Тест на нитратредуктазную активность бактерий. Хроматография при идентификации бактерий. Индикаторные бумажки для идентификации бактерий.

Добавил пользователь Валентин П.
Обновлено: 14.12.2024

Протеолитическая активность микробов направлена на расщепление белков до промежуточных (пептоны, полипептиды, аминокислоты) или конечных (сероводород, индол, аммиак) продуктов. Действие протеолитических ферментов изучают на средах с желатином, молоком, сывороткой, пептоном.

Тест на желатиназу. Культуру микроорганизмов засевают уколом в столбик питательного бульона, содержащего 12% желатины. Посевы выдерживают при комнатной температуре (20-22°С) в течение нескольких (5-7) дней, при этом регистрируют не только наличие разжижения, но и его характер. Разжижение может быть послойным, что свойственно бактериям сине-зеленого гноя; холерный вибрион разжижает желатину в виде гвоздя; стафилококки - в виде чулка. Рост сибиреязвенных бацилл напоминает елочку, перевернутую вершиной вниз (характер разжижения послойный).

Тест на растворение свертка казеина. Культуру засевают на обезжиренное молоко. Культура расщепляет молочный сахар (лактозу) и за счет закисления среды наблюдается свертывание молочного белка (казеина). При выделении протеолитических ферментов казеин постепенно растворяется - пептонизируется, в результате чего молоко просветляется и приобретает легкий кремовый оттенок, а на дне пробирки формируется осадок.

Тест на свернутой сыворотке крови. Куль­туру исследуемых аэробных микробов засевают на чашки, анаэробных — уколом в столбик свернутой лошадиной сыво­ротки, инкубируют в термостате при 37 °С. Штам­мы, продуцирующие протеолитические ферменты, разжижая питательную среду, образуют углубления вокруг колоний или на поверхности столбика среды.

Некоторые виды патогенных микробов с выраженной про­теолитической активностью обладают способностью расщеп­лять белок и пептон до продуктов глубокого распада: индо­ла, сероводорода, мочевины и аммиака. При определении видов и дифференциации разновидно­стей патогенных микробов наибольшее значение имеет выяв­ление двух первых продуктов: индола и сероводорода.

Определение индола. Для обнаружения индола по спо­собу Мореля узкие полоски фильтровальной бумаги смачивают горячим насыщенным раствором щавелевой кислоты и высушивают. Индикатор­ную бумажку помещают между стенкой пробирки с МПА и пробкой, предварительно произведя посев исследуемой культуры. При выделении индола на 2-3-й день нижняя часть полоски бумаги приобре­тает розовый цвет. Индол образуется при наличии у бактерий фермента триптофаназы при расщеплении сложной гетероциклической кислоты - триптофана.

Определение сероводорода. Сероводород яв­ляется конечным продуктом расщепления аминокислот: цистина, цистеина и метионина, содержащих серу. Петлю ис­следуемой культуры микробов засевают в пробирку с мясопептонным бульоном. Сероводород обнаруживают с помощью полоски фильтровальной бу­маги, пропитанной раствором ацетата свинца, которую закрепляют меж­ду стенкой засеянной пробирки и пробкой. При взаимодействии серово­дорода и ацетата свинца бумага чернеет в результате образования суль­фида свинца.

Тест на аммиак.Аммиак определяют при помощи увлажненной розовой лакмусовой бумажки, помещенной между стенкой и пробкой засеянной пробирки. Посевы инкубируют в термостате 1-5 суток. Посинение лакмусовой бумажки свидетельствует о выделении аммиака.

Определение окислительно-восстановительных ферментов бактерий

Изучение сахаролитических и протеолитических ферментов часто оказывается достаточным для определения вида, но в некоторых случаях возникает необходимость включать в изучение другие ферменты: уреазу, каталазу, цитохромоксидазу, нитратредуктазу и др.

Тест на уреазу. Наличие уреазы определяют на среде с мочевиной и индикатором фенолротом (начальный цвет среды-желтый). При расщеплении моче­вины на аммиак и углекислый газ накапливается аммоний, что сдвигает рН в щелочную сторону и изменяет цвет индикатора на красный.

Тест на нитратредуктазную активность. Этот тест используют для идентификации отдельных видов бактерий. Он позволяет опреде­лить способность восстанавливать нитраты в нитриты. Выявление нитратредуктазы (фермента восстанавливающий нитраты в нитриты) характерно в основном для факультатив­ных анаэробов. Способность к восстановлению NO3 в N02, определяют культивированием в МПБ, содержащем 1% раствор KNO3. Для определения нитритов в среду добавляют несколько капель реактива Грисса, содержащий уксусную кислоту. По­явление красного окрашивания свидетельствует о нали­чии нитритов.

Тест на каталазу. Каталаза — это фермент, катализирующий реакцию разложения перекиси водорода с образованием воды и кислорода. Каталазу содержат аэробы и факультативные анаэробы, но она отсутствует у облигатных анаэробов, на которых перекись водорода оказывает губительное действие. Бактериологическую петлю исследуемой культуры с плотной питательной среды суспезируют в капле 3% раствора перекиси водорода на предметном стекле. Образование пузырьков газа свидетельствует о проявлении каталазной активности.

Тест на оксидазу (цитохромоксидазу). Цитохромоксидаза — это фермент, обеспечивающий перенос электронов на кислород в процессе аэробного дыхания. Активность цитохромоксидазы учитывают при дифференциации бактерий семейства Enterobacteriaceae и др. Обнаружение цитохромоксидазы у аэробов проводится путем нане­сения и растирания петли культуры на индикаторную бумажку, пропитан­ную спиртовым раствором альфа-нафтола и 1% водным раствором мен­тола. О наличии цитохромоксидазы судят по синему окрашиванию, появ­ляющемуся через 2—5 мин.

Тест на плазмокоагулазную активность. Плазмокоагулаза - фермент, свертывающий плазму крови животных. Петлю агаровой культуры стафилококка суспензируют в 0,5 мл цитратной кроличьей плазме, разведенной 1:5. Результаты регистрируют через 1, 2, 4 и 18 часов инкубации проб в термостате при температуре 37°С. Появление на дне пробирки студнеобразного сгустка свидетельствует о наличии плазмокоагулазы.

Тест на гемолитическую активность. Определяется при посеве испытуемых микроорганизмов на кровяной агар. Гемолитическая активность характеризуется появлением зоны просветления среды вокруг колоний.Различают β-гемолиз (полный гемолиз), когда образуются зоны просветления вокруг колоний, α-гемолиз или неполный гемолиз, при наличии зон зеленого цвета вокруг колоний. Отсутствие гемолиза обозначается как γ-гемолиз.

При идентификации многих микроорганизмов исполь­зуют реакцию Фогеса — Проскауэра на ацетоин — проме­жуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свиде­тельствует о наличии бутандиолового брожения. Определение образования ацетона проводится при добавлении к культуре 40% КОН и 5% альфа-нафто­ла. При наличии ацетоина жидкость приобретает красное окрашивание, т.е. в щелочных условиях ацетон образует с альфа-нафтолом соединение красного цвета - ацетилметилкарбинол.

Тест на нитратредуктазную активность бактерий. Хроматография при идентификации бактерий. Индикаторные бумажки для идентификации бактерий.

Медицинская микробиология:

Тест на восстановление нитратов до нитритов (нитратредуктазный тест)

Под восстановлением нитратов в микробиологии подразумевают способность некоторых микроорганизмов продуцировать фермент нитратредуктазу, что позволяет использовать нитраты в целях утилизации азота, восстанавливая при этом соли азотной кислоты — нитраты (NO3) в соли азотистой кислоты — нитриты (NO2 - ).

При редукции нитратов до конечных продуктов реакции образуется аммиак и газообразный азот (N2), появление которого определяют по накоплению газа на дне «поплавков» (пробирок Durham) в жидкой среде с нитратом калия. Процесс редукции (денитрификации) нитратов может происходить в аэробных и анаэробных (за счет кислорода нитратов) условиях.

Редукция нитратов свойственна многим микроорганизмам, как грамположительным, так и грамотрицательным — псевдомонадам, энтеробактериям, нейссериям, некоторым клостридиям, бациллам и др.

Тест основан на выявлении нитритов в испытуемой культуре бактерий при помощи тест-реактива Грисса. Добавление реактива Грисса к среде, содержащей нитриты, вызывает окрашивание содержимого пробирки в красный цвет.

Техника постановки теста. Одну-две колонии культуры, испытуемой на образование нитратредуктазы, высевают на нитратный бульон с пробиркой Durham. Посев помещают в термостат при 35°С на 48 ч. Наблюдение за результатом реакции начинают с конца первых суток инкубации.

Из суточной бульонной культуры берут 1 мл бульона в агглютинационную пробирку и добавляют к нему 1-2 капли реактива Грисса. Появление красного окрашивания в течение нескольких ближайших минут свидетельствует о присутствии в среде нитратов и положительном результате теста. Наличие пузырьков газа в пробирке Durham указывает на то, что восстановление нитритов произошло до образования конечных продуктов (наличие азота).

При отсутствии окрашивания среды или получении сомнительных результатов инкубацию культуры продолжают, повторяя процедуру учета результатов через двое, трое и четверо суток.

Положительный контроль: Proteus vulgaris, Escherichia coli, Pseudomonas aeruginosa.

Приготовление индикаторных бумаг для идентификации бактерий

а) Индикаторная бумага для обнаружения индола по Морелю. Фильтровальную бумагу нарезают полосами шириной 6-6,5 см, пропитывают насыщенным водным раствором щавелевой кислоты. Мокрые полосы высушивают в термостате и нарезают полосками длиной 6-6,5 см и шириной 0,4-0,5 см. Бумага имеет белый или кремовый цвет. При высушивании на ее поверхности выступают кристаллы кислоты.

Готовую к употреблению индикаторную бумагу можно хранить в течение многих месяцев в банках из темного стекла с притертыми пробками или с герметически завинчивающимися крышками при комнатной температуре.

б) Индикаторная бумага на индол по Джиллису (Gillies). Полосы фильтровальной бумаги пропитывают индикатором следующего состава:
Диметиламинобензальдегид — 5,0 г
Ортофосфорная кислота (H3PO4) концентрированная — 10,0 мл
Метиловый (этиловый) спирт 96% — 50,0 мл

Все перечисленные реактивы смешивают, подогревают на водяной бане и в теплом состоянии используют для пропитывания бумаги. Цвет готовых индикаторных полосок — слегка желтоватый.

При наличии индола нижний конец бумажки окрашивается в розовато-сиреневый цвет (независимо от состава индикатора).

в) Индикаторная бумага на сероводород. Для определения сероводорода (H2S) пользуются полосками фильтровальной бумаги, смоченной в растворе следующего состава:
Вода дистиллированная — 100,0 мл
Уксуснокислый свинец (CH3COO)4Pb — 20,0 г
Двууглекислая сода (NaHCO3) — 1,0 г

ФЕРМЕНТАТИВНЫЕ (БИОХИМИЧЕСКИЕ) СВОЙСТВА И ПРИНЦИПЫ ИДЕНТИФИКАЦИИ МИКРООРГАНИЗМОВ

Цель занятия.Ознакомить студентов с методами изучения ферментативной активности и принципами идентификации микроорганизмов.

Оборудование и материалы. Засеянные среды Гисса (глюкоза, лактоза, сахароза и т.д.) с признаками кислото- и газообразова­ния, культуры Е. coli на МПБ в пробирках, реактив Эрлиха, куль­туры В. subtilis на молоке, МПЖ, культуры S. aureus на МПА в пробирках, 3%-й раствор перекиси водорода и другие тесты, ре­зультаты определения ферментативной активности культур Е. coli и S. typhimurium на ПБДЭ-пластинах, карточки с описанием свойств отдельных видов бактерий для работы с определителями.

Изучение ферментативной активности микроорганизмов. В пре­делах семейства у представителей разных родов можно обнару­жить как общие для семейства, так и специфические для родов наборы ферментов. У микроорганизмов разных видов в пределах одного рода есть общие (родовые) и специфические для отдель­ных видов ферменты. Таким образом, каждый вид микроорга­низмов характеризуется специфическим набором ферментов, по­этому определение ферментного спектра — важнейший этап идентификации микроорганизмов.

О наличии того или иного фермента судят по способности микроорганизмов воздействовать на известный субстрат. При­сутствие фермента регистрируют по изменению физического со­стояния субстрата (разжижение желатины), закислению пита­тельной среды (среды Гисса с углеводами), образованию опреде­ленных продуктов метаболизма (индол, сероводород, аммиак) и т.д.

Наиболее распространены следующие методы регистрации ферментативной активности микроорганизмов.

Выявление сахаролитической активности микроорганизмов. В со­став дифференциально-диагностических углеводных сред (среды Гисса — см. тему 7) входят различные соединения, которые можно условно назвать сахарами: моносахариды, полисахариды, много­атомные спирты. При утилизации углеводов в качестве конечных продуктов образуются кислоты и газообразные продукты. Соот­ветственно расщепление углевода регистрируют по изменению рН среды и выделению газообразных продуктов. Закисление пита­тельной среды улавливают при помощи различных индикаторов.

Индикатор BP, входящий в состав сухих сред Гисса, меняет цвет от розового в щелочной среде через серый при нейтральном рН до голубого или ярко-синего в кислой среде.

Индикатор Андрэдэ (кислый фуксин —0,5 г, 1%-й раствор гидроксида натрия — 16 мл, дистиллированная вода — 84 мл) при закислении дает покраснение среды. В жидких средах Гисса об­разование газов при утилизации субстрата улавливают при помо­щи поплавков («газовок») — стеклянных трубочек, запаянных в верхнем конце и помещенных в пробирки. В «газовках» скапли­ваются газы, вытесняющие жидкую питательную среду; в полу­жидких средах Гисса газообразные продукты остаются в толще среды в виде пузырьков.

Ферментация углеводов иногда происходит медленно, поэто­му предварительный учет результатов проводят через 24. 48 ч, а окончательный — через 10. 14 сут инкубирования посевов. Тест с метиловым красным показывает сте­пень закисления среды при расщеплении глюкозы. Метилрот как индикатор срабатывает в диапазоне рН 4,4. 6,0. Исследуемую культуру выращивают 2. 5 сут в жидкой среде Кларка с глюко­зой. Затем на 5 мл среды добавляют пять-шесть капель раствора метилрота. Положительный результат — покраснение среды пос­ле внесения индикатора (рН 4,0. 5,0).

Среда Кларка: пептон — 5 г, гидрофосфат калия — 5 г, глюко­за — 5 г, вода дистиллированная — 1000 мл. Ингредиенты раство­ряют в воде, кипятят 2. 3мин, фильтруют через бумажный фильтр, устанавливают рН 6,9. 7,0, разливают по пробиркам и стерилизуют при 112º С 20 мин.

Тест Фогес-Проскауера выявляет промежуточ­ный продукт расщепления глюкозы — ацетоин (ацетилметилкар-бинол, диметилкетон). Исследуемую культуру выращивают на среде Кларка. К 1 мл культуры добавляют 0,6 мл 5%-го раствора а-нафтола, перемешивают, вносят 0,2 мл 40%-го раствора гидро­ксида калия и инкубируют 1 ч. Положительная реакция — крас­ное окрашивание среды.

Выявление протеолитических и других ферментов микроорганиз­мов.Протеолитические ферменты расщепляют белки питательной среды до промежуточных (пептоны, полипептиды, аминокислоты) или конечных (сероводород, индол, аммиак) продуктов.

Характер роста микроорганизма на мо­локе: при посеве исследуемой культуры бактерий на стериль­ное обезжиренное молоко можно выявить фермент, расщепляю­щий молочный сахар (лактозу), и протеолитические ферменты, действующие на молочный белок (казеин). Расщепление лактозы приводит к закислению и свертыванию молока, при выделении протеолитических ферментов казеин постепенно растворяется — пептонизируется, в результате чего молоко просветляется, при­обретает легкий кремовый оттенок, а на дне пробирки форми­руется осадок. Свертывание молока может также происходить под влиянием выделяемого некоторыми бактериями «сычужного» фермента, в этом случае реакция молока бывает щелочной. Иног­да возможна пептонизация казеина без свертывания молока.

Тест на гидролиз казеина в плотных питательных средах: обезжиренное молоко диализуют для удаления лактозы, которая ингибирует гидролиз казеина. В расплавленный питательный агар с двойной концентрацией агар-агара добавляют равный объем стерилизованного автокла-вированием диализованного молока. Исследуемую культуру бак­терий засевают «штрихом» на поверхность питательной среды, разлитой в чашки Петри. Посевы инкубируют до 14 сут. Перед учетом результатов поверхность среды заливают 10%-м раство­ром соляной кислоты. Положительный результат — просветле­ние среды вокруг колоний.

Тест на желатиназу: культуру микроорганизма за­севают уколом в столбик питательного бульона, содержащего 12 % желатины. После культивирования опытную и контрольную (незасеянную) пробирки охлаждают под холодной водой и по «текучести» желатины делают заключение о наличии фермента.

Тест на сероводород: узкие полоски фильтроваль­ной бумаги смачивают в 5%-м растворе ацетата свинца, высуши­вают, стерилизуют. Культуру микроорганизма засевают в пита­тельную среду в пробирке, после чего индикаторную бумагу по­мещают в пробирку (не должна касаться среды) и закрепляют пробкой. Выделяющийся сероводород реагирует с ацетатом свинца, и образующийся сульфид свинца вызывает почернение бумаги (положительный результат). Описанный метод выявления сероводорода при помощи индикаторных бумажек считают од­ним из наиболее чувствительных, разработаны и другие методы.

Тест на индол: исследуемую культуру целесообразно выращивать на средах, богатых триптофаном, при расщеплении которого образуется индол (бульон Хоттингера, бульон с 0,1% Z-триптофана). К выращенной культуре добавляют 1. 3мл эфи­ра, встряхивают, отстаивают и вносят 0,5 мл реактива Эрлиха (парадиметиламинобензоальдегид — 1 г, 96%-й этанол — 95 мл, соляная кислота —20 мл). Через 5 мин учитывают результат. По­явление на границе эфира и питательной среды красно-фиолето­вого окрашивания свидетельствует о наличии индола.

Тест на аммиак: исследуемую культуру засевают в жидкую питательную среду в пробирке. Между пробкой и стен­кой пробирки закрепляют полоску розовой лакмусовой индика­торной бумажки. Посевы инкубируют в термостате 1. 5сут. По­синение лакмусовой бумажки свидетельствует о выделении ам­миака.

Тест на уреазу: исследуемую культуру микроорганиз­ма засевают на среду Кристенсена (пептон — 1 г, хлорид на трия — 5 г, дигидрофосфат калия — 2 г, агар — 20 г, глюкоза — 1 г, 0,2%-й раствор фенолрота — 6 мл, 20%-й раствор мочевины — 100 мл, вода дистиллированная — 1000 мл) и выращивают 1. 4сут. Положительный результат — покраснение среды в ре­зультате ее защелачивания.

Тест на редукцию нитратов выявляет восста­новление нитратов до нитритов. Культуру микроорганизма засе­вают в МПБ, содержащий 0,2 % нитрата калия, инкубируют 48. 72 ч, затем в опытную и контрольную пробирки добавляют по 1 мл реактива с крахмалом (растворимый крахмал — 1 г, вода дистиллированная — 100 мл, йодид калия —0,5 г). К этому ра­створу перед постановкой реакции добавляют несколько капель 10%-го раствора соляной кислоты. Положительный результат— темно-синее окрашивание.

Тест на общую фосфатазу: исследуемую культу­ру микроорганизма засевают «штрихом» на поверхность пита­тельного агара с натриевой солью .дифосфата фенолфталеина, инкубируют 4. 5 сут. Чашки переворачивают вниз крышкой, на внутреннюю поверхность которой наносят каплю 28. 30%-го ра­створа нашатырного спирта. При наличии фосфатазы колонии приобретают красный цвет.

Тест на каталазу: бактериальную массу снимают с поверхности агара бактериологической петлей и суспендируют в капле 3%-го раствора перекиси водорода на предметном стекле. Положительный результат — образование пузырьков газа.

Тест на оксидазу: фильтровальную бумагу пропиты­вают 1%-м раствором тетраметилпарафенилендиамина дигид-рохлорида. Бактериальную массу петлей наносят на поверхность бумажной полоски. Положительный результат — фиолетовое или пурпурное окрашивание через 10. 60 с.

Тест на редуцирующую способность бактерий (в метиленовом молоке) основан на следующей особенности: при окислительно-восстановительных реакциях у бактерий акцептором водорода может быть кроме молекулярного кислорода ряд органических красителей, которые, присоединяя водород, восстанавливаются и обесцвечиваются. Такие свойства отмечены у лакмусовой настойки, метиленового синего, малахи­тового зеленого и т. д. Например, молоко с метиленовым синим готовят так: молоко подщелачивают 10%-м раствором карбоната натрия до рН 7,2 и добавляют 20 мл 1%-го водного раствора ме­тиленового синего на 1000 мл. Готовая среда голубого цвета. Ре­зультат учитывают через сутки инкубирования посевов. В случае редукции красителя среда окрашена в кремовый цвет.

Тест-системы для быстрой идентифика­ции бактерий по группе специально отобранных биохи­мических признаков обычно представляют собой пластмассовые пластины с лунками (микропробирками), заполненными различ­ными сухими средами (субстратами). В эти среды вносят суспен­зию исследуемой культуры и после инкубирования учитывают результат. К тест-системам прилагают таблицы для учета резуль­татов и идентификации микроорганизмов в зависимости от спек­тра выявленных ферментов.

За рубежом разработаны тест-системы для идентификации энтеробактерий, анаэробов, несбраживающих бактерий и т. д. В России Нижегородский институт микробиологии и эпидемиоло­гии выпускает тест-систему подобного типа — биохимические пластины для идентификации энтеробактерий (ПБДЭ), кроме того, разработаны тест-системы для санитарно-микробиологи-ческих целей.

Принципы идентификации микроорганизмов. Основная задача бактериологического диагностического исследования — это оп­ределение таксономического положения выделенного микроор­ганизма путем сравнения его свойств со свойствами известных видов.

В рутинной бактериологической практике микроорганизм идентифицируют, изучая его фенотипические признаки (морфо­логические, тинкториальные, культуральные, биохимические, патогенные). Стали получать распространение некоторые мето­ды идентификации по генотипическим признакам (см. тему 12), которые ранее в основном применяли в научной работе для клас­сификации микроорганизмов с неясным таксономическим поло­жением.

В бактериологии для идентификации используют определите­ли микроорганизмов. Наиболее популярный — определитель бактерий Берджи — включает в себя описание свойств известных видов микроорганизмов. Бактерии в этом руководстве по огра­ниченному числу морфологических и физиологических призна­ков объединены в большие группы, например группа № 20 «Грамположительные неспорообразующие палочки неправиль­ной формы» или группа № 5 «Факультативно-анаэробные грам-отрицательные палочки». В пределах этих групп при помощи не­скольких дифференцирующих признаков бактерии подразделены на семейства, роды и виды. Распределение микроорганизмов в этом определителе не отражает иерархической классификации, а преследует сугубо практическую цель — как можно быстрее и экономичнее установить таксономическое положение изучаемо­го микроорганизма.

Идентификация неизвестного микроорганизма представляет собой процесс последовательного его отождествления с той или иной большой группой микробов, характеризующихся общими свойствами, затем с семейством в пределах группы, далее с тем или иным родом в пределах установленного семейства, и на ко­нечном этапе исследуемый микроорганизм отождествляют (идентифицируют) по совокупности морфологических, тинкто либо видом в пределах рода. В случае необходимости внутри вида устанавливают принадлежность культуры к био-, серо-, фаговару. Работа с определителем Берджи предполагает использование достаточно большого количества тестов, характе­ризующих различные свойства микроорганизма. В практических диагностических лабораториях, исходя из эпизоотологических, клинических и патологоанатомических данных, обычно проводят бактериологические исследования, заранее ориентированные на обнаружение возбудителя определенной инфекционной болезни, по схеме, предусмотренной официальной инструкцией.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Ознакомиться с тестами, характеризующими ферментатив­ные свойства бактерий (ферментация углеводов в средах Гисса, образование индола, сероводорода; тесты на каталазу, оксидазу, желатиназу и т. д.).

. 2. Используя карточки с описанием свойств бактериальной культуры, при помощи определителя микробов установить ее ви­довую принадлежность.

3. Оценить результаты изучения ферментативной активности двух бактериальных культур семейства Enterobacteriaceae на ПБДЭ-пластинах и определить их вид при помощи прилагаемой дифференциальной таблицы.

1.Какое таксономическое значение имеет определение набора ферментов у микроорганизмов?

2.Что представляют собой современные тест-системы для изучения фермента­тивной активности микроорганизмов?

Системы для биохимической идентификации бактерий

В современных условиях для изучения биохимической активности микроорганизмов, наряду с классическими варинтами “пестрого ряда”, применяют системы индикаторных бумажек (СИБ) и наборы мультимикротестов (ММТ).

Система индикаторных бумажек (СИБ) позволяет выявлять самые разнообразные ферменты бактерий. Это бумажные диски, пропитанные различными субстратами (индикатором, углеводами, аминокислотами, цитратом, ацетатом, малонатом и др. ве­ществами). Утилизация вещества приводит к изменению рН среды, изме­нению цвета индикатора. Имеются наборы, которые содержат от десяти до тридцати тест-бумажек. Их можно непосредственно вносить в пробирки со взвесью бактерий либо предварительно поместить в лунки пластиковых планшетов, куда будут внесены исследуемые бактерии и уже через 3-4 часа инкубации в термостате можно судить о разложении реактивов по изменению цвета диска. Так, на практике применяют наборы Minitek Enterobacteriaceae lll и Minitek Neisseria для дифференциальной диагностики энтеробактерий (четырнадцать субстратов) и нейссерий (четыре субстрата), позволяющие получить результаты через 4 ч инкубации при 37 °С. Например, СИБы для идентификации вибрионов, энтеробактерий (Россия).

Микро-тест-системы для биохимической идентификации культур. В настоящее время, кроме классических биохимических тестов, для идентификации выделенных культур микробов применяют микро-тест-системы, которые повышают точность результатов за счет стандартизации и увеличения количества тестов (от 15 до 30), менее трудоемки и, следовательно, сокращают время исследования. Наборы мультитестов - это пластиковые планшеты, в лунки которых помещены различные субстраты и индикаторы. Стандартную взвесь исследуемой культуры вносят в лунки и инкубируют при 37°.

Тест-системы делятся на 2 группы в зависимости от содержания субстрата:

1. Системы, в которых субстрат и индикатор находится в питатель­ной среде;

2. Системы, где субстрат и индикатор содержатся в носителе-шаб­лоне, например в бумажных дисках или полимерном шаблоне-носителе.

Инкубация тест-систем проводится в обычных термостатах или в специальных термостатируемых устройствах, входящих в комплект автоматизированных систем, где учет результатов и их интерпретация осуществляется автоматически с помощью компьютера (“Vitek”, BioMerieux, Франция).

Для тест-систем второй группы изучаемую культуру выращивают в жидких питательных средах, в которые по­мещают шаблон-носитель, содержащий субстрат и индикатор к изу­чаемому ферменту. Примером такой тест-системы является Micro-ID (Organon Teknika, США).

При необходимости ускоренной идентификации (когда лабо­ратории работают в круглосуточном режиме) можно использовать коммерческие рапид-системы, в которых тесты основаны не на изменении рН, а на использовании хромогенных или флюорогенных субстратов. Рапид-системы позволяют получить результаты после 4-6 часов инкубации. Примерами коммерческих рапид-систем являются API Rapid 20Е (BioMerieux, Франция), RapiD NF Plus и RapiD ANA П (IDS. США), а также RapID NH для идентификации нейссерий и гемофилов, RapID Е для энтеробактерий и др., позволяющие получить результаты не позднее 4-8 ч.

При идентификации выделенной культуры микроба определяют, чаще всего, ее видовую принадлежность, но иногда достаточно опреде­лить род или принадлежность к определенной группе. Учет результатов проводят визуально или с использованием специальных считывающих устройств - ридеров, которые повышают достоверность результатов и снижают субъективизм оценки. Каждый положительный результат оценивается знаком "+", а отрицательный - знаком. В некоторых случаях перед учетом результата теста в лунку необходимо добавить специальные проявляющие реактивы.

Фирмы, выпускающие микро-тест-системы, как правило, предла­гают к тестам и «Фирменные» программы для компьютерной обработки результатов.

III. План практической работы

1. Изучить схему идентификации чистых культур бактерий

2. Изучить макроскопически и микроскопически чистоту выделенной культуры, зарисовать

3. Выполнить посевы для определения гликолитических и протеолитических свойств выделенной чистой культуры бактерий

4. Учесть результаты определения гликолитических (на средах Гисса) и протеолитических (на МПБ с индикаторными бумажками) свойств выделенных чистых культур бактерий

5. Заполнить таблицу « Дифференциально-диагностические среды»

6. Дать заключение о видовой принадлежности выделенных чистых культур бактерий (используя дифференциально-диагностическую таблицу)

7. Решить ситуационные задачи

IV. Примеры ситуационных задач

Ситуационная задача № 1

Больной Р, 35 лет, поступил в инфекционное отделение городской больницы № 1 с гнойной ангиной, предположительно стафилококковой этиологии. Какая питательная среда должна быть использована в этом случае, обоснуйте свой выбор.

  1. Среда Эндо
  2. ЖСА
  3. Является дифференциально-диагностической средой и позволяет изучить биохимические свойства микроорганизмов
  4. Является элективной питательной средой и позволяет выявить наличие лецитиназы

Ситуационная задача № 2

Больная К, 42 лет, поступила в инфекционное отделение городской больницы № 2 с подозрением на дизентерию. После выделения чистой культуры предполагаемого инфекционного агента необходимо провести биохимическую идентификацию возбудителя, для этого необходимо использовать:

  1. Среду Эндо
  2. Среды Гисса
  3. МПБ или пептонную воду
  4. Среду Левенштейна-Йенсена,

которые позволяют изучить:

  1. антигенные свойства выделенной чистой культуры
  2. сахаролитические (гликолитические) свойства выделенной чистой культуры
  3. протеолитические свойства выделенной чистой культуры
  4. фибринолитические свойства выделенной чистой культуры

Теоретические вопросы для рубежного контроля знаний

1. Состав и требования, предъявляемые к питательным средам

2. Классификация питательных сред

3. Асептики и антисептика

4. Дезинфекция, методы и контроль эффективности дезинфекции

5. Стерилизация, методы, аппаратура и режимы стерилизации

6. Методы определения эффективности стерилизации

7. Вид, штамм, колония, чистая культура микроорганизмов

8. Методы выделения чистых культур микроорганизмов

9. Бактериологический метод диагностики инфекционных заболеваний. Цель и последовательность выполнения 1 этапа бактериологического метода выделения аэробов

10. Техника посева микроорганизмов на жидкие и плотные питательные среды

11. Особенности культивирования анаэробных микроорганизмов. Аппаратура и оборудование, используемая для культивирования анаэробных бактерий

12. Метаболизм микроорганизмов

13. Ферментные системы микроорганизмов

14. Классификация бактерий по типу питания. Источники углерода, азота, макро- и микроэлементов, ростовых факторов для микробов

15. Механизмы питания бактерий

16. Классификация микроорганизмов в зависимости от источника энергии

17. Классификация бактерий по типу дыхания - биологического окисления

18. Брожение и его виды

19. Условия культивирования бактерий

20. Рост и размножение бактерий. Фазы размножения бактерий.

21. Бактериологический метод исследования. Проведение 2 этапа бактериологического метода выделения аэробов. Культуральные свойства бактерий

22. Проведение III этапа бактериологического метода выделения чистых культур микроорганизмов. Схема идентификации микроорганизмов

23. Определение чистоты выделенной культуры

24. Использование ферментативной активности бактерий для идентификации микроорганизмов

25. Методы определения гликолитической активности микроорганизмов

26. Методы определения протеолитической активности бактерий

27. Определение окислительно-восстановительных ферментов бактерий

28. Системы для биохимической идентификации бактерий

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.01)

Читайте также: