Регуляция секреции гормонов. Отрицательная обратная связь при секреции гормонов

Добавил пользователь Алексей Ф.
Обновлено: 14.12.2024

Если гормон тормозит активность центров, которые стимулируют его синтез и секрецию, такая обратная связь называется отрицательной. Если повышение секреции гормона ведет к активации стимулирующих центров, то обратная связь называется положительной. Положительная обратная связь почти не встречается в гуморальных регуляторных механизмах. В то же время роль отрицательной обратной связи в регуляции эндокринной системы исключительно велика.

Гормоны тормозят собственную секрецию по механизму отрицательной обратной связи

Регуляция эндокринных функций по механизму отрицательной обратной связи осуществляется не только путем торможения синтеза и секреции либеринов и тропных гормонов. Другим механизмом обратной связи является регулирование количества рецепторов уровнем гормона. При повышении концентрации гормона выше физиологически нормального уровня количество его рецепторов в тканях-мишенях снижается, а при уменьшении концентрации гормона количество рецепторов в клетках повышается. Это правило справедливо для подавляющего большинства гормонов. Наличие механизма регуляции по отрицательной обратной связи обеспечивает стабильность системы, в данном случае - постоянство гормональных влияний на клетки.

Тесная взаимосвязь между уровнем гормона и количеством его рецепторов, торможение гипоталамических центров по механизму отрицательной обратной связи, регуляция одной функции несколькими гормонами, а также взаимодействие между различными эндокринными системами приводит к тому, что биологический эффект зависит не столько от концентрации гормона, сколько от ее динамики. Особенно заметно это применительно к психотропным эффектам гормонов.

Количество рецепторов в тканях-мишенях уменьшается при длительном увеличении концентрации гормона в крови

В главе 8 рассматривается предменструальный синдром в качестве примера аффективного расстройства, вызываемого быстрым падением содержания прогестерона в крови в конце менструального цикла. Сезонные изменения в половом поведении человека и сезонные обострения аффективных расстройств (так называемая осенняя депрессия) связаны с быстрым изменением секреции мелатонина (см. главу 5).

Гормоны оказывают определяющее влияние на поведение во время развития организма (половая дифференцировка мозга у эмбриона, половое созревание подростков). В эти периоды концентрация гормонов меняется очень быстро из-за роста и дифференцировки тканей половых желез, поэтому гормональные вмешательства могут радикально изменить поведение человека или животного.

Таким образом, биологические, особенно психотропные, эффекты гормонов зависят в большей степени от скорости изменения концентрации гормона в крови, чем от абсолютного значения этой концентрации. Это положение важно в связи с тем, что широко распространено представление об определяющей роли уровня гормонов в крови для проявления таких форм поведения, как половое, агрессивное и асоциальное. Это представление не соответствует действительности, что подтверждают многочисленные и разнообразные исследования. Точнее, прямая зависимость между содержанием гормонов и поведением обнаруживается только при сравнении полярных групп: кастрированных самцов, у которых нет половых гормонов, и у носителей хромосомных мутаций ХУУ с очень высоким содержанием тестостерона.

Психотропный эффект гормона зависит от скорости изменения его концентрации в крови, а не от абсолютного значения этой концентрации

В первой группе почти отсутствуют аберрантные поведенческие формы, а во второй они усилены. Между этими двумя группами располагается группа самцов (мужчин), у которых не обнаружена зависимость между уровнем секреции тестостерона и поведением. Для проявления полового, агрессивного и асоциального поведения необходим определенный, небольшой уровень тестостерона. Выраженность же поведения зависит от факторов внешней среды, в психологических терминах - от воспитания. Например, крысята, выращенные в присутствии враждебно настроенного отца, оказались значительно агрессивнее своих собратьев, у которых не было опыта таких контактов. Быки, имевшие подобные контакты, продолжали демонстрировать агрессивное поведение и после того как были кастрированы.

Таким образом, колебания уровня циркулирующего гормона не сопровождается пропорциональными колебаниями выраженности поведенческих форм, которые этот гормон обеспечивает. Это обусловлено регуляцией эндокринных функций по механизму отрицательной обратной связи.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Основные понятия, относящиеся к процессам соматического гипермутирования и обратной связи генов сомы и зародышевой линии

Основные понятия, относящиеся к процессам соматического гипермутирования и обратной связи генов сомы и зародышевой линии • RT-мутаторсома (RT-mutatorsome)Гипотетическая молекулярная органелла в ядре В-клетки, ответственная за соматическое гипермугирование (RT = обратная

Эволюционная значимость обратной связи сомы и зародышевой линии

Эволюционная значимость обратной связи сомы и зародышевой линии Сейчас мы попытаемся ответить на вопрос, поставленный в конце главы 4. Поскольку иммунная система ныне живущих позвоночных, по-видимому, хорошо приспособлена к ответу на неожиданные антигены, есть ли сейчас

Организм с его иммунной системой уподобить какому-либо кибернетическому устройству с обратной связью и со способностью к самоохранению.

Организм с его иммунной системой уподобить какому-либо кибернетическому устройству с обратной связью и со способностью к самоохранению. — Нельзя ли организм с его иммунной системой уподобить какому-либо кибернетическому устройству с обратной связью и со

6.2. Значение неосознаваемых стимулов обратной связи в когнитивной деятельности

6.2. Значение неосознаваемых стимулов обратной связи в когнитивной деятельности О влиянии неосознаваемых стимулов на когнитивные функции писали многие исследователи [Костандов, 1983; Velmans, 1991], хотя не всегда описывались однозначные результаты. Этот эффект достоверно

Гормональные забавы

Гормональные забавы С греческого языка слово «гормон» переводится как «передающий», «побуждающий к чему-либо». Гормоны были открыты в 1902 году английскими физиологами, профессорами Лондонского университета Уильямом Мэддоком Бейлиссом и Эрнестом Генри Старлингом. Еще

Гормональные механизмы определения пола

Гормональные механизмы определения пола Начальные этапы развития половых желез одинаковы у самцов и самок. На раннем периоде эмбриогенеза, вскоре после имплантации, из эктодермы возникают зародышевые половые клетки, так называемые гоноциты. Посредством амебоидных

Решение обратной задачи

Решение обратной задачи Инженеры назвали бы этот поиск смысла обратной задачей. Наша рука представляет собой простое механическое устройство, вполне понятное инженерам. Ее основу составляют твердые стержни (кости), соединенные суставами. Мы двигаем рукой, прилагая силу

Гуморальные влияния на различные этапы обмена углеводов

Гуморальные влияния на различные этапы обмена углеводов Рассмотрим превращения углеводов, поступающих в организм с пищей (рис. 2.11). Рис. 2.11. Схема превращения углеводов в организме (Е означает «энергия»). Поступление глюкозы в кровь происходит в результате того, что в

Четыре типа влияния гормонов на поведение

Четыре типа влияния гормонов на поведение Подобно тому как психика неразрывно связана с моторной функцией, психика и поведение взаимосвязаны с висцеральной сферой, т. е. сферой внутренних органов, в том числе и с гормонами.Связи психики с висцеральными системами подчас

Поведение типа А - «борьба или бегство», поведение типа Б - «затаивание»

Поведение типа А - «борьба или бегство», поведение типа Б - «затаивание» Два этих термина сначала были предложены для описания поведения животных, у которых значительная часть стрессорных событий связана с угрозой нападения хищников и неблагоприятными изменениями

Глава 9 Результаты антропогенного влияния

Глава 9 Результаты антропогенного влияния 9.1. Результаты антропогенных влияний на биосферу В настоящее время от постиндустриальной эпохи человечество быстро стало переходить к постчеловеческой эре. Об этом свидетельствует ускоренное развитие биотехнологий,

7.4. Некоторые гормональные эффекты при экспериментальных и клинических нарушениях тонкой кишки

7.4. Некоторые гормональные эффекты при экспериментальных и клинических нарушениях тонкой кишки В начале 80-х годов появилось много публикаций, в которых сообщалось, что переход от голодного состояния к сытому сопровождается, изменением уровня ряда кишечных и других

Восходящие активирующие влияния на кору головного мозга у голодных животных К. В. СУДАКОВ (Москва)

Восходящие активирующие влияния на кору головного мозга у голодных животных К. В. СУДАКОВ (Москва) В последние годы благодаря применению новых методов физиологического эксперимента (электронные усилители, стереотаксическая техника) проблема голода, пищевого поведения

Гормональные нарушения и половая принадлежность

Гормональные нарушения и половая принадлежность Несовпадение генетического и внешнего морфологического пола могут иметь место и по ряду других причин. Типичный случай такого рода известен под названием синдрома андрогенной нечувствительности. Эта аномалия сопряжена

1.3. Регуляция секреции г ормонов

В зависимости от природы регулирующих факторов различают не сколько видов регуляции секреции гормонов.

Гормональная регуляция: секреция одних гормонов может регулироваться другими гормонами. Этот способ играет ведущую роль в регуляции секреции гормонов системы «гипоталамус — аденогипофиз - периферические эндокринные железы». В гипоталамусе вырабатываются регуля торные гормоны, которые усиливают или тормозят секрецию определенных гормонов аденогипофиза, а последние, в свою очередь, стимулируют секрецию гормонов периферических эндокринных желез: щитовидной, коркового вещества надпочечников, половых желез.

Кроме гормонов на секреторную функцию эндокринных клеток влияют и другие биологически акт ивные вещества. Например, биологически активный белок плазмы ангиотензин II является основным стимулятором секреции минералокортикоидов.

Метаболическая регуляция: активность эндокринных клеток может непосредственно регулироваться содержанием в крови определенных метаболитов. Этот вид регуляции является основным для секреции гормонов поджелудочной железы (в частности, секреция инсулина усиливается под действием глюкозы) и паращитовидных желез (секреция паратгормона усиливается при снижении концентрации в крови ионов Са 2+ ).

Нервная регуляция: секреция некоторых гормонов регулируется прямыми воздействиями со стороны нервной системы. Такая регуляция является ведущей в секреции гормонов гипоталамуса и нейрогипофиза, эпифиза, а также мозгового вещества надпочечников.

В большинстве случаев в регуляции секреции какого-либо гормона участвуют несколько механизмов. Например, на уровень секреции инсулина влияет не только глюкоза (основной регулирующий фактор), но и некоторые гормоны (адреналин, глюкагон и др.), а также симпатические и парасимпатические нервные воздействия.

Важным звеном функциональной системы эндокринной регуляции являются от рицат ельные обратные связи. Например, известно, что глюкоза повышает секрецию инсулина, а инсулин снижает содержание глюкозы в крови. Это создает петлю отрицательной обратной связи: повышение содержания глюкозы —> повышение секреции инсулина —> снижение уровня глюкозы —» уменьшение секреции инсулина. Этот пример показывает, что отрицательные обратные связи обеспечивают относительное постоянство уровня гормонов в организме. Отрицательные обратные связи в том или ином виде присутствуют в регуляции секреции практически всех гормонов (см., например, рис. 6 на стр. 19).

2. Гипоталамус и гипофиз

2.1. Гипоталамо-гипофизарная система

Гипоталамус - часть промежуточного мозга, расположенная книзу от таламуса - высший вегетативный центр, координирующий функции различных систем, адаптируя их к целостной деятельности организма. Гипоталамус принимает участие во многих физиологических процессах: терморегуляции и регуляции обмена веществ и энергии, в организации пищевого и питьевого поведения, в чередовании сна и бодрствования. Широкие регуляторные возможности гипоталамуса обусловлены его тесными связями с другими структурами ЦНС, а также с вегетативной нервной системой и с эндокринной системой. Под непосредственным контролем гипоталамуса находится гипофиз, управляющий, в свою очередь, щитовидной железой, половыми железами и корковым веществом надпочечников. Таким образом, гипоталамус является нейроэндокринным центром, объединяющим нервную и эндокринную системы.

Некоторые нейроны гипоталамуса нейросекреторные клетки подобно эпителиальным клеткам эндокринных желез, синтезируют и выделяют в кровь гормоны (нейрогормоны ). Этот процесс называется нейросекрецией и протекает так же, как и секреция синаптических медиаторов (рис. 3). Аксоны нейросекреторных клеток заканчиваются на капиллярах в виде аксо-капиллярных синапсов. Нейрогормоны синтезируются в телах нейросекреторных клеток, путем аксонного транспорта (движение цитоплазмы вдоль аксона) попадают в синаптические окончания, где накапливаются. При возбуждении соответствующих нейронов гипоталамуса нейрогормоны выделяются в кровоток.


Рис. 3. Нейросекреция.

Гипофиз (нижний мозговой придаток) - центральная железа внутренней секреции, структурно и функционально связанная с гипоталамусом. В составе гипофиза человека выделяют два отдела, различных по развитию, строению и функциям: нейрогипофиз и аденогипофиз.

Нейрогипофиз (задний отдел гипофиза) образован нервной тканью и фактически является продолжением гипоталамуса; нейрогипофиз секретирует в кровь гормоны, синтез которых происходит в гипоталамусе. Аденогипофиз (передний отдел гипофиза) образован эпителиальной тканью , клетки которой синтезируют и секретируют в кровь ряд собственных гормонов.

У большинства позвоночных различают три доли гипофиза: переднюю, промежуточную и заднюю. Однако у человека и других высших приматов промежуточная доля развита слабо (она составляет лишь 2% от общей массы гипофиза). Поэтому гипофиз человека подразделяют только на два отдела: аденогипофиз, состоящий из передней и промежуточной частей, и нейрогипофиз, соответствующий задней доле гипофиза.

Связи между гипоталамусом и гипофизом представлены на рис. 4.


Рис. 4. Гипоталамо-гипофизарная система.

Обозначения: 1 - либерины и статины; 2 - гормоны аденогипофиза; 3 - окситоцин и вазопрессин.

Система «гипоталамус - нейрогипофиз». В крупноклеточных ядрах гипоталамуса (супраоптическом и паравентрикулярном) синтезируются два нейрогормона - вазопрессин и окситоцин. Эти гормоны по аксонам нейросекреторных клеток гипоталамуса переносятся в нейрогипофиз, где на капливаются и выделяются в кровь по механизму нейросекреции.

Система «гипоталамус - аденогипофиз». В мелкоклеточных ядрах гипоталамуса синтезируются нейрогормоны либерины и статины. При воз буждении нейронов гипоталамуса эти гормоны путем нейросекреции попадают в капилляры срединного возвышения гипоталамуса (первая капиллярная сеть). Далее либерины и статины током крови поступают в воротные вены гипофиза, которые в аденогипофизе вновь распадаются на капилляры (вторая капиллярная сеть). Здесь либерины и статины выходят из кро ви и действуют на эндокринные клетки аденогипофиза: либерины усиливают, а статины тормозят секрецию гормонов аденогипофиза. Гормоны аденогипофиза диффундируют в просвет капилляров вторичной сети, попадают в венозную кровь, оттекающую от гипофиза, и далее разносятся по организму.

В гипоталамусе и гипофизе синтезируется большое количество гормонов, регулирующих многие физиологические функции. По химической структуре эти гормоны относятся к белково-пептидным, а по мишени дейст вия среди них есть как регуляторные, так и эффекторные гормоны (рис. 5).

128. Регуляция синтезами секреции гормонов по принципу обратной связи.

Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз.

Схема взаимосвязи регуляторных систем организма. 1 - синтез и секреция гормонов стимулируется внешними и внутренними сигналами; 2 - сигналы по нейронам поступают в гипоталамус, где стимулируют синтез и секрецию рилизинг-гормо-нов; 3 - рилизинг-гормоны стимулируют (либерины) или ингибируют (статины) синтез и секрецию тройных гормонов.гипофиза; 4 - тройные гормоны стимулируют синтез и секрецию гормонов периферических эндокринных желез; 5 - гормоны эндокринных желез поступают в кровоток и взаимодействуют с клетками-мишенями; 6 - изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов эндокринных желез и гипоталамуса; 7 - синтез и секреция тройных гормонов подавляется гормонами эндокринных желез; ⊕ - стимуляция синтеза и секреции гормонов; ⊝ - подавление синтеза и секреции гормонов (отрицательная обратная связь).


129. Половые гормоны: строение, влияние на обмен веществ и функции половых желез, матки и молочных желез.

Половые гормоны — гормоны стероидной природы, определяющие у человека и животных половую дифференцировку в эмбриональном периоде, характер вторичных половых признаков, функциональную активность репродуктивной системы и формирование специфических поведенческих реакций. Они влияют на многие процессы промежуточного обмена,водно-солевой обмен, а также на состояние адаптационных систем организма. К половым гормонам относятся андрогены, эстрогены и прогестины.

Андрогены — мужские половые гормоны, производные андростана, синтезирующиеся в основном в яичках; некоторое количество андрогенов образуется в коре надпочечников и яичниках. Наиболее активный андроген тестостерон по своей химической структуре является стероидом. Биосинтез андрогенов представляет собой ряд последовательных ферментативных превращенийхолестерина. Основным физиологическим регулятором секреции андрогенов служит лютеинизирующий гормон, взаимодействующий со специфическими циторецепторами. Андрогены, имеющие кетогруппу (СО-группу) при С17, объединяют в группу 17-кетостероидов. В печени андрогены конъюгируются с серной или глюкуроновой кислотами, образуя конъюгаты (парные соединения), которые выводятся с мочой. В крови они содержатся в виде комплексов с липопротеинами, частично в виде свободных глюкуронидов или сульфатов. Тестостерон образуется в яичках, яичниках и надпочечниках. В яичках он продуцируется главным образом клетками Лейдига, в яичниках — тека-клетками овариальных фолликулов, а также в межуточной ткани коркового вещества. В организме взрослого мужчины образуется 4—7 мгтестостерона в сутки, причем около 0,5 мг — в надпочечниках. Яичники и надпочечники взрослой женщины продуцируют примерно 0,5 мгтестостерона в сутки. Основная масса тестостерона, циркулирующего в крови, находится в виде комплекса со специфическим транспортным белком — тестостеронэстрадиолсвязывающим глобулином (ТЭСГ). Связанный с ТЭСГ тестостерон не подвержен метаболическим превращениям. Связывание тестостерона с ТЭСГ служит одним из факторов, определяющих скорость его метаболического клиренса. Метаболические превращения тестостерона осуществляются в печени, почках, кишечнике, легких, коже и других органах. Особое место в его метаболизме принадлежит превращениям в тканях-мишенях. Для метаболического превращения тестостерона в тканях-мишенях характерна 5a-редуктазная реакция, в результате которой образуется 5a-дигидротестостерон. Этот процесс является необходимым этапом биологического действия тестостерона, т.к. именно 5a-дигидроформа связывается с рецепторами тканей-мишеней, 5a-Дигидротестостерон обладает большей андрогенной активностью, чем тестостерон, в связи с чем некоторые исследователи рассматривают тестостерон как прогормон. Биологическое действие тестостерона наиболее специфично в тканях-мишенях, где происходит его избирательное накопление. Рецепторы к тестостерону обнаружены в клетках семенных канальцев, в придатке яичка, предстательной железе, семенных пузырьках, гипоталамусе, матке, фолликулах яичников на определенных стадиях их развития. Андрогенная активность тестостерона проявляется во внутриутробном периоде, когда он, декретируемый яичками плода, обеспечивает половую дифференцировкугипоталамуса, а также формирование внутренних и наружных половых органов по мужскому типу. В период полового созревания под влиянием тестостерона происходит формирование половых органов и развитие вторичных половых признаков. В репродуктивном периоде тестостерон стимулирует определенные этапы сперматогенеза, а также поддерживает половую активность. В женском организме тестостерон оказывает специфическое действие на процессы биосинтеза в клетках матки, а также влияет на развитие фолликулов яичников. Тестостерон обладает выраженным анаболическим действием, связанным со стимуляцией синтеза белка, которое проявляется при формировании фенотипа. Снижение его секреции в мужском организме при гипогонадизме оказывает влияние на формирование наружных половых органов, развитие вторичных половых признаков и сперматогенез. Клиническая симптоматикагипогонадизмаво многом определяется степенью недостаточности выработки тестостерона и тем этапом онтогенеза, на котором это нарушение возникло. У женщин повышенная секреция тестостерона надпочечниками (адреногенитальный синдром, вирилизирующие опухоли надпочечников) или яичниками (вирилизирующие опухоли яичников, склерокистозные яичники) приводит к нарушению генеративной функции яичников, а также к вирилизации.


Эстрогеныявляются производными эстрана, С18-стероидами с ароматическим циклом, фенольной гидроксильной группой при С3 и кетогруппой или гидроксилом при С17. Биосинтез эстрогенов как биохимический процесс представляет собой ароматизацию С19-стероидов, катализируемую комплексом ферментов, локализованных в микросомах. У женщин детородного возраста основная масса эстрогенов синтезируется в яичнике, содержащем зреющий фолликул или желтое тело. Синтез эстрогенов в фолликуле определяется взаимодействием двух стероидпродуцирующих структур зернистого слоя и текаклеток. При этом в последних под регулирующим влиянием лютеинизирующего гормона осуществляется синтез С19-стероидов — андрогенов, которые перемещаются в клетки зернистого слоя, где происходит процесс их ферментативной ароматизации и превращения в эстрогены под контролем фолликулостимулирующего гормона. Синтез эстрогенов в зреющем фолликуле является одним из основных факторов, определяющих функцию гипофизарно-овариальной системы, т.к. повышение концентрации эстрогенов в крови в фазе роста фолликула вызывает преовуляторный выброс лютеинизирующего и фолликулостимулирующего гормонов, которые необходимы для завершения процесса созревания вторичного фолликула и овуляции. Биосинтез эстрогенов путем ароматизации С19-стероидов происходит не только в стероидпродуцирующих железах внутренней секреции, но и во многих тканях организма (жировой ткани, мышцах, печени, почках и др.). В крови эстрогены находятся в основном в виде комплексов с транспортными белками. Образование таких комплексов служит одним из факторов регуляции биологической активности и интенсивности обмена эстрогенов. Основным направлением метаболизма эстрогенов является гидроксилирование стероидного ядра их молекулы в различных положениях. На направленность метаболизма эстрогенов влияет ряд факторов. Так, интенсивность С16-гидроксилирования возрастает при увеличении массы тела, дисфункции печени, снижении концентрациитиреоидных гормоновв крови. Метаболизм эстрогенов происходит в органах-мишенях, почках, коже, эритроцитах и др., однако центральная роль в этом процессе принадлежит печени. Эстрогены, циркулируя в печени, метаболизируются в ней и с желчью попадают в желудочно-кишечный тракт. При этом часть эстрогенов всасывается обратно в кровь, подвергаясь реактивации. В печени образуются водорастворимые конъюгаты эстрогенов и их метаболиты с глюкуроновой и серной кислотами. Кишечно-печеночный цикл и процессы активации — инактивации эстрогенов являются механизмами, регулирующими их обмен и выведение из организма. Нарушение этих механизмов объясняет появление гиперэстрогении у мужчин, больных циррозом печени. Эстрогены и их метаболиты экскретируются с мочой и калом. Физиологический эффект эстрогенов определяется их взаимодействием с рецепторами клеток-мишеней. Рецепторы эстрогенкомпетентных клеток обладают неодинаковым сродством к различным природным и синтетическим эстрогенам. Так, связывание эстрадиола выше, чем синэстрола (гексэстрадиола), эстрона, эстриола (в порядке убывания), что соответствует биологической активности перечисленных эстрогенов в отношении клеток-мишеней. Основное биологическое действие эстрогенов заключается в их влиянии на формирование и функционирование женских половых органов. Эстрогены вызывают увеличение матки за счет роста стромы миометрия и эндометрия, под влиянием эстрогенов осуществляется васкуляризация эндометрия и рост его желез. На протяжении менструального цикла под влиянием меняющегося уровня секреции эстрогенов происходят морфологические изменения слизистой оболочки матки и эпителия влагалища. Под контролем эстрогенов находятся некоторые ключевые этапы яичникового цикла: они дифференцированно влияют на чувствительность клеток зернистого слоя и текаклеток к лютеинизирующему и фолликулостимулирующему гормонам. Эстрогены участвуют в формировании вторичных половых признаков, оказывают модулирующее влияние на различные структуры гипоталамуса, что, в частности, находит выражение в формировании специфического полового поведения. Важную роль играют эстрогены в регуляции функции молочных желез также на жировой обмен, обмен веществ в костной ткани и коже, систему мононуклеарных фагоцитов.


Прогестины.Желтым телом яичника, корой надпочечников, яичками и плацентой синтезируется стероидный гормон прогестерон, который относится к С21 стероидам. Образование прогестерона в яичниках вне беременности регулируется лютеинизирующим гормоном, а при беременности — хорионическим гонадотропином. Механизм действия прогестерона такой же, как у всех стероидных гормонов. Этот гормон взаимодействует со специфическими цитоплазматическими белковыми рецепторами, образуя комплекс, который переносится в ядро клетки и активирует определенные структуры хроматина. В результате стимулируется синтез специфических белков и изменяется функциональное состояние органов-мишеней. Прогестерон участвует в регуляции циклической трансформации эндометрия. Под его влиянием происходят секреторное преобразование эндометрия в лютеиновой фазе менструального цикла, а также функциональные изменения в маточных трубах, влагалище и эпителии молочных желез. Одной из основных физиологических функций прогестерона является торможение сократительной функции миометрия, особенно во время беременности. Снижение секреции прогестерона желтым телом (вне беременности) приводит к недостаточности лютеиновой фазы менструального цикла и к неполноценной секреторной трансформации эндометрия.

Лекция 3 регуляция секреции гормонов

Эндокринная система через посредство своих гормонов участвует в осуществлении целостных реакций организма, обеспечивающих стабильность внутренней среды - гомеостаз. Это возможно при условии, если функция самой железы постоянно регулируется в соответствии с потребностями организма.

Основной принцип эндокринной регулировки - обратная связь. Этот термин означает, что продукт какой- нибудь деятельности оказывает в обратном порядке влияние на данную деятельность так, чтобы поддерживать его постоянство. Повышение продукта, выходящее за данные пределы, приводит к затуханию деятельности и, наоборот, понижение количества продукта приводит к стимулированию.

3.1. Непосредственная (простая) отрицательная обратная связь.

Отрицательная обратная связь ставит скорость продукции гормона в зависимость от концентрации химических веществ в крови или продуктов метаболических процессов, регулируемых этим гормоном. Например, зависимость секреции инсулина поджелудочной железой от уровня концентрации глюкозы в крови (основного регулируемого инсулином параметра) (рис. 6). Реакция железы на гормон противодействует дальнейшей стимуляции продукции того же гормона.

Β- клетка поджелудочной

ж

Гормон Мышца

(повышение Действие

уровня (снижение уровня

в крови ) в крови)

Рис. 6. Непосредственная отрицательная обратная связь.

Приведенный тип обратной связи управляет деятельностью тех эндокринных желез, которые не регулируемы аденогипофизом или другой железой внутренней секреции регулирующего типа (табл.3).

Эндокринные железы, регулируемые по механизму непосредственной (простой) обратной связи

Основы иерархии гормонов в организме человека

Сайт предоставляет справочную информацию. Адекватная диагностика и лечение болезни возможны под наблюдением добросовестного врача. У любых препаратов есть противопоказания. Необходима консультация специалиста, а также подробное изучение инструкции!

Эндокринная система - одна из самых больших загадок современной медицины. Главной ее задачей в организме человека является регуляция посредством гормонов деятельности практически всех органов и систем тела. Также она выполняет и некоторые другие функции, такие как, например, поддержание постоянства внутренней среды организма и адаптация к внешним условиям. Гормоны синтезируются специализированными железистыми клетками, которые могут быть распространены по всему организму либо собраны в отдельные органы, которые называются эндокринными железами.

Эндокринная система

К эндокринным железам относятся:

  • гипофиз;
  • щитовидная железа;
  • паращитовидные железы;
  • надпочечники;
  • эпифиз (или шишковидное тело).

Помимо этого, в организме человека существуют железы смешанной секреции, которые выполняют несколько функций (эндокринную в том числе).

Среди них:

  • поджелудочная железа;
  • семенники (у мужчин);
  • яичники (у женщин).

Самое большое число эндокринных клеток содержится в следующих органах:

  • гипоталамус;
  • тимус (или вилочковая железа);
  • плацента;
  • ЖКТ (желудочно-кишечный тракт);
  • сердце;
  • почки.

Концепция функционирования эндокринной системы довольно ясна. Вот только длинные цепочки связей, благодаря которым гормоны оказывают свой конечный эффект, иногда дают сбой, и тогда необходимо выяснить, какое именно звено в цепи вызвало нарушение функции в той или иной части организма.

Для правильного понимания механизма возникновения патологий в эндокринной системе нужно разобраться в том, как при обычных условиях работают "цепные реакции гормонов" в человеческом организме.

Интересный факт!

Китайская медицина знакома с эндокринологией гораздо дольше всего остального мира. Существуют доказательства того, что в Китае об эндокринной системе было известно еще 2000 лет тому назад.

Еще в 200 году нашей эры целители извлекали гормоны гипофиза и половые гормоны из мочи человека, получая целительные экстракты. Это делали при помощи сульфатного минерала гипса и химического соединения сапонина, который получали из растений. Использовались эти экстракты в лечебных целях, наподобие современных гормональных препаратов.

Иерархическая лестница в системе гормональной регуляции

1. ЦНС (центральная нервная система)

Работа гормональных систем строится на определенной иерархической лестнице. Во главе этой цепи стоит ЦНС, которая воспринимает информацию из окружающей среды, из различных частей организма и перерабатывает ее.

Центральная нервная система

Далее вырабатываются стимулирующие или тормозящие импульсы, которые направляются к гипоталамусу. Он находится в промежуточном мозге, содержит огромное количество клеток, которые регулируют нейроэндокринную деятельность мозга и постоянство гормонов в организме.

2. Гипоталамус

Гипоталамус является второй ступенью иерархической лестницы. Воспринимая полученные нервные импульсы, он реагирует на них выбросом стимулирующих или ингибирующих (тормозящих) веществ.

Гипоталамус

Стимулирующие вещества называются либеринами, а ингибирующие так же известны как статины. Данные вещества с током крови попадают в гипофиз (известен также как питуитарная железа, расположенная в основании черепа в турецком седле и представляющая собой образование размером с горошину).

3. Гипофиз

Гипофиз представляет собой третье звено в цепи гормональных систем. Эта железа, в свою очередь, синтезирует так называемые тропные гормоны, которые оказывают свое стимулирующее действие на периферические железы (органы эндокринной системы, располагающиеся вне черепной коробки).

Гипофиз

Периферические эндокринные железы под действием тропных гормонов секретируют характерные уже для них гормоны. Непосредственно эти гормоны, либо какие-нибудь продукты их активности, оказывают действие уже на ЦНС при помощи систем отрицательной обратной связи.

Система отрицательной обратной связи является самой распространенной, она заключается в том, что сам гормон, или продукт его активности, с током крови попадает в центральные структуры и оказывает тормозящее действие в плане секреции данного гормона. Однако существует так же и система положительной обратной связи. В данном случае действие гормона стимулирует еще большую его секрецию.

Следует отметить, что все-таки конечным и завершающим звеном во всей этой цепочке являются ткани (мышцы, кости, ткани внутренних органов), на которые гормоны периферических желез оказывают свое влияние. Это так называемые ткани-мишени, в которых под действием гормонов происходят определенные биохимические и физиологические реакции.

Самые интересные гормоны гипофиза

Раньше ученые предполагали, что вазопрессин и антидиуретический гормон - это два разных вещества, но, как оказалось, это один и тот же гормон задней доли гипофиза, который отвечает за всасывание жидкости в почках, сужение сосудов и повышение артериального давления.

Интересно, что вместе с потреблением алкоголя замедляется продукция антидиуретического гормона. Алкоголь выводит большое количество жидкости с мочой и приводит организм в состояние обезвоживания (патологическое состояние, характеризующееся сниженным содержанием воды в организме).

Еще одним гормоном нейрогипофиза (задняя доля гипофиза) является окситоцин, необходимый для стимуляции матки и образования молока в молочных железах. Окситоцин также известен как гормон любви или связующий гормон. Согласно исследованиям, содержание окситоцина повышено у людей, состоящих в романтических отношениях, так как они, например, обнимаются чаще других. Из результатов эксперимента следует, что уровень окситоцина больше растет у женщин, при этом уровень кортизола, также известного как гормон стресса, снижается после объятий. Выяснилось, что объятия на протяжении 20 секунд снижают артериальное давление и благотворно влияют на сердечно-сосудистую систему. Наблюдатели сделали вывод о том, что социальная поддержка во время стресса является неотъемлемым компонентом для сохранения здоровья человека. Подробнее об исследовании Вы узнаете, перейдя по ссылке в списке литературы.

Доли гипофиза

Гипофиз состоит из передней, средней и задней доли. В средней доле гипофиза вырабатывается меланоцитостимулирующий гормон. Этот гормон стимулирует синтез меланина, который придает окраску волосам, коже, глазам, а также выступает в роли защитного фактора от ожогов кожи и сетчатки. Именно благодаря этому веществу после нахождения под солнцем у Вас не появляются ожоги кожи и сетчатки, даже если Вы не использовали солнцезащитный крем и очки.

Подпишитесь на Здоровьесберегающий видеоканал



Примеры гормональных иерархических пирамид

Теперь построим несколько иерархических пирамид для внесения большей ясности в понимание принципа работы эндокринной системы человека.

Гормоны щитовидной железы

Ярким примером может послужить влияние вышележащих структур на синтез гормонов щитовидной железы. ЦНС, воспринимая информацию из окружающей среды, посылает нервные импульсы в гипоталамус, где синтезируется тиреотропин - рилизинг-гормон. Рилизинг-гормоны - это гормоны гипоталамуса, которые стимулируют синтез и секрецию тропных гормонов гипофиза. Под влиянием гормона гипоталамуса в гипофизе секретируется ТТГ (тиреотропный гормон), который стимулирует синтез и секрецию трийодтиронина (Т3) и тироксина (Т4).

Гормоны щитовидной железы

По данной системе и классифицируют заболевания, связанные с нарушением синтеза и секреции гормонов щитовидной железы. Например, гипертиреоидизм (синдром повышения функции щитовидной железы с избытком ее гормонов) будет называться первичным в случае поражения непосредственно щитовидной железы (орган может быть поражен опухолью или каким-либо еще заболеванием). При первичной патологии щитовидной железы структуры ЦНС, гипоталамуса и гипофиза функционируют правильно, в них нет никаких повреждений. При вторичном гипертиреоидизме будет поражен уже гипофиз, а при третичном имеется поражение гипоталамуса.

Гормоны надпочечников

Кортикотропин - рилизинг-гормон (гормон гипоталамуса) вызывает высвобождение АКТГ (адренокортикотропного гомона) в гипофизе, за счет чего стимулируется секреция гормонов надпочечниками (кортизол, альдостерон и андрогены).

Гормоны надпочечников

Подобно патологиям щитовидной железы в данном случае так же в зависимости от того, какое звено поражено, так и будет называться патология. При первичном заболевании наблюдается поражение надпочечников, при вторичном - гипофиза, а при третичном - гипоталамуса.

Гормон роста

В регуляции секреции гормона роста участвует два гормона - стимулирующий соматотропин (гормон передней доли гипофиза) и тормозящий соматостатин (гормон гипоталамуса).

Гормон роста

Половые гормоны

Для регуляции синтеза и секреции половых гормонов также необходимы гормоны гипоталамуса и гипофиза. Так, гипоталамус синтезирует так называемый гонадотропин - рилизинг-гормон, который, в сою очередь, действует на ткань гипофиза. Там синтезируются лютеинизирующий гормон (ЛГ) и фолликулостимулирующий гормон (ФСГ).

ЛГ вызывает повышение синтеза тестостерона (основной мужской половой гормон).

Тестостерон обладает свойством проходить через гематоэнцефалический барьер (полупроницаемая мембрана в ткани мозга, которая служит защитным механизмом, так как она пропускает через себя лишь некоторые вещества). При этом в мозге он превращается в эстроген, поэтому у мужчин в мозге больше эстрогена, чем у женщин.

У женщин под влиянием ЛГ происходит повышение синтеза и секреции прогестерона (гормон, который регулирует менструальный цикл и беременность), стимулируется овуляция и формирование желтого тела.


ФСГ стимулирует образование спермы у мужчин и рост фолликулов (область, в которой содержится яйцеклетка) в яичниках у женщин.

Пролактин - это гормон гипофиза, который отвечает за развитие молочных желез у женщин и образование молока в период грудного вскармливания. Согласно иерархической системе регуляции, в гипоталамусе секретируется гормон, тормозящий действие пролактина на организм, известный как пролактостатин (пролактин-ингибирующий фактор или ПИФ).

Регуляция гормональной секреции

Не секрет, что гормоны в организме человека синтезируются в сравнительно небольших количествах. Для каждого гормона существует своя определенная концентрация в крови, при которой будет производиться необходимый эффект на ткани. Концентрация гормонов варьирует от 10ˉ¹² до 10ˉ³ граммов в 1 миллилитре крови. Давайте попробуем разобраться, существует ли какой-то механизм регуляции секреции гормонов, и каким образом информация о содержании гомона в крови достигает центральных структур.

Наиболее распространенным способом регуляции гормональной секреции является механизм отрицательной обратной связи, который характерен для абсолютного большинства гормонов в человеческом организме. Механизм этот довольно прост на первый взгляд и состоит в том, что после секреции железой гормона, он попадает в кровь, а с током крови информация о его концентрации поставляется в центральные структуры. Таким образом, сам гормон, реакция, вызванная этим гормоном, продукты активности или метаболизма оказывают тормозящий эффект, и секреция гормона на какое-то время замедляется.

Регуляция гормональной секреции

Например, синтез гормонов щитовидной железы контролируется гормонами гипоталамуса и гипофиза. При увеличении содержания в крови гормонов щитовидной железы происходит снижение продукции ТТГ гипофизом.

Даже если отделить гипофиз от гипоталамуса, наблюдается снижение выработки ТТГ гипофизом в ответ на повышение в крови гормонов щитовидной железы. Существует предположение, что это происходит, потому что уровень щитовидных гормонов оказывает свое влияние непосредственно на гипофиз, минуя гипоталамус.

Примером отрицательной обратной связи, осуществляемой за счет метаболитов или субстратов, может служить зависимость между концентрацией глюкозы и гормона инсулина в крови. Повышение содержания в крови глюкозы (например, после приема пищи) является стимулом для синтеза инсулина (гормон поджелудочной железы), который снижает уровень глюкозы в крови, способствуя ее утилизации клетками. В то же время, после снижения гликемии (содержания глюкозы в крови) секреция инсулина в больших количествах прекращается.

Гормоны поджелудочной железы

Интересно, что другой гормон поджелудочной железы - глюкагон оказывает совершенно противоположное инсулину действие в отношении глюкозы. При повышенном содержании глюкозы в крови уровень глюкагона падает, а при ее снижении концентрация глюкагона растет.

Даже одна единственная бессонная ночь стимулирует развитие резистентности клеток к действию инсулина, что является характерным фактором для сахарного диабета. По этой причине очень важно соблюдать правильный режим сна.

Существует также и механизм положительной обратной связи, который заключается в том, что биологическое действие гормона вызывает его дополнительную секрецию. Например, секреция ЛГ возрастает перед овуляцией под действием эстрогенов (эстрон, эстрадиол, эстриол), а секретируемый ЛГ стимулирует еще большую продукцию эстрогенов. Такой механизм регуляции продолжается до тех пор, пока ЛГ не достигнет определенной характерной для него концентрации в крови.

Регуляция гормональной секреции также зависит от возраста человека, а также от суточных и сезонных изменений. Например, гормон роста образуется в больших количествах во время ранних фаз сна, а на поздних стадиях его продукция уменьшается.

Бытует мнение, что если принимать мелатонин, также известный как гормон сна, то качество сна улучшится. Ученые придерживаются мнения, что мелатонин, скорее, является гормоном ночи или темноты, так как он вырабатывается именно в темное время суток. Возможно, качество сна значительно улучшится вместе с приемом препаратов на основе данного гормона, но не исключено, что они будут и бесполезны. Особенно бесполезен прием таких препаратов днем или при наличии какого-либо источника света. Принимать такие лекарственные средства необходимо только по назначению врача.

Что еще, кроме эндокринных желез, способно синтезировать гормоны?

Не только эндокринные железы способны вырабатывать гормоны. Их могут синтезировать также и некоторые внутренние органы. Вот только знаете ли Вы, какие именно органы способны это делать?

Почки

Почки являются одним из гормонально активных органов. Ими синтезируется гормон, играющий важную роль в регуляции артериального давления и поддержании необходимого количества жидкости в организме. Называется это гормон ренин. Другой почечный гормон - эритропоэтин усиливает продукцию эритроцитов.

Почки

Сердце

Главный орган сердечно-сосудистой системы, прокачивающий кровь по сосудам, тоже секретирует особый гормон. Называется он предсердный натрийуретический пептид. Этот гормон необходим для снижения артериального давления и выделения из организма солей натрия с мочой.

Сердце

ЖКТ (Желудочно-кишечный тракт)

Желудочно-кишечный тракт человека также синтезирует определенные гормоны. В желудке синтезируется гастрин, необходимый для секреции соляной кислоты. В тонком кишечнике вырабатывается секретин для стимуляции работы поджелудочной железы, а также холецистокинин, необходимый для высвобождения ферментов поджелудочной железы посредством стимуляции сокращений желчного пузыря.

Желудочно-кишечный тракт

Витамин D - единственный витамин, который является и гормоном в том числе. Активная форма витамина D называется кальцитриолом и активируется под действием ультрафиолетовых лучей. Вместе с кальцитонином (гомон щитовидной железы) и паратгормоном (гормон паращитовидных желез) он регулирует обмен кальция и фосфора в организме.

Читайте также: