и стимулирует работу пищеварительных желез (в том числе слюнных), расслабляет гладкомышечные сфинктеры;
- усиливает перистальтику мочеточников, сокращает мускулатуру и расслабляет сфинктер мочевого пузыря;
- сужает бронхи и бронхиолы, уменьшает вентиляцию легких;
- сужает зрачки.
РЕГУЛЯЦИЯ РАБОТЫ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ
Все механизмы регуляции деятельности внутренних органов условно объединены многоэтажной иерархической структурой.
- Первый структурный уровень: внутриорганные рефлексы, имеющие метасимпатическую природу;
- Второй структурный уровень: ганглии брыжеечных и солнечного (чревного) сплетений;
Оба этих низших этажа обладают отчетливо выраженной автономностью и могут осуществлять регуляцию независимо от центральной нервной системы. - Третий структурный уровень: центры спинного мозга и ствола головного мозга.
- Четвертый структурный уровень: кора больших полушарий, гипоталамус, ретикулярная формация, лимбическая система и мозжечок.
Кора больших полушарий мозга : контролирует работу всех внутренних органов. Известно, что в определенных условиях у человека гипнотическим внушением можно вызвать изменение сердечного ритма, усиление потоотделения и мочеотделения, изменение метаболизма.
Рефлекторные процессы в ядерных образованиях спинного, продолговатого, среднего мозга и моста находятся под постоянным влиянием гипоталамуса.
Гипоталамические центры: поддержание гомеостаза; регуляция метаболизма; регуляция функций эндокринных желез; интеграция нервной и гуморальной регуляции вегетативных функций (через гипофиз).
Лимбическая система («висцеральный мозг»): объединение работы опорно-двигательной системы и внутренних органов: пищевое, сексуальное, оборонительное поведение, сон и бодрствование, внимание, эмоции, процессы памяти.
Мозжечок: стабилизирующее влияние на деятельность внутренних органов.
Ретикулярная формация: повышение активности нервных центров, связанных с функциями внутренних органов. Регулирует секрецию гипофизарных гормонов.
В основе работы нервной системы лежит рефлекс.
Рефлекс — ответная реакция организма на изменения внутренней и внешней среды, осуществляемая при участии центральной нервной системы.
Предположение о рефлекторном характере деятельности высших отделов головного мозга впервые было развито ученым-физиологом И. М. Сеченовым.
Идеи И. М. Сеченова получили развитие в трудах И. П. Павлова, который открыл пути объективного экспериментального исследования функций коры, разработал метод выработки условных рефлексов и создал учение о высшей нервной деятельности.
И. П. Павлов в своих трудах разделил рефлексы на 2 группы:
- безусловные рефлексы — рефлексы, которые осуществляются врожденными, наследственно закрепленными нервными путями;
- условные рефлексы — это рефлексы, которые осуществляются посредством нервных связей, формирующихся в процессе индивидуальной жизни человека или животного.
Классификация рефлексов
По типу образования:
- соматические, или двигательные, — рефлексы скелетных мышц;
- вегетативные — рефлексы внутренних органов: пищеварительные, сердечно-сосудистые, выделительные, секреторные и др.
По биологической значимости:
- оборонительные, или защитные;
- пищевые;
- половые;
- ориентировочные.
По месту иннервации:
- центральные (истинные) рефлексы протекают с обязательным вовлечением различных уровней центральной нервной системы (от спинного мозга до коры больших полушарий);
- местные рефлексы связаны с метасимпатическим отделом вегетативной нервной системы; осуществляются через периферические ганглии вегетативной нервной системы (например, изменение кишечной секреции при раздражении стенок кишечника). Обладают относительной автономностью от ЦНС.
МЕСТНЫЕ РЕФЛЕКСЫ И БИОРИТМЫ
рефлекторная дуга
Рефлексы осуществляются посредством рефлекторной дуги.
Рефлекторная дуга — это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу.
Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из чувствительных, вставочных и двигательных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.
Рефлекторная дуга состоит из пяти отделов:
- рецептор;
- чувствительный (центростремительный) нейрон;
- вставочный нейрон;
- двигательный (центробежный) нейрон;
- эффектор (рабочий орган).
ТИПЫ НЕЙРОНОВ
Рецепторы воспринимают раздражение и отвечают на него возбуждением. Рецепторами могут быть отростки чувствительных нейронов или различные рецепторные эпителиальные клетки.
Чувствительный нейрон передает возбуждение к ЦНС; т.е. это — центростремительный нейрон.
Тела чувствительных нейронов находятся за пределами центральной нервной системы — в спинномозговых нервных узлах.
Через вставочный нейрон в ЦНС происходит переключение возбуждения с чувствительных нейронов на двигательные.
Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких как защитный, пищевой, ориентировочный и т. д. В нервном центре происходит синаптическое соединение чувствительного и двигательного нейрона.
Двигательный нейрон несет возбуждение от ЦНС к рабочему органу; т.е. является центробежным нейроном. Двигательный нейрон передает рабочему органу сигнал из центра.
Эффектор — рабочий орган, который осуществляет эффект, реакцию в ответ на раздражение рецептора.
Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.
ПРОСТЕЙШАЯ РЕФЛЕКТОРНАЯ ДУГА
Простейшую рефлекторную дугу можно схематически представить как образованную всего двумя нейронами — чувствительным и двигательным, между которыми имеется один синапс.
Такую рефлекторную дугу называют двухнейронной и моносинаптической.
Моносинаптические рефлекторные дуги встречаются весьма редко. Примером их может служить дуга коленного рефлекса.
Двухнейронная рефлекторная дуга:
- первый нейрон — чувствительный нейрон, тело которого находится в спинномозговом ганглии;
- второй нейрон — двигательный нейрон, тело которого находится в переднем роге спинного мозга.
Дендрит клетки спинномозгового ганглия имеет значительную длину, он следует на периферию в составе чувствительного нерва. Заканчивается дендрит особым приспособлением для восприятия раздражения — рецептором.
Возбуждение от рецептора по нервному волокну центростремительно передается в спинномозговой ганглий. Аксон нейрона спинномозгового ганглия входит в состав заднего (чувствительного) корешка, доходит до мотонейрона переднего рога и с помощью химического синапса контактирует с телом мотонейрона или с одним из его дендритов. Аксон этого мотонейрона входит в состав переднего (двигательного) корешка, по которому центробежно сигнал поступает к исполнительному органу, где соответствующий двигательный нерв заканчивается двигательной бляшкой в мышце. В результате происходит сокращение мышцы.
Рис. 1. Схема коленного рефлекса
ПОЛИСИНАПТИЧЕСКИЕ РЕФЛЕКТОРНЫЕ ДУГИ
В большинстве случаев рефлекторные дуги включают не два, а большее число нейронов: чувствительный, один или несколько вставочных и двигательный нейрон. Такие рефлекторные дуги называют многонейронными и полисинаптическими.
Примером полисинаптической рефлекторной дуги является рефлекс отдергивания конечности в ответ на болевое раздражение.
Рис. 2. Рефлекторная дуга соматического рефлекса: 1 — свеча; 2 — рецептор; 3 — дендрит чувствительного нейрона; 4 — тело чувствительного нейрона в спинномозговом ганглии; 5 — аксон чувствительного нейрона; 6 — тело вставочного нейрона; 7 — спинной мозг; 8 — тело двигательного нейрона; 9 — аксон двигательного нейрона; 10 — рабочая мышца
РЕФЛЕКТОРНАЯ ДУГА ВЕГЕТАТИВНОГО РЕФЛЕКСА
Иначе выглядит дуга вегетативного рефлекса.
Афферентный (чувствительный) нейрон находится в заднем корешке спинного нерва.
Синапс, соединяющий чувствительный и I эфферентный (двигательный) нейрон, находится в боковых рогах спинного мозга.
Синапс между I и II эфферентными нейронами расположен в либо в боковом симпатическом стволе, либо в парасимпатическом ганглии в районе рабочего органа.
Таким образом, эфферентный путь вегетативного рефлекса состоит из двух эфферентных нейронов. Вставочный нейрон отсутствует.
Рис. 3. Рефлекторные дуги соматического (А) и вегетативного (Б) рефлекса: 1 — рецептор; 2 — чувствительный нейрон; 3 — спинной мозг; 4 — двигательный нейрон; 5 — рабочий орган; 6 — I двигательный нейрон; 7 — тело II двигательного нейрона в вегетативном ганглии
Любая рефлекторная реакция зависит от взаимоотношения двух основных нервных процессов, из которых состоит всякая нервная деятельность, — возбуждения иторможения.
Возбуждение в нервных центрах стимулирует работу определенного органа.
Торможение в нервных центрах замедляет или прекращает работу связанного с ними органа.
В рефлекторных актах непременно участвуют и возбуждение, и торможение.
При рефлекторном сгибании конечности, например, одновременно с сокращением мышц-сгибателей происходит расслабление мышц-разгибателей. При рефлекторном разгибании конечности сокращение мышц-разгибателей неизменно вызывает одновременное расслабление мышц-сгибателей.
Между возбужденными и заторможенными центрами, совместно участвующими в реакции на раздражение, имеются антагонистические отношения. От них существенно зависит нормальное протекание любого рефлекторного акта
1.5.2.11. Вегетативная нервная система
Строение автономной нервной системы, управляющей нашими органами независимо от сознания, ее функции. Участие в приспособительных реакциях организма. Механизм передачи нервного импульса (строение синапса). Ацетилхолин и норадреналин - основные посредники этой системы и их эффекты.
Почему мы не можем по своему желанию остановить собственное сердце или прекратить процесс переваривания пищи в желудке, почему внезапный испуг заставляет сильнее биться сердце? Существует отдельная часть нервной системы человека, которая управляет многими непроизвольными функциями нашего организма. Она называется вегетативной нервной системой. Это автономная нервная система, активность которой не контролируется нашим сознанием. Под контролем этой системы находится активность различных желез, сокращение гладких мышц, работа почек, сокращение сердца и многие другие функции.
Вегетативная нервная система поддерживает на заданном природой уровне кровяное давление, потоотделение, температуру тела, обменные процессы, деятельность внутренних органов, кровеносных и лимфатических сосудов. Вместе с эндокринной системой, о которой мы будем рассказывать в следующей главе, она регулирует постоянство состава крови, лимфы, тканевой жидкости (внутренней среды) в организме, управляет обменом веществ и осуществляет взаимодействие отдельных органов в системах органов (дыхания, кровообращения, пищеварения, выделения и размножения).
Строение вегетативной нервной системы.
Функции их, как правило, противоположны (рисунок 1.5.17). Как видно из рисунка 1.5.17, если нервы симпатического отдела стимулируют какую-то реакцию, то нервы парасимпатического ее подавляют. Эти процессы разнонаправленного воздействия друг на друга в конечном итоге взаимно уравновешивают друг друга, в результате функция поддерживается на соответствующем уровне. Именно на возбуждение или торможение одного из таких противоположных по своей направленности влияний часто направлено действие лекарств.
Возбуждение симпатических нервов вызывает расширение сосудов головного мозга, кожи, периферических сосудов; расширение зрачка; снижение выделительной функции слюнных желез и усиление - потовых; расширение бронхов; ускорение и усиление сердечных сокращений; сокращение мышц, поднимающих волосы; ослабление моторики желудка и кишечника; усиление секреции гормонов надпочечников; расслабление мочевого пузыря; оказывает возбуждающее действие на половые органы, вызывает сокращение матки. По парасимпатическим нервным волокнам отдаются “приказы”, обратные по своей направленности: например, сосудам и зрачку - сузиться, мускулатуре мочевого пузыря - сократиться и так далее.
Вегетативная нервная система очень чувствительна к эмоциональному воздействию. Печаль, гнев, тревога, страх, апатия, половое возбуждение - эти состояния вызывают изменения функций органов, находящихся под контролем вегетативной нервной системы. Например, внезапный испуг заставляет сильнее биться сердце, дыхание становится более частым и глубоким, в кровь из печени выбрасывается глюкоза, прекращается выделение пищеварительного сока, появляется сухость во рту. Организм готовится к быстрой реакции на опасность и, если требуется, к самозащите. Так при длительном и сильном эмоциональном напряжении и возбуждении развиваются тяжелые заболевания, такие как: гипертензия, коронарная болезнь сердца, язвенная болезнь желудка и многие другие.
Представьте себе прогулку по холмистой местности. Пока дорога проходит по ее равнинной части, вы идете не спеша, дыхание ровное, и сердце бьется спокойно. При этом каждая клетка организма всегда помнит генетически запрограммированный оптимальный режим своего функционирования и далее стремится поддерживать его как эталонный. Мы уже упоминали в разделе 1.4.1, что свойство живого организма осуществлять деятельность, направленную на поддержание постоянства внутренней среды, называется гомеостазом.
Затем дорога пошла в гору и, как только это произошло, ваше тело стало выполнять дополнительную работу по преодолению силы земного притяжения. На выполнение этой работы всем участвующим в ней клеткам организма потребовалась дополнительная энергия, поступающая за счет увеличения скорости сгорания энергоемких веществ, которые клетка получает из крови.
В момент, когда клетка стала сжигать этих веществ больше, чем приносит кровь при данной скорости кровотока, она сообщает вегетативной нервной системе о нарушении своего постоянного состава и отклонении от эталонного энергетического состояния. Центральные отделы вегетативной нервной системы при этом формируют управляющее воздействие, приводящее к комплексу изменений для восстановления энергетического голодания: учащению дыхания и сокращений сердца, ускорению распада белков, жиров и углеводов и так далее (рисунок 1.5.18).
Рисунок 1.5.18. Функциональная модель описания вегетативной нервной системы
В результате, за счет увеличения количества поступающего в организм кислорода и скорости кровотока участвующая в работе клетка переходит на новый режим, при котором она отдает больше энергии в условиях повышения физической активности, но и потребляет ее больше ровно настолько, насколько необходимо для поддержания энергетического баланса, обеспечивающего клетке комфортное состояние. Таким образом, можно сделать вывод:
Поддержание постоянства внутренней среды клетки (гомеостаз) осуществляется за счет отрицательной обратной связи вегетативной нервной системы.
И, хотя она действует автономно, то есть выключение сознания не приводит к прекращению ее работы (вы продолжаете дышать, и сердце бьется ровно), она реагирует на малейшие изменения в работе центральной нервной системы. Ее можно назвать “мудрой напарницей” центральной нервной системы. Оказывается, что умственная и эмоциональная деятельность - это тоже работа, осуществляемая за счет потребления дополнительной энергии клетками головного мозга и других органов. При этом работают другие клетки, но с ними происходят процессы, аналогичные описанным ранее.
Для тех, кто хочет детальнее изучить работу вегетативной нервной системы, мы даем ее описание более подробно.
Как мы уже говорили выше, вегетативная нервная система представлена в центральных отделах симпатическими и парасимпатическими ядрами, расположенными в головном и спинном мозге, а на периферии - нервными волокнами и узлами (ганглиями).
Нервные волокна, составляющие ветки и веточки этой системы, расходятся по всему телу, сопровождаемые сетью кровеносных сосудов. Общая длина их составляет около 150 000 км.
В нашем теле все внутренние ткани и органы, “подчиненные” вегетативной нервной системе, снабжены нервами (иннервированы), которые, как датчики, собирают информацию о состоянии организма и передают ее в соответствующие центры, а от них доносят до периферии корректирующие воздействия.
Так же как и центральная нервная система, вегетативная система имеет чувствительные (афферентные) окончания (входы), обеспечивающие возникновение ощущений, и исполнительные (двигательные, или эфферентные) окончания, которые передают из центра модифицирующие воздействия к исполнительному органу. Физиологически этот процесс выражается в чередовании процессов возбуждения и торможения, в ходе которых происходит передача нервных импульсов, возникающих в клетках нервной системы (нейронах).
Переход нервного импульса с одного нейрона на другой или с нейронов на клетки исполнительных (эффекторных) органов осуществляется в местах контакта клеточных мембран, называемых синапсами (рисунок 1.5.19). Передача информации осуществляется специальными химическими веществами-посредниками (медиаторами), выделяемыми из нервных окончаний в синаптическую щель. В нервной системе эти вещества называют нейромедиаторами.
В состоянии покоя эти медиаторы, вырабатываемые в нервных окончаниях, находятся в особых пузырьках. Попробуем коротко рассмотреть работу этих медиаторов на рисунке 1.5.20. Условно (так как он занимает считанные доли секунды) весь процесс передачи информации можно разбить на четыре этапа. Как только по пресинаптическому окончанию поступает импульс, на внутренней стороне клеточной мембраны за счет входа ионов натрия происходит образование положительного заряда, и пузырьки с медиатором начинают приближаться к пресинаптической мембране (этап I на рисунке 1.5.20). На втором этапе осуществляется выход медиатора в синаптическую щель из пузырьков в месте их контакта с пресинаптической мембраной. После выделения из нервных окончаний (этап II) нейромедиатор проникает через синаптическую щель путем диффузии и связывается со своими рецепторами постсинаптической мембраны клетки исполнительного органа или другой нервной клетки (этап III). Активация рецепторов запускает в клетке биохимические процессы, приводящие к изменению ее функционального состояния в соответствии с тем, какой сигнал был получен от афферентных звеньев. На уровне органов это проявляется сокращением или расслаблением гладких мышц (сужением или расширением сосудов, учащением или замедлением и усилением или ослаблением сокращений сердца), выделением секрета и так далее. И, наконец, на IV этапе происходит возвращение синапса в состояние покоя либо за счет разрушения медиатора ферментами в синаптической щели, либо благодаря транспорту его обратно в пресинаптическое окончание. Сигналом к прекращению выделения медиатора служит возбуждение им рецепторов пресинаптической мембраны.
Рисунок 1.5.20. Функционирование синапса:
I - поступление нервного импульса; II - выделение медиатора в синаптическую щель; III - взаимодействие с рецепторами постсинаптической мембраны; IV - "судьба" медиатора в Синаптической щели - возвращение синапса в состояние покоя
1- обратный захват медиатора; 2 - разрушение медиатора ферментом; 3- возбуждение пресинаптических рецепторов
Как мы уже говорили, в вегетативной нервной системе передача информации осуществляется, главным образом, с помощью нейромедиаторов - ацетилхолина и норадреналина. Поэтому пути передачи и синапсы называют холинергическими (медиатор - ацетилхолин) или адренергическими (медиатор - норадреналин). Аналогично этому рецепторы, с которыми связывается ацетилхолин, называют холинорецепторами, а рецепторы норадреналина - адренорецепторами (смотри схему на рисунке 1.5.21). На адренорецепторы влияет также гормон, выделяемый надпочечниками, - адреналин.
Рисунок 1.5.21. Общая схема передачи информации по звеньям вегетативной нервной системы
Холино- и адренорецепторы неоднородны и различаются чувствительностью к некоторым химическим веществам. Так, среди холинорецепторов выделяют мускаринчувствительные (м-холинорецепторы) и никотинчувствительные (н-холинорецепторы) - по названиям естественных алкалоидов, которые оказывают избирательное действие на соответствующие холинорецепторы. Мускариновые холинорецепторы, в свою очередь, могут быть м1-, м2- и м3-типа в зависимости от того, в каких органах или тканях они преобладают.
Адренорецепторы, исходя из различной чувствительности их к химическим соединениям, подразделяют на альфа- и бета-адренорецепторы, которые тоже в зависимости от локализации имеют несколько разновидностей.
Сеть нервных волокон пронизывает все человеческое тело, таким образом, холино- и адренорецепторы расположены по всему телу. Нервный импульс, распространяющийся по всей нервной сети или ее пучку, воспринимается как сигнал к действию теми клетками, которые имеют соответствующие рецепторы. И, хотя холинорецепторы локализуются в большей степени в мышцах внутренних органов (желудочно-кишечного тракта, мочеполовой системы, глаз, сердца, бронхиол и других органов), а адренорецепторы - в сердце, сосудах, бронхах, печени, почках и в жировых клетках, обнаружить их можно практически в каждом органе. Воздействия, при реализации которых они служат посредниками, очень разнообразны.
Препараты, влияющие на различные типы рецепторов, будут представлены в главе 3.2.
Вегетативная рефлекторная дуга
Вегетативная нервная система , как и соматическая нервная система, реализует свои функции по принципу рефлексов (рис.1).
В простой вегетативной рефлекторной дуге, как и в соматической, выделяют три звена, а именно: 1) рецепторное, образованное чувствительным (афферентным) нейроном; 2) ассоциативное, представленное вставочным нейроном и 3) эффекторное звено, образованное двигательным (эфферентным) нейроном, передающим возбуждение на рабочий орган.
Нейроны связаны между собой синапсами, в которых с помощью медиаторов происходит передача нервного импульса с одного нейрона на другой.
Чувствительные нейроны (I нейрон) представлены псевдоуниполярными клетками спинномозгового узла. Их периферические отростки заканчиваются рецепторами в органах. Центральный отросток чувствительного нейрона в составе заднего корешка вступает в спинной мозг, и нервный импульс переключается на вставочный нейрон, клеточное тело которого расположено в боковых рогах (латерально-промежуточное ядро тораколюмбального или сакрального отделов) серого вещества спинного мозга (II нейрон).
Рис.1. Схема рефлекторных дуг соматического (слева) и вегетативного (справа) типов, замыкающихся в спинном мозге. 1 - рецептор; 2 - чувствительный нейрон спинномозгового ганглия; 3 - задний корешок; 4 - спинномозговой нерв; 5 - вставочный нейрон; 6 - двигательный нейрон переднего рога; 7 - передний корешок; 8 - двигательное нервное окончание скелетной мышцы; 9 - нейрон симпатического ядра бокового рога; 10 - преганглионарное волокно; 11 - белая соединительная ветвь; 12 - вегетативный ганглий; 13 - эффекторный нейрон; 14 - постганглионарное волокно; 15 - серая соединительная ветвь; 16 - двигательное нервное окончание на гладкой мышце; 17 и 18 - волокна пирамидного пути.
Аксон вставочного нейрона покидает спинной мозг в составе переднего корешка и достигает одного из вегетативных узлов, где вступает в контакт с двигательным нейроном (III нейрон).
Таким образом, вегетативная рефлекторная дуга отличается от соматической, во-первых, местом локализации вставочного нейрона (в боковых рогах, а не в задних), во-вторых, протяженностью и положением аксона вставочного нейрона, который в отличие от соматической нервной системы выходит за пределы спинного мозга, в-третьих,тем, что двигательный нейрон расположен не в передних рогах спинного мозга, а в вегетативных узлах (ганглиях), а это значит, чтовесь эфферентный путь подразделяется на два участка:предузловой (преганглионарный) -аксон вставочного нейрона ипослеузловой (постганглионарный) - аксон двигательного нейрона вегетативного узла. Преганглионарные волокна покрыты миелиновой оболочкой, благодаря чему имеют белый цвет. Постганглионарные волокна серого цвета - лишены миелина.
Узлы вегетативной нервной системы по топографическому признаку делят условно на три группы (порядка).
Узлы I порядка, околопозвоночные, образуют симпатический ствол, расположенный по сторонам позвоночного столба.
Узлы II порядка, предпозвоночные или промежуточные, расположены впереди позвоночника, входят в состав вегетативных сплетений. Узлы I и II порядка относятся к симпатическому отделу вегетативной нервной системы.
Узлы III порядка составляют конечные узлы. Они в свою очередь разделяются на околоорганные и внутриорганные и относятся к парасимпатическимузлам.
В узлах выделяют три типа нейронов:
1. Клетки Догеля первого типа - двигательные нейроны.
2. Клетки Догеля второго типа - чувствительные нейроны. Благодаря наличию в узле чувствительных клеток рефлекторные дуги могут замыкаться через вегетативный узел - периферические рефлекторные дуги.
Передача импульсов в синапсах вегетативной нервной системы
Медиатором, образующимся в окончаниях парасимпатических нервов, а также симпатических вазодилататоров и симпатических нервов потовых желез, является ацетилхолин; медиатором, образующимся в окончаниях постганглионарных симпатических нервов (за исключением нервов потовых желез и симпатических вазодилататоров),— норадреналин (адреналин, лишенный одной метильной группы).
Медиаторы, образующиеся в окончаниях вегетативных нервных волокон, действуют на иннервируемые ими клетки дольше по сравнению со временем действия медиатора (ацетилхолина) в окончаниях соматических нервов. По-видимому, это объясняется меньшей активностью ферментов, разрушающих медиатор.
Медиаторы образуются также терминалями преганглионарных волокон в синапсах ганглиев вегетативной нервной системы. Первые доказательства этого факта были получены А. В. Кибяковым в 1933 г. в опытах, в которых он пропускал через сосуды верхнего шейного симпатического узла кошки раствор Рингера — Локка и обнаружил при раздражении преганглионарных симпатических волокон в растворе, оттекающем от узла, адреналиноподобное вещество.
В дальнейшем было показано, что возбуждающим медиатором в синапсах преганглионарных волокон является ацетилхолин. Адреналин оказался медиатором, вызывающим торможение активности нейронов симпатического ганглия. Возможно, что тормозящие волокна, в которых образуется адреналиноподобное вещество, представляют собой постганглионарные волокна, иннервирующие узел и изменяющие его функциональное состояние.
Особенностью действия ацетилхолина в синапсах ганглиев является то, что оно не прекращается после отравления узла атропином, но исчезают после отравления никотином. На этом основании считают, что существует два вида структур, чувствительных к ацетилхолину; одни из них — М-холинорецепторы — теряют чувствительность к ацетилхолину под влиянием атропина, другие - Н-холинорецепторы — под влиянием никотина и других веществ, называемых ганглиоблокаторами (гексоний и др.).
В области концевых разветвлений симпатических нервных волокон имеются расширения — варикозы, в которых находятся пузырьки — везикулы, подобные имеющимся в синапсах. Толщина этих расширений концевых нервных волокон -до 2 мкм, длина — 0,5—3 мкм. Таких варикозов может быть 15—30 на протяжении 100 мкм. В варикозах содержится в 20—100 раз больше норадреналина, чем в остальных участках постганглионарного волокна. В расширенной части концевых разветвлений, а не только в синапсах симпатических нервных волокон возможно высвобождение медиатора, действующего на иннервированную ими ткань.
В зависимости от того какой медиатор выделяется окончаниями аксонов вегетативных нейронов,п редложено разделять нейроны нахолинергические и адренергические. Холинергическими являются эфферентные нейроны интрамуральных парасимпатических ганглиев и эфферентные нейроны парасимпатических центров среднего, продолговатого и спинного мозга, а также эфферентные нейроны симпатических центров спинного мозга и те эфферентные нейроны периферических симпатических ганглиев, которые иннервируют потовые железы и обеспечивают расширение сосудов работающих мышц. Окончания аксонов этих нейронов выделяют ацетилхолин. Адренергическими являются все остальные эфферентные нейроны симпатических ганглиев. В окончаниях аксонов и в контактах, образованных этими аксонами с гладкомышечными клетками и другими структурами, выделяется норадреналин. Освобождающийся в терминалах аксонов медиатор — ацетилхолин или норадреналин взаимодействует со специфическим белком постсинаптической мембраны, образующим комплексное соединение с медиатором.
Белок, с которым взаимодействует ацетилхолин, получил название холинорецептора, а белок, взаимодействующий с адреналином или норадреналином, назван адренорецептором. Соединение медиатора с соответствующим рецепторным веществом является начальной реакцией в цепи химических превращений, возникающих в клетке под влиянием приходящих к ней нервных импульсов.
Имеется два основных вида адренорецепторов, с которыми взаимодействует как адреналин, так и норадреналин: а- и β-адренорецепторы. Их существование установлено путем применения некоторых фармакологических препаратов, действующих избирательно на тот или другой вид адренорецепторов. В ряде органов находится оба вида адренорецепторов, которые могут вызывать либо разные, либо одинаковые реакции, или же имеется только один из адренорецепторов. В кровеносных сосудах имеются и α-и β-адренорецепторы. Показано, что соединение симпатического медиатора с α-адренорецепторами в артериальной стенке вызывает сужение артериол, а соединение с α-адренорецепторами приводит к расширению артериол. В кишечнике также имеются и а- и β-адренорецепторы; воздействие и на те и на другие тормозит сокращение гладкой мускулатуры. В сердце и бронхах нет α-адренорецепторов и здесь норадреналин и адреналин взаимодействуют только с β-адренорецепторами. В результате этого происходит усиление сердечных сокращений и расширение бронхов.
В механизме действия норадреналина и адреналина придают значение тому недавно открытому факту, что норадреналин и адреналин активируют энзим, находящийся в мембране мышечных клеток,— аденилциклазу. Этот энзим в присутствии ионов магния катализирует образование в клетке из АТФ циклического 3,5-аденозинмонофосфата . Это соединение — цАМФ вызывает ряд физиологических эффектов, в частности активирует некоторые энзимы энергетического обмена и стимулирует сердечную деятельность.
Кроме ацетилхолина и норадреналина, в вегетативной нервной системе найдены и другие медиаторы. В окончаниях симпатических нервных волокон обнаружен дофамин, выделение которого в синаптическую щель происходит под влиянием приходящих нервных импульсов. Полагают, что дофамин вступает во взаимодействие с α-адренорецепторами, расположенными на самих пресинаптических окончаниях, и тем самым тормозит выделение норадреналина.
Полагают, что на гладкую мускулатуру кишечника, матки, а возможно, и кровеносных сосудов может действовать серотонин, эффект которого напоминает действие медиатора ацетилхолина, но сохраняется после блокады М-холинорецепторов.
В желудке и кишечнике обнаружены интрамуральные эфферентные нейроны, возбуждение которых тормозит активность гладкой мускулатуры. Это торможение осуществляется путем выделения окончаниями аксонов этих нейронов пуринового нуклеотида аденозинтрифосфорной кислоты (АТФ). Медиаторный эффект принадлежит, по-видимому, самой АТФ. Указанные эфферентные нейроны получили название пуринергических.
Предполагают, что медиатором может быть и гистамин, так как в некоторых тканях обнаружены специфические H ₁- и Н ₂-гистаминорецепторы. Гистамин Является биологически активным веществом широкого спектра действия. Выявлено, что широко распространенный в синапсах ЦНС тормозной медиатор гамма-аминомасляная кислота — ГАМК тормозит проведение возбуждения в звездчатом ганглии, но облегчает передачу возбуждения в верхнем шейном, нижнем брыжеечном и в ганглиях солнечного сплетения.
После перерезки и перерождения вегетативных нервов чувствительность денервированных органов к соответствующим медиаторам возрастает. Если десимпатизировать любой орган, иннервированный симпатическими нервными волокнами (сердце, желудок, кишечник, сосуды, радужную оболочку глаза и др.), то он приобретает повышенную чувствительность к адреналину и норадреналину. Точно так же, если произвести парасимпатическую денервацию органа, он может приобрести повышенную чувствительность к ацетилхолину. Имеется ряд механизмов этой повышенной чувствительности денервированных тканей. Среди них следует указать на возрастание числа рецепторов на постсинаптической мембране, снижение активности или содержания в тканях фермента, расщепляющего адреналин (моноаминооксидаза) или расщепляющего ацетилхолин (ацетилхолинэстераза) и др.
Обзор вегетативной нервной системы (Overview of the Autonomic Nervous System)
Вегетативная нервная система отвечает за регуляцию различных физиологических процессов. Эта регуляция осуществляется без сознательного контроля, т.е. автономно. ВНС можно подразделить на 2 основных группы:
Нарушение работы вегетативной нервной системы приводит к вегетативной недостаточности или расстройству и может затрагивать любую систему органов.
Анатомия вегетативной нервной системы
Вегетативная нервная система получает импульсацию из различных отделов центральной нервной системы (ЦНС), участвующих в обработке и интеграции информации о состоянии внутренней среды организма и воздействии раздражителей из окружающей среды. К этим структурам относятся гипоталамус, ядро одиночного пути, ретикулярная формация, миндалина, гиппокамп и обонятельная кора.
Симпатическая и парасимпатическая системы - каждая из них имеет 2 вида нервных клеток:
Преганглионарные: находятся в ЦНС, соединяясь с другими клетками в ганглиях, находящихся за пределами ЦНС.
Постганглионарные: содержат эфферентные волокна, идущие от ганглиев эффекторных органов (см. рисунок Анатомическое строение нервной системы [ The autonomic nervous system Вегетативная нервная система ]).
Вегетативная нервная система
Симпатический отдел ВНС
Тела преганглионарных клеток симпатической нервной системы располагаются в боковых рогах спинного мозга между Т1 и L2-L3 сегментами.
Симпатические ганглии расположены рядом со спинным мозгом и подразделяются на вертебральные (симпатический ствол, или симпатическая цепочка) и превертебральные, включая верхний шейный, чревный, верхний мезентериальный, нижний мезентериальный и аорторенальный ганглии.
Длинные волокна идут от этих ганглиев к эффекторным органам, в том числе к следующим:
Гладкая мускулатура кровеносных сосудов, висцеральных органов, легких, кожи волосистой части головы (мышцы, поднимающие волосы) и зрачков
Железы (потовые, слюнные и пищеварительной системы)
Парасимпатический отдел ВНС
Тела преганглионарных клеток парасимпатической нервной системы располагаются в стволе головного мозга и крестцовых сегментах спинного мозга. Преганглионарные волокна покидают ствол головного мозга в составе 3, 7, 9 и 10 (блуждающего) черепных нервов, а от спинного мозга отходят на уровне сегментов S2 и S3; блуждающий нерв содержит в своем составе порядка 75% всех парасимпатических волокон.
Парасимпатические ганглии (например, реснитчатый, крылонебный, ушной, тазовый и блуждающий ганглии) расположены внутри эффекторных органов, в связи с чем длина постганглионарных волокон составляет от 1 до 2 мм. Таким образом, парасимпатическая система может вызывать специфические, локализованные реакции в эффекторных органах, таких как:
Кровеносные сосуды головы, шеи и внутренних органов грудной и брюшной полостей;
Слезные и слюнные железы;
Гладкая мускулатура внутренних желез и органов (например, печени, селезенки, толстой кишки, почек, мочевого пузыря, половых органов);
Физиология вегетативной нервной системы
Вегетативная нервная система отвечает за регуляцию артериального давления, частоты сердечных сокращений, температуры тела, массы тела, пищеварения, уровня метаболизма, водно-электролитного баланса, потоотделения, мочеиспускания, дефекации, сексуальной функции и прочих процессов. . Многие органы контролируются преимущественно либо симпатической, либо парасимпатической системой, несмотря на то, что получают импульс от обоих отделов. В частных случаях влияние этих двух отделов на функцию органа является противоположным (например, симпатическая нервная система повышает частоту сердечных сокращений, а парасимпатическая - понижает ее).
Симпатическая нервная система обладает катаболическим действием; она активирует реакцию «бей или беги».
Парасимпатическая нервная система обладает анаболическим действием, она сохраняет и восстанавливает гомеостаз (см. таблицу Отделы вегетативной нервной системы [Divisions of the Automatic Nervous System] Отделы вегетативной нервной системы ).
В вегетативной нервной системе присутствует два главных нейромедиатора:
Ацетилхолин: к холинергическим волокнам (выделяющим ацетилхолин) относятся все преганглионарные, постганглионарные парасимпатические и часть постганглионарных симпатических волокон (иннервирующих мышцы, поднимающих волосы, потовые железы и кровеносные сосуды).
Норадреналин : к норадренергическим (выделяющим норадреналин) относится большинство постганглионарных симпатических волокон. В определенной степени потовые железы на ладонях и подошвах также отвечают на адренергическую стимуляцию.
Существует несколько подтипов адренорецепторов Норадреналин и холинорецепторов Ацетилхолин , имеющих различную локализацию.
Этиология вегетативной недостаточности
Заболевания, приводящие к вегетативной недостаточности, могут характеризоваться поражением как периферического, так и центрального отделов нервной системы и иметь как первичный, так и вторичный характер по отношению к иным болезням.
К наиболее частым причинам вегетативной недостаточности относятся:
Прочие причины включают в себя:
Определенные лекарственные препараты
Некоторые вирусные инфекции, возможно, включая COVID-19
Повреждение нервов в области шеи, в том числе в результате операции
Вегетативная недостаточность, которая наблюдается при COVID-19, обычно развивается после разрешения симптомов со стороны дыхательной системы и других острых системных симптомов COVID. Обычным проявлением является синдром постуральной ортостатической тахикардии (POTS) с характерными аномальными вегетативными реакциями (например, головокружением) при смене положения на вертикальное (ортостатическая гипотензия). Неизвестно, является ли механизм вирусным или иммуноопосредованным.
Обследование вегетативной недостаточности
Анамнез
Следующие симптомы позволяют предполагать вегетативную недостаточность:
Ортостатическая неустойчивость (развитие таких вегетативных симптомов, как головокружение, уменьшающееся в положении сидя) вследствие ортостатической гипотензии или синдрома постуральной ортостатической тахикардии
Нарушение контроля мочеиспускания и дефекации
Эректильная дисфункция (ранний симптом)
Прочие возможные симптомы включают в себя сухость глаз и сухость во рту, но они являются менее специфичными.
Объективное обследование
К важным моментам физикального обследования относятся:
Оценка артериального давления и частоты сердечных сокращений при смене положения тела: у пациента с нормальным водным балансом наличие устойчивого (например, > 1 минуты) снижения систолического артериального давления на ≥ 20 мм. рт. ст. или диастолического на ≥ 10 мм. рт. ст. в положении стоя свидетельствует о ортостатической гипотензии Ортостатическая гипотензия Ортостатическая (постуральная) гипотензия - это чрезмерное снижение артериального давления (АД) при принятии вертикального положения. Ее принято диагностировать при снижении систолического АД. Прочитайте дополнительные сведения . Необходимо также оценивать изменение частоты сердечных сокращений в зависимости от дыхания и положения тела; отсутствие физиологической синусовой аритмии и отсутствие увеличения частоты сердечных сокращений при переходе в положение стоя указывают на вегетативную недостаточность. В противоположность этому у пациентов с синдромом ортостатической постуральной тахикардии Синдром постуральной ортостатической тахикардии Ортостатическая (постуральная) гипотензия - это чрезмерное снижение артериального давления (АД) при принятии вертикального положения. Ее принято диагностировать при снижении систолического АД. Прочитайте дополнительные сведения (доброкачественное нарушение), как правило, развивается постуральная тахикардия без артериальной гипотензии.
Офтальмологическое исследование: в пользу нарушения симпатической иннервации свидетельствуют миоз и слабый птоз (синдром Горнера Синдром Горнера Синдром Горнера характеризуется наличием птоза, миоза и ангидроза вследствие поражения шейного симпатического ганглия. (См. также Обзор вегетативной нервной системы (Overview of the Autonomic. Прочитайте дополнительные сведенияОценка рефлексов мочеполовых органов и прямой кишки: патологические рефлексы могут свидетельствовать о нарушении вегетативной функции. Проверяются кремастерный рефлекс (в норме штриховое раздражение кожи верхней внутренней области бедра приводит к подтягиванию яичка на стороне раздражения), анальный рефлекс (в норме штриховое раздражение кожи вокруг заднего прохода приводит к сокращению анального сфинктера) и бульбокавернозный рефлекс (в норме сдавление головки полового члена или клитора приводит к сокращению анального сфинктера). На практике рефлексы мочеполовых органов и прямой кишки редко проверяются, поскольку лабораторные исследования гораздо более надежны.
Лабораторные исследования
В случае если у пациента имеются симптомы и признаки, позволяющие предполагать вегетативную недостаточность, с целью уточнения тяжести и степени вовлечения в патологический процесс различных органов и систем, как правило, проводятся судомоторные и кардиовагальные пробы, а также пробы на адренергическую недостаточность.
Судомоторные пробы включают в себя следующее:
Количественную оценку судомоторного аксон-рефлекса: В этом тесте оценивается целостность постганглионарных волокон. Постганглионарные волокна активируют раствором ацетилхолина с использованием электрофореза. Обрабатываются определенные участки голени и запястья, с последующим измерением объема пота. Тест может обнаружить снижение или отсутствие потоотделения.
Терморегулирующий тест на потоотделение: это исследование оценивает функцию как преганглионарных, так и постганглионарных волокон. На кожу исследуемого наносится специальный краситель, после чего пациента помещают в закрытое нагреваемое помещение с целью вызвать максимальное потоотделение. Выделение пота приводит к изменению цвета красителя, что позволяет выявить зоны ангидроза и гипогидроза и подсчитать их площадь в процентах от общей площади поверхности тела (BSA).
Кардиовагальные пробы оценивают реакцию сердечного ритма (по ЭКГ) на глубокое дыхание и пробу Вальсальвы. Если вегетативная нервная система функционирует должным образом, частота сердечных сокращений изменяется в ответ на проведение этих проб; нормальная реакция на них варьирует в зависимости от возраста пациента.
Пробы на адренергическую недостаточность оценивают изменение артериального давления в ответ на:
Проба с запрокидыванием головы назад (ортостатическая проба):при изменении притока крови происходит рефлекторное изменение артериального давления и частоты сердечных сокращений. Эта проба помогает отделить вегетативные полинейропатии Вегетативные полинейропатии Вегетативные полинейропатии относятся к заболеваниям периферической нервной системы с преимущественным поражением вегетативных волокон. (См. также Обзор вегетативной нервной системы (Overview. Прочитайте дополнительные сведения от синдрома постуральной ортостатической тахикардии.
Проба Вальсальвы: повышает внутригрудное давление и уменьшает венозный отток, что приводит к изменениям артериального давления и пульса как проявлению вагусной и адренэргической составляющих регуляции давления.
Таким образом, характер ответной реакции на проведение двух указанных выше проб дает представление об адренергической регуляции.
Читайте также: