Венозное давление. Скорость кровотока
Добавил пользователь Владимир З. Обновлено: 14.12.2024
Вены обладают большей растяжимостью, чем артерии, благодаря незначительной толщине мышечного слоя, поэтому они способны вмещать 80%всего количества крови, играя роль депо крови. Основная функция венозной системы —это возврат крови к сердцу и наполнение его полостей во время диастолы. Скорость течения крови в периферических венах составляет 6—14см/с, в полых венах — 20см/с.
Движению крови в венах и возврату крови к сердцу способствует ряд факторов:
1.Главный фактор —это градиент давления в начале и конце венозной системы, равный 2—4мм рт. ст.
2.Остаточная сила сердца —visatergo— играет роль в движении крови по посткапиллярным венулам.
3.Присасывающее действие самого сердца во время диастолы —давление в полостях сердца в эту фазу равно 0мм рт.ст.
4.Отрицательное давление в грудной полости. Во время вдоха особенно повышается градиент давления между брюшными и грудными венами, что приводит к увеличению венозного притока к последним.
5.Наличие в венах клапанов, препятствующих обратному току крови от сердца.
6.«Мышечный насос» -сокращение скелетных мышц и сдавливание вен, проходящих в их толще, при этом кровь выдавливается по направлению к сердцу.
7.Перистальтика кишечника, способствующая движению крови в венах брюшной полости.
Венозное давление
Кровь течет по венам под низким давлением. В посткапиллярных венулах оно равно 15-20мм рт.ст., а в мелких венах -уже12- 15мм рт.ст., в венах, расположенных вне грудной полости, — 5 - 9мм рт.ст.; в полых венах -от 1до 3мм рт.ст. Часто давление в венах измеряется в миллиметрах водного столба (1мм рт.ст. = 13,6мм вод.ст.). Давление в венах, расположенных вблизи грудной клетки, например в яремной вене, в момент вдоха может быть отрицательным. Поэтому при ранениях шеи необходимо опасаться засасывания атмосферного воздуха в вены и развития воздушной эмболии.
Различают также центральное венозное давление (ЦВД),или давление в правом предсердии, влияющее на величину венозного возврата крови к сердцу, а значит, и на систолический объем. ЦВД у здорового человека в покое составляет 40—120мм вод.ст., увеличиваясь к вечеру на 10 - 30мм вод.ст. Кашель, натуживание кратковременно могут увеличить ЦВД (выше 100мм рт.ст.). Вдох сопровождается уменьшением ЦВД вплоть до отрицательных величин, а выдох -увеличением. Минимальное среднее давление в правом предсердии составляет 5- 10мм вод.ст., максимальное -
100- 120мм вод. ст.
Существует определенная зависимость между ЦВД и количеством притекающей к сердцу крови. При снижении ЦВД от 0до4мм рт.ст. венозный приток возрастает на 20—30%.Еще большее снижение ЦВД приводит к спадению вен, впадающих в грудную клетку, а приток крови к сердцу при этом не возрастает. И наоборот, повышение ЦВД хотя бы на 1мм рт.ст. снижает приток крови на 14%.Можно искусственно увеличить возврат крови к сердцу с помощью внутривенных вливаний кровезаменителей, которые приведут к повышению ЦВД.
Венный пульс
Ведущие причины повышения давления в малом круге кровообращения у пациентов с дисплазиями соединительной ткани
В статье представлены основные механизмы формирования повышения давления в малом круге кровообращения при дисплазиях соединительной ткани, рассмотрены особенности гемодинамики малого круга кровообращения.
Main reasons of increased pressure in the pulmonary circulation in patients with connective tissue dysplasia
The article presents the main mechanisms of pressure increase in pulmonary circulation in patients with the connective tissue dysplasia: characteristics of hemodynamics of the pulmonary circulation were considered.
Согласно современным представлениям, легочная гипертензия (ЛГ) — это группа заболеваний, характеризующихся прогрессирующим повышением легочного сосудистого сопротивления и давления в легочной артерии, которое приводит к развитию правожелудочковой сердечной недостаточности и преждевременной гибели пациентов 2. По данным ряда авторов, нарушение гемодинамики малого круга кровообращения (МКК) имеет место при дисплазии соединительной ткани (ДСТ) [4, 5].
ДСТ представляет собой уникальную онтогенетическую аномалию развития, которая относится к числу сложных, далеко не изученных вопросов в современной медицине. В основе ДСТ лежат молекулярно-генетические и онтогенетические механизмы, которые приводят к изменению структуры и функции соединительной ткани. Тканевые аномалии онтогенеза тесно связаны как с нарушением синтеза коллагена и фибриллогенеза, так и аномалиями его биодеградации, ферментопатиями, дефектом фибронектина, эластина, гликопротеидов, протеогликанов, а также дефицитом различных кофакторов ферментов (меди, цинка, магния, аскорбиновой кислоты, кислорода и др.), участвующих в образовании поперечных ковалентных связей для стабилизации коллагеновых структур. Системность поражения при ДСТ во многом обусловлена всеобъемлющим распространением в организме самой соединительной ткани, составляющей строму всех органов.
Неполноценность укладки коллагеновых фибрилл, а также слабая степень и неравномерность распространения минерализации при ДСТ создают условия для нарушения опорной функции кости в виде изменения плотности, прочности, эластичности, упругости. Клинически наиболее ярко это проявляется в виде скелетных изменений грудной клетки, позвоночника и костно-суставного аппарата. В основе деформации грудной клетки лежит также неполноценность реберных хрящей в виде дистрофических изменений хондроцитов, появлении хондриновых волокон, не имеющих пучковости, состоящих из рыхло упакованных тонких и толстых волокон, отдельных волокон с продольными щелями.
Начальные признаки скелетных деформаций у большинства пациентов с ДСТ формируются в 5-6-летнем возрасте [6]. С течением времени выраженность и количество костно-мышечных признаков ДСТ нарастают, изменения позвоночника становятся фиксированными, не поддающимися активной и пассивной коррекции [4]. Наиболее распространенными внешними признаками ДСТ у детей школьного возраста и подростков являются так называемые статические деформации: нарушения осанки и сколиозы, прогрессирующие на фоне присоединяющихся плоскостопия и гипермобильности суставов. При этом деформации грудной клетки становятся более выраженными, принимают клинические формы в виде синдрома «прямой спины», вороночной, килевидной, смешанной и др. [6]. Помимо деформаций грудной клетки и позвоночника независимым предиктором формирования торакодиафрагмальных нарушений являются гипотония и гипотрофия мышц, что закономерно приводит к усугублению торакодиафрагмальных изменений при слабости мышечного каркаса.
На скорость прогрессирования данных проявлений ДСТ влияют нерациональное питание детей, стрессы, гиповитаминозы, частые острые респираторные вирусные инфекции, кишечные инфекции, применение антибиотиков, неблагоприятная экологическая обстановка [7].
Морфоонтогенетический процесс характеризуется прогредиентным течением. В результате формирования деформаций грудной клетки и позвоночного столба, нарушений механики дыхания происходит изменение соответствия геометрии торакоабдоминальных полостей, аспирационных функций грудной клетки и диафрагмы, что затрудняет отток крови из верхней полой вены в правое предсердие. Формируется венозный «парадокс», характеризующийся относительным увеличением центрального венозного давления и малым притоком крови в правые отделы сердца. На малый выброс правого желудочка сосуды малого круга отвечают увеличением сосудистого сопротивления с пассивным повышением давления [2, 4].
Уменьшение размеров сердца в узкой деформированной грудной клетке сопровождается снижением сердечного выброса, приводит к активации прессорных рецепторов на снижение давления в аорте. Кроме того, у пациентов с наследственными изменениями обмена веществ происходит нарушение химических, коллоидно-химических процессов, а также биоэнергетических реакций, протекающих при сокращении рабочей мускулатуры. В любой системе организма развитие патологического процесса изменяет афферентное влияние на кардиовазомоторные центры, особенно если имеются отклонения параметров внутренней среды организма (газового состава, электролитного равновесия и пр.). Активация симпатической нервной системы имеет определенное значение на показатели гемодинамики малого круга кровообращения. Не вызывает сомнений, что симпатическая стимуляция реализуется в легких констрикциях артериол, артерий и даже вен, так как тонус легочных сосудов зависит от массы мышечных элементов в их стенках и определяется воздействием на их рецепторы рядом адренергических субстанций: катехоламинов, серотонина, гистамина и др. Раздражение симпатических нервов может вызывать повышение тонуса легочных сосудов с повышением давления в малом круге кровообращения [4, 9].
Деформации грудины, ребер, позвоночника приводят к ограничению амплитуды движения диафрагмы. Смещение диафрагмы на 1 см сопровождается уменьшением объема грудной клетки на 250-270 мл. При снижении объема грудной полости происходит снижение объема плевральных полостей со сдавливанием легких [4]. Уменьшение объема легких на 1 см 3 способствует уменьшению объема вентилируемого воздуха через легкие на 50 мл.
Достаточно длительное время уменьшение объема грудной полости в сочетании с вегетативной дисфункцией, сопровождающейся увеличением частоты дыхательных движений, поддерживают нормальные показатели максимальной вентиляции легких и дыхательного резерва. С утяжелением торакодиафрагмального синдрома увеличивается дыхательный объем (ДО), преимущественно за счет снижения резервного объема вдоха, что тормозит уменьшение жизненной емкости легких (ЖЕЛ) [4]. С возрастом у пациентов происходит усугубление тугоподвижности в реберно-позвоночно-грудинных сочленениях, на этом фоне уменьшается растяжимость легких и количество растяжимой легочной паренхимы, снижается ЖЕЛ и минутный объем дыхания (МОД). Сдавление легких со снижением их объема и вентиляционной способности создает условия для увеличения сосудистого сопротивления за счет редукции сосудистого русла малого круга кровообращения [4, 9]. Снижение функции внешнего дыхания ведет к хроническому кислородному голоданию (гипоксической гипоксии) [4], что также способствует повышению давления в МКК.
Однако известно, что сосудистая сеть МКК является высокоэластичным резервуаром, который оказывает гораздо меньшее сопротивление кровотоку, чем сосуды системной циркуляции. В связи с этим даже троекратное повышение легочного сопротивления не вызывает роста давления в легочной артерии из-за соответствующего снижения сосудистого сопротивления. Таким образом, способность к существенному изменению кровотока без изменения давления является важной особенностью гемодинамики МКК у пациентов с ДСТ: увеличение размера легочного ствола играет важную роль в обеспечении достаточного кровотока [4].
Снижение легочного сосудистого сопротивления при этом позволяет временно снизить постнагрузку на правый желудочек и не требует высокого внутрижелудочкового давления для создания необходимого градиента между правым желудочком и легочной артерией. Относительное повышение сопротивления кровотоку приводит к повышению скорости сокращения правого желудочка. При этом расходуется большое количество энергии, требующее удлинения диастолического процесса, направленного на восстановление энергетических запасов [4].
Учитывая, что количество капиллярной крови в легких находится в тесной зависимости от величины ударного объема, можно предположить, что характерное для пациентов с ДСТ снижение ударного объема, повышение давления в легочных сосудах способствуют уменьшению площади капиллярного русла в легких, что также имеет значение для нарушений гемодинамики малого круга кровообращения [4, 9]. Рост давления в МКК («пассивная» гипертония) является одной из причин повышения периферического сопротивления в результате рефлекторного воздействия с сосудов малого круга на сосуды большого, что, несомненно, влияет на сократительную способность левого желудочка.
На фоне прогрессирования диспластикозависмых изменений у пациентов присоединяются нарушения со стороны бронхолегочной системы: изменяется функция мышечно-хрящевого каркаса трахеобронхиального дерева и альвеолярной ткани, делая их повышенно эластичными, формируется дискинезия стенки воздухопроводящих путей (раздувание на вдохе и коллапс на выдохе), что способствует задержке эвакуации секрета, уменьшению средней скорости воздушного потока в промежутке от бронхов мелкого до бронхов крупного калибра и объема форсированного выдоха за одну секунду. Методы математического моделирования позволили выделить четыре клинических варианта бронхолегочного синдрома при ДСТ: бронхитический, буллезный, гипервентиляционный и торакодиафрагмальный, связанный с развитием типичных изменений вентиляции и легочной гемодинамики [9].
Математический анализ показывает, что на величину среднего давления в легочной артерии достоверно влияют степень и выраженность деформации грудной клетки и позвоночника, приводящие к рестриктивному дистелектазу нижних долей легкого. Уменьшение объема легких при этом приводит к увеличению сосудистого сопротивления. По-видимому, этому способствует не только редукция сосудистого русла, но и изменение хода и формы мелких легочных сосудов и капилляров.
Уменьшение общей площади и общего сечения капиллярной сети легких влечет за собой цепь компенсаторных механизмов, направленных на увеличение поставки кислорода тканям и элиминации углекислого газа из организма. Некоторое увеличение альвеолярной вентиляции (ее резкое увеличение не выгодно из-за нарушения биомеханики экскурсии грудной клетки и диафрагмы — пародоксального дыхания) оказывает существенный прирост удельной перфузии легких.
Нарастание кровенаполнения сосудов малого круга кровообращения до определенного момента может не отражаться на уровне давления в легочной артерии и крупных венах за счет компенсаторного увеличения депонирования крови. Со временем, при более значительном увеличении объема крови и недостаточном снижении сосудистого сопротивления, происходит закрепление и прогрессирование легочной гипертензии [4, 7]. Длительное повышение давления в системе легочной артерии ведет к постепенному утолщению стенок сосудов со снижением их просвета, склерозу легочной паренхимы и ухудшению кровообращения [4].
Повышение давления в системе легочной артерии является пусковым фактором ауторегуляции, основанной на способности миокарда усиливать мощность сокращения и уровень работоспособности в ответ на повышение сопротивления выбросу крови из желудочка без изменения исходной длины мышечного волокна. Снижение емкостных свойств малого круга кровообращения изменяет эффективность работы сердца, так как при пониженной растяжимости сосудистой стенки выброс одного и того же количества крови требует дополнительной затраты энергии. Для компенсации существующих дефектов требуется увеличение минутного объема сердца за счет учащения сердечных сокращений, способствующее повышению легочной перфузии и являющееся основным механизмом компенсации недопоставки кислорода тканям [4, 9].
Ухудшение экстракардиальных условий и нарастание систолического давления в легочной артерии становятся причиной пространственно-функциональной асимметрии сократительной функции миокарда. У пациентов укорачивается период изгнания крови из правого желудочка. А более выраженное сдавление правых отделов сердца деформированными ребрами и грудиной обусловливает увеличение периода расслабления правого желудочка. Вынужденное увеличение интенсивности функционирования кардиоструктур в данных условиях не компенсирует насосную функцию сердца, а развивающаяся при этом диастолическая ригидность с ограничением податливости миокарда, замедлением течения диастолических фаз еще больше ограничивает объемные показатели сердца. В ответ на сложившуюся ситуацию повышается активность правого и левого предсердий (активного наполнения). Несмотря на это, происходит снижение ударного объема крови, уменьшение фракции выброса левого и правого желудочков, что способствует повышению периферического сопротивления. Компенсаторно-приспособительные реакции у данной группы пациентов включают в свой диапазон полный набор как внутрикардиальных, так и интракардиальных сосудистых регуляторных механизмов, однако состояние этих компенсаторных реакций носит характер угрожаемого срыва. Постепенно повышается легочное сосудистое сопротивление, с увеличением давления в легочной артерии, что свидетельствует о снижении сократительной способности миокарда и истощении компенсаторных механизмов.
Необходимость увеличения мощности сокращения правого желудочка на фоне редукции диафрагмального движения и уменьшения эластической тяги легких приводит к нарушению венозного притока к сердцу [4]. Уменьшение объема грудной клетки и редукция движений диафрагмы ведут к снижению передачи энергии накопления сердцу во время диастолы, обеспечивающей быстрое наполнение его полостей, в результате чего происходит уменьшение постсистолического объема в венозном притоке к сердцу. Уменьшение эластической тяги легких при этом сопровождается снижением объема пресистолической фазы наполнения сердца. Усиление мощности сокращения миокарда при его гиперфункции в ситуации «маленький объем сердца — маленький выброс» приводит к увеличению систолического притока. Уменьшение фазы диастазиса является результатом увеличения дебита притока в систолическую фазу.
При ДСТ, сопровождающейся деформацией грудной клетки, систолическое давление в легочной артерии более чем на 1/3 превышает уровень у здоровых лиц, не достигая при этом патологических значений (табл.).
Однако относительно большие значения показателя в сочетании с тенденцией к увеличению размера легочной артерии и размера выносящего тракта правого желудочка свидетельствуют о формировании нарушений гемодинамики МКК [8]. Условия, способствующие этому, имеют прогредиентное течение и приблизительно к 40-летнему возрасту могут привести к формированию классической легочной гипертензии [4, 7].
Патофизиологические изменения, возникающие при этом, формируют в организме своеобразную клиническую симптоматику: быстрая утомляемость, снижение работоспособности и толерантности к физической нагрузке. Хроническая гипоксия клинически выражается в развитии не только астенического синдрома, но и гипотрофии мышечной системы, формировании дистрофических изменений органов, ухудшении функционального состояния всего организма.
Таким образом, повышение давления в малом круге кровообращения является одним из важных механизмов изменений электромеханической активности миокарда, центральной и периферической гемодинамики, венозного притока крови к сердцу при ДСТ [4, 8-10].
Подавляющее большинство авторов считают, что гипертрофия и/или дилятация правого желудочка является следствием повышения сосудистого легочного сопротивления и легочной артериальной гипертензии. Последние определяют возникновение правожелудочковой сердечной недостаточности, а возникновение легочного сердца определяет трудоспособность и продолжительность жизни больных.
Максимально раннее начало коррекции условий, приводящих к повышению давления по МКК, включающее помимо медикаментозной терапии консультирование по питанию, лечебную гимнастику, дозированные физические упражнения, физиотерапию, психокоррекцию, ручной массаж, позволит сохранить качество жизни этих пациентов, предотвратить их инвалидизацию и смертность 10.
Литература
Г. И. Нечаева 1 , доктор медицинских наук, профессор
Е. Н. Логинова, кандидат медицинских наук
М. В. Вершинина, кандидат медицинских наук
Чурсин В.В. Клиническая физиология кровообращения (методические материалы к лекциям и практическим занятиям)
Чурсин В.В. Клиническая физиология кровобращения. Методические материалы к практическим и семинарским занятиям, - 2011. - 44 с.
Содержит информацию о физиологии кровообращения, нарушениях кровообращения и их вариантах. Также представлена информация о методах клинической и инструментальной диагностики нарушений кровообращения.
Данные материалы являются переработанным вариантом предыдущих изданий (1999г., 2003г.), первым автором которых являлся В.Ф.Туркин - доцент кафедры анестезиологии и реаниматологии АГИУВ.
Предназначается для врачей всех специальностей, курсантов ФПК и студентов медвузов.
Введение
Академик В.В.Парин (1965г.) дает такое пояснение: «Клиническая физиология исходит из положения, что в организме при болезни многие возникающие реакции являются приспособительными. Под влиянием чрезвычайных раздражителей приспособительные реакции резко изменяются и, приобретая опасное для организма значение, становятся реакциями патологическими. Переход приспособительных реакций в патологические является узловым звеном в патогенезе заболеваний. А его детальное изучение является одной из главных задач клинической физиологии кровообращения».
Исходя из этого пояснения, можно отметить, что значение клинической физиологии любой системы предполагает:
Более образно это можно представить в следующем виде (рисунок 1).
Приспособительные реакции обеспечивают компенсацию, а патологические реакции обуславливают декомпенсацию страдающего органа или страдающей системы. В общем виде отличием (границей) между нормой и приспособлением является изменение свойств приспосабливающего органа или приспосабливающейся системы.
Границей между приспособлением и патологией является резкое изменение ("излом") приспособительной реакции по направлению и величине.
Различают срочные приспособительные реакции и долговременные. Врачам интенсивной терапии чаще приходится иметь дело с острыми расстройствами, поэтому необходимы знания срочных приспособительных реакций и их переход в патологические.
Кровообращение - определение, классификация
Кровообращение - это непрерывное движение (обращение) крови по замкнутой системе, именуемой сердечно-сосудистой.
- 2 - аорта и крупные артерии, имеют много эластических волокон, представляются как буферные сосуды, благодаря им резко пульсирующий кровопоток превращается в более плавный;
- 3 - прекапиллярные сосуды, это мелкие артерии, артериолы, метартериолы, прекапиллярные жомы (сфинктеры), имеют много мышечных волокон, которые могут существенно изменить свой диаметр (просвет), они определяют не только величину сосудистого сопротивления в малом и большом кругах кровообращения (поэтому и называются резистивными сосудами), но и распределение кровопотока;
- 4 - капилляры, это обменные сосуды, при обычном состоянии открыто 20-35% капилляров, они образуют обменную поверхность в 250-350 кв.м., при физической нагрузке максимальное количество открытых капилляров может достигать 50-60%;
- 5 - сосуды - шунты или артериоло-венулярные анастомозы, обеспечивают сброс крови из артериального резервуара в венозный, минуя капилляры, имеют значение в сохранении тепла в организме;
- 7 - вены, крупные вены, они обладают большой растяжимостью и малой эластичностью, в них содержится большая часть крови (поэтому и называются емкостными сосудами), они определяют "венозный возврат" крови к желудочкам сердца, их заполнение и (в определенной мере) ударный объём (УО).
Объем циркулирующей крови (ОЦК)
Вопрос объема имеет важное значение. Прежде всего потому, что определяет наполнение камер сердца и таким образом влияет на величину УО.
По классическому представлению ОЦК составляет у мужчин 77 и у женщин 65 мл/кг массы тела 10%. В среднем берётся 70 мл/кг.
Необходимо чётко представлять, что ОЦК является «жидким слепком сосудистой системы» - сосуды не бывают полупустыми. Ёмкость сосудистой системы может изменяться в достаточно больших пределах, в зависимости от тонуса артериол, количества функционирующих капилляров, степени сдавления вен окружающими тканями («наполненность» интерстиция и тонус мышц) и степенью растянутости свободно расположенных вен брюшной полости и грудной клетки. Разница в ОЦК, определяемая изменением состояния вен, предположительно составляет примерно 500-700 мл у взрослого человека (А.Д.Ташенов, В.В.Чурсин, 2009г.). Мнение, что венозная система может вместить, кроме ОЦК, еще 7-10 литров жидкости, можно считать ошибочным, так как излишняя жидкость достаточно быстро перемещается в интерстиций. Депо ОЦК в организме является интерстициальное пространство, резервная-мобильная емкость которого составляет примерно ещё 1 литр. При патологии интерстиций способен принять около 5-7 литров жидкости без формирования внешне видимых отеков (А.Д.Ташенов, В.В.Чурсин, 2009г.).
Особенностью интерстициальных отеков при некорректной инфузионной терапии является то, что жидкость при быстром поступлении в организм прежде всего уходит в наиболее «мягкие» ткани - мозг, легкие и кишечник.
Последствием этого является наиболее наблюдаемые недостаточности - церебральная, дыхательная и кишечная.
Физиологи на сегодняшний день считают, что практически у среднего человека номинальной величиной ОЦК принимается 5 литров или 5000 см 3 . В ОЦК различают две составных части: объем заполнения (U) и объем растяжения (V) сосудистой системы. U составляет 3300 см., V составляет 1700 см 3 . Последний, объем растяжения имеет непосредственное отношение к давлению крови и скорости объемного потока крови в сосудах.
Избыточная, особенно быстрая, инфузия растворов ведет к увеличению объема, прежде всего в сосудах легких, чем в других органах. При быстрой инфузии, особенно крупномолекулярных растворов (декстраны, ГЭК, СЗП, альбумин) жидкость не успевает переместиться в интерстиций, и при этом жидкость депонируется в первую очередь в легочных венах. Имеются сведения о том, что легочные вены могут дополнительно вместить еще примерно 53% общего легочного объема крови. При дальнейшей избыточной инфузии в действие вступает рефлекс Китаева. При этом рефлексе импульсы с рецепторов перерастянутых легочных вен, возбуждающе действуя на мускулатуру легочных артериол, суживают их, предотвращая таким образом переполнение легочных венозных сосудов.
Из-за спазма легочных артериол при дальнейшей избыточной инфузии наступает объемная перегрузка правых отделов сердца, в первую очередь правого желудочка. При его чрезмерной перегрузке в действие вступает рефлекс Ярошевича. Импульсы с рецепторов легочных артерий, возбуждающе действуя на мускулатуру в устьях полых вен, суживают их, предотвращая таким образом переполнение правых отделов сердца.
Здесь граница, за которой далее приспособление может перейти в патологию. В случае продолжения избыточной инфузии - вследствие избыточного давления в правом предсердии и его перерастяжения возникают следующие условия.
Во-первых ухудшается отток в правое предсердие значительной части крови из коронарных вен. Затруднение оттока по коронарным венам приводит к затруднению притока крови по коронарным артериям и доставки кислорода к миокарду (боль в области сердца).
Во-вторых, может возникнуть рефлекс Бейнбриджа (подробнее - раздел регуляции кровообращения), он вызывает тахикардию, которая всегда увеличивает потребность миокарда в кислороде.
У лиц со скрытой коронарной недостаточностью (что почти никогда не выявляется у больных перед операцией из-за недостаточного обследования) и у лиц с явной ишемической болезнью сердца (ИБС) все это может обусловить возникновение острой коронарной недостаточности вплоть до возникновения острого инфаркта миокарда (ОИМ) с дальнейшим развитием острой сердечной лево-желудочковой недостаточности (ОСЛН).
Если компенсаторные возможности коронарного кровообращения не скомпрометированы и не реализуется рефлекс Бейнбриджа, то дальнейшая объемная перегрузка приводит к растяжению полых вен. При этом с рецепторов, расположенных в устьях полых вен, импульсация поступает к центрам осморегуляции в гипоталамусе (супраоптическое ядро). Уменьшается секреция вазопрессина, приводящая к полиурии (выделению мочи более 2000 мл/сут), что отмечается утром дежурным врачом (и, как правило, безотчётливо) - больной спасает себя. Хорошо, если у больного регуляция водного баланса не нарушена и почки функционируют, в противном случае больной будет «утоплен» с благими намерениями.
Не затрагивая вопросов о «хроническом» уменьшении ОЦК, когда это обусловлено хроническим уменьшением потребления жидкости, коснемся вопроса уменьшения ОЦК, обусловленного именно острой кровопотерей, с чем чаще всего имеют дело врачи анестезиологи-реаниматологи.
По современным представлениям отмечаются следующие приспособительные изменения функции сердечно-сосудистой системы.
Когда ОЦК снижается на 10-20%, то такая кровопотеря представляется компенсируемой. При этом первой приспособительной реакцией является уменьшение емкости венозных сосудов за счёт сдавления их окружающими тканями. Вены из округлых становятся сплющенными или почти полностью спадаются, и таким образом емкость сосудов приспосабливается к изменившемуся объему циркулирующей крови. Венозный приток крови к сердцу и его УО поддерживаются на прежнем уровне. Компенсаторную реакцию организма можно сравнить с ситуацией, когда содержимое неполной 3-х литровой банки переливают в 2-х литровую и она оказывается полной.
Компенсаторным механизмом является и перемещение жидкости из интерстиция за счёт уменьшения венозного давления и увеличения скорости кровотока (укорочения времени изгнания даже без развития тахикардии) - жидкость как бы засасывается из интерстиция. Этот компенсаторный механизм можно наблюдать у доноров при донации, когда экстракция 500 мл крови не приводит к каким-либо изменениям кровообращения.
С уменьшением ОЦК до 25-30% (а это уже потеря растягивающей части ОЦК - V) кровопотеря представляется не компенсируемой за счёт критического уменьшения ёмкости венозной системы. Начинает уменьшаться венозный приток к сердцу и страдает УО. При этом развивается приспособительная (компенсаторная) тахикардия. Благодаря ей поддерживается достаточный уровень сердечного выброса (СВ за минуту = МСВ) за счёт уменьшенного УО и более частых сердечных сокращений. Одновременно с тахикардией развивается сужение периферических артериальных сосудов - централизация кровообращения. При этом ёмкость сосудистой системы значительно уменьшается, подстраиваясь под уменьшенный ОЦК. При сниженном УО и суженных периферических артериальных сосудах поддерживается достаточный уровень среднего артериального давления (АДср) в сосудах, направляющих кровь к жизненно важным органам (мозг, сердце и лёгкие). Именно от величины АДср зависит степень перфузии того или иного органа. Таким образом, развивается приспособительная централизация кровообращения за счет уменьшения кровоснабжения периферических тканей (кожа, скелетные мышцы и т.д.). Эти ткани могут переживать ишемию (I фазу нарушения микроциркуляции) и кислородную недостаточность в течение более продолжительного времени.
Эта реакция аналогична процессу воспаления, при котором организм, образуя грануляционный вал и отторгая омертвевшее, жертвует частью во имя сохранения целого.
Когда ОЦК снижается более чем на 30-40% и восполнение кровопотери задерживается, то такая кровопотеря переходит в разряд некомпенсированной и может стать необратимой. При этом несмотря на тахикардию, СВ уменьшается и снижается АДср. Из-за недостаточного транспорта кислорода в организме усиливается метаболический ацидоз. Недоокисленные продукты метаболизма парализуют прекапиллярные сфинктеры, но периферический кровоток не восстанавливается из-за сохраняющегося спазма посткапиллярных сфинктеров.
Развивается II фаза нарушений микроциркуляции - застойной гипоксии. При этом за счёт ацидоза повышается проницаемость капилляров - плазматическая жидкость уходит в интерстиций, а форменные элементы начинают сладжироваться, образуя микротромбы - развивается ДВС-синдром. К моменту, когда на фоне нарастающего ацидоза парализуются и посткапиллярные сфинктеры (III фаза нарушений микроциркуляции) капиллярное русло уже необратимо блокировано микротромбами.
Наступает несостоятельность тканевой перфузии. Во всех случаях затянувшегося синдрома малого СВ присоединяется преренальная анурия. Всё это клиническая форма шока с классической триадой: синдром сниженного СВ, метаболический ацидоз, преренальная анурия. При этом во многих органах, как отмечает профессор Г.А.Рябов, "наступают необратимые изменения и даже последующее восполнение кровопотери и восстановление ОЦК не всегда предотвращает смертельный исход из-за осложнений, связанных с необратимыми изменениями в некоторых органах" - развивается полиорганная недостаточность (ПОН) или мультиорганная дисфункция (МОД).
Последовательность в нарушениях гомеостаза при кровопотере схематически представлена на рисунке 2 (Р.Н.Лебедева и сотр., 1979 г.).
Таким образом, при абсолютном снижении ОЦК практически любого происхождения границей перехода приспособления в декомпенсацию является увеличение частоты сердечных сокращений (ЧСС) с одновременным снижением СВ и АДср.
Данное положение не применимо к случаям, когда имеется относительное уменьшение ОЦК за счет патологической вазодилятации.
Следует учитывать и то, что очень часто острая кровопотеря сопровождается болью и это вносит разлад в последовательность компенсаторных механизмов - раньше чем нужно и в большем количестве выбрасываются эндогенные катехоламины. Централизация развивается быстрее и времени на спасение больного остается меньше.
Скорость кровотока
в отдельных капиллярах определяют с помощью биомикроскопии, дополненной кинотелевизионным и другими методами. Среднее время прохождения эритроцита через капилляр большого круга кровообращения составляет у человека 2,5 с, в малом круге — 0,3—1 с.
Движение крови по венам
Венозная система принципиально отличается от артериальной.
Давление крови в венах
Значительно ниже, чем в артериях, и может быть ниже атмосферного (в венах, расположенных в грудной полости, — во время вдоха; в венах черепа — при вертикальном положении тела); венозные сосуды имеют более тонкие стенки, и при физиологических изменениях внутрисосудистого давления меняется их ёмкость (особенно в начальном отделе венозной системы), во многих венах имеются клапаны, препятствующие обратному току крови. Давление в посткапиллярных венулах равно 10—20 мм рт.ст., в полых венах вблизи сердца оно колеблется в соответствии с фазами дыхания от +5 до —5 мм рт.ст. — следовательно, движущая сила (ΔР) составляет в венах около 10—20 мм рт.ст., что в 5—10 раз меньше движущей силы в артериальном русле. При кашле и натуживании центральное венозное давление может возрастать до 100 мм рт.ст., что препятствует движению венозной крови с периферии. Давление в других крупных венах также имеет пульсирующий характер, но волны давления распространяются по ним ретроградно — от устья полых вен к периферии. Причиной появления этих волн являются сокращения правого предсердия и правого желудочка. Амплитуда волн по мере удаления от сердца уменьшается. Скорость распространения волны давления составляет 0,5—3,0 м/с. Измерение давления и объёма крови в венах, расположенных вблизи сердца, у человека чаще проводят с помощью флебографии яремной вены. На флебограмме выделяют несколько последовательных волн давления и кровотока, возникающих в результате затруднения притока крови к сердцу из полых вен во время систолы правых предсердия и желудочка. Флебография используется в диагностике, например, при недостаточности трехстворчатого клапана, а также при расчетах величины давления крови в малом круге кровообращения.
Причины движения крови по венам
Основная движущая сила — разность давлений в начальном и конечном отделах вен, создаваемой работой сердца. Имеется ряд вспомогательных факторов, влияющих на возврат венозной крови к сердцу.
1. Перемещение тела и его частей в гравитационном поле
В растяжимой венозной системе большое влияние на возврат венозной крови к сердцу оказывает гидростатический фактор. Так, в венах, расположенных ниже сердца, гидростатическое давление столба крови суммируется с давлением крови, создаваемым сердцем. В таких венах давление возрастает, а в расположенных выше сердца — падает пропорционально расстоянию от сердца. У лежащего человека давление в венах на уровне стопы равно примерно 5 мм рт.ст. Если человека перевести в вертикальное положение с помощью поворотного стола, то давление в венах стопы повысится до 90 мм рт.ст. При этом венозные клапаны предотвращают обратный ток крови, но венозная система постепенно наполняется кровью за счёт притока из артериального русла, где давление в вертикальном положении возрастает на ту же величину. Ёмкость венозной системы при этом увеличивается из-за растягивающего действия гидростатического фактора, и в венах дополнительно накапливается 400—600 мл притекающей из микрососудов крови; соответственно на эту же величину снижается венозный возврат к сердцу. Одновременно в венах, расположенных выше уровня сердца, венозное давление уменьшается на величину гидростатического давления и может стать ниже атмосферного. Так, в венах черепа оно ниже атмосферного на 10 мм рт.ст., но вены не спадаются, так как фиксированы к костям черепа. В венах лица и шеи давление равно нулю, и вены находятся в спавшемся состоянии. Отток осуществляется через многочисленные анастомозы системы наружной яремной вены с другими венозными сплетениями головы. В верхней полой вене и устье яремных вен давление в положении стоя равно нулю, но вены не спадаются из-за отрицательного давления в грудной полости. Аналогичные изменения гидростатического давления, венозной ёмкости и скорости кровотока происходят также при изменениях положения (поднимании и опускании) руки относительно сердца.
2. Мышечный насос и венозные клапаны
При сокращении мышц сдавливаются вены, проходящие в их толще. При этом кровь выдавливается по направлению к сердцу (обратному току препятствуют венозные клапаны). При каждом мышечном сокращении кровоток ускоряется, объём крови в венах уменьшается, а давление крови в венах снижается. Например, в венах стопы при ходьбе давление равно 15—30 мм рт.ст., а у стоящего человека — 90 мм рт.ст. Мышечный насос уменьшает фильтрационное давление и предупреждает накопление жидкости в интерстициальном пространстве тканей ног. У людей, стоящих длительное время, гидростатическое давление в венах нижних конечностей обычно выше, и эти сосуды растянуты сильнее, чем у тех, кто попеременно напрягает мышцы голени, как при ходьбе, для профилактики венозного застоя. При неполноценности венозных клапанов сокращения мышц голени не столь эффективны. Мышечный насос усиливает также отток лимфы по лимфатической системе.
3. Движению крови по венам к сердцу
способствует также пульсация артерий, ведущая к ритмичному сдавлению вен. Наличие клапанного аппарата в венах предотвращает обратный ток крови в венах при их сдавливании.
4. Дыхательный насос
Во время вдоха давление в грудной клетке уменьшается, внутригрудные вены расширяются, давление в них снижается до —5 мм рт.ст., происходит засасывание крови, что способствует возврату крови к сердцу, особенно по верхней полой вене. Улучшению возврата крови по нижней полой вене способствует одновременное небольшое увеличение внутрибрюшного давления, увеличивающее локальный градиент давления. Однако во время выдоха приток крови по венам к сердцу, напротив, уменьшается, что нивелирует возрастающий эффект.
5. Присасывающее действие сердца
способствует кровотоку в полых венах в систоле (фаза изгнания) и в фазе быстрого наполнения. Во время периода изгнания атриовентрикулярная перегородка смещается вниз, увеличивая объём предсердий, вследствие чего давление в правом предсердии и прилегающих отделах полых вен снижается. Кровоток увеличивается из-за возросшей разницы давления (присасывающий эффект атриовентрикулярной перегородки). В момент открытия атриовентрикулярных клапанов давление в полых венах снижается, и кровоток по ним в начальном периоде диастолы желудочков возрастает в результате быстрого поступления крови из правого предсердия и полых вен в правый желудочек (присасывающий эффект диастолы желудочков). Эти два пика венозного кровотока можно наблюдать на кривой объёмной скорости кровотока верхней и нижней полых вен.
20.5. Венозный отдел большого круга кровообращения
Давление в венозном русле. В венулах давление падает сравнительно быстро-от 15-20 мм рт. ст. в посткапиллярах до 12-15 мм рт.ст. в мелких венах. Давление в крупных венах, расположенных вне грудной полости, составляет 5-6 мм рт.ст., а в области впадения вен в правое предсердие оно еще ниже (рис. 20.10 и табл. 20.4).
Участок нижней полой вены в области ее прохождения через диафрагму обладает некоторыми особенностями: гидродинамическое сопротивление здесь возрастает, поэтому если каудальнее диафрагмы давление в нижней полой вене еще относительно велико (около 10 мм рт.ст.), то в месте прохождения этой вены через диафрагму оно скачкообразно падает до 4-5 мм рт.ст.
Давление в правом предсердии равно центральному венозному давлению. Оно составляет 2-4 мм рт. ст. и в норме колеблется в довольно широких пределах синхронно с дыхательным и сердечным ритмом (см. стр. 519). Однако благодаря так называемому отрицательному (ниже атмосферного) давлению в грудной полости, равному от —4 до —7 см вод. ст., трансмуральное, или эффективное венозное, давление наполнения положительно даже при умеренно отрицательном внутрисосудистом давлении [3, 4, 19, 36].
В некоторых областях венозного русла гидродинамическое сопротивление, а следовательно, и градиент давления больше, чем в соответствующих артериях. Это связано с различными факторами. Так, некоторые вены в нормальных условиях обладают не круглым, а более или менее овальным поперечным сечением, что связано с их «недонаполнением». Гидродинамическое сопротивление в таких венах выше. Кроме того, в определенных участках (например, при прохождении вен руки над первым ребром) вены могут подвергаться сдавлению извне; возможно также сдавленно целых венозных стволов на большем или меньшем протяжении (например, органами брюшной полости или внутрибрюшным давлением).
Венный пульс. Венным (венозным) пульсом называют колебания давления и объема в венах., расположенных около сердца. Эти колебания передаются ретроградно и обусловлены главным образом изменениями давления в правом предсердии.
Венный пульс записывается, как правило, при помощи неинвазивных методов (фотоэлектрических преобразователей или чувствительных датчиков давления) при горизонтальном положении человека. При этом регистрируются некоторые характерные волны. Первая положительная волна, или а-волна, связана с сокращением предсердий (рис. 20.16). Через небольшой промежуток времени следует вторая положительная волна - с-волна, обусловленная главным образом выпячиванием атриовентрикулярного клапана в правое предсердие во время изоволюметрического сокращения желудочка. Затем наблюдается быстрое падение (x), связанное со смещением плоскости клапанов к верхушке во время периода изгнания. При расслаблении правого желудочка атриовентрикулярные клапаны сначала остаются закрытыми, поэтому давление в венах относительно быстро возрастает; затем, когда клапаны открываются и кровь устремляется в желудочек, давление падает. В результате такой последовательности появляется третья положительная волна (v-волна), за которой следует углубление (у). В дальнейшем по мере наполнения желудочка давление вновь повышается до новой а-волны.
Изменения кривых венного пульса могут служить важным диагностическим показателем при некоторых заболеваниях сердца, например недостаточности трехстворчатого клапана.
Скорость кровотока в венозном русле. В норме кровоток в венулах и концевых венах носит постоянный характер, так как только в том случае, если резистивные сосуды сильно расширены, колебания кровотока в артериях могут распространяться на вены. В более крупных венах вновь появляются небольшие колебания давления и скорости кровотока, обусловленные передачей пульсации от расположенных вблизи артерий. Колебания скорости кровотока в магистральных венах связаны с дыханием и сокращениями сердца ; эти колебания усиливаются по мере приближения к правому предсердию.
В венулах и периферических венах общая площадь поперечного сечения постепенно уменьшается, и средняя скорость кровотока возрастает; однако в связи с тем, что эта площадь больше, чем у соответствующих артерий, кровь в венах течет медленнее, чем в артериях. В покое средняя скорость кровотока в полых венах колеблется от 10 до 16 см/с, однако она может возрастать до 50 см/с.
Центральное венозное давление и венозный возврат
Центральное венозное давление вместе со средним давлением наполнения (см. выше) и гидродинамическим сопротивлением сосудов определяют величину венозного возврата, оказывающего в нормальных условиях решающее влияние на ударный объем [3, 36]. Разность между средним давлением наполнения и центральным венозным давлением соответствует градиенту давления для венозного возврата, равному в норме 2-4 мм рт. ст. Таким образом, в условиях нормальной деятельности сердца при повышении либо снижении среднего давления наполнения (вследствие увеличения или уменьшения объема крови) венозный возврат изменяется в том же направлении. Кроме того, венозный возврат затруднен при высоком сопротивлении кровотоку в венах и облегчен, когда это сопротивление низко.
Если венозный возврат перестает соответствовать выбросу правого желудочка, то автоматически включаются механизмы, направленные на «подгонку» этих двух параметров. При внезапном падении центрального венозного давления возрастает градиент давления для венозного возврата, и приток крови к сердцу увеличивается. Одновременно вследствие пониженного конечнодиастолического наполнения сердца снижается ударный объем. В результате повышения притока крови к сердцу, сочетающегося с уменьшением выброса крови в артерии, давление и объем в правом предсердии возрастают. Это приводит к снижению венозного возврата и увеличению ударного объема. При внезапном повышении центрального венозного давления происходят обратные процессы. Благодаря этим механизмам равновесие между венозным возвратом и сердечным выбросом устанавливается за 4-6 сокращений.
При патологических состояниях (например, при правожелудочковой недостаточности) центральное венозное давление может достигать 30 мм рт.ст., т.е. уровня давления в капиллярах. В этом случае градиент давления, обеспечивающий кровоток, поддерживается благодаря соответствующему повышению давления в капиллярах. Таким образом, на центральное венозное давление влияет не только объем крови в венах, но и в значительной степени работа правого сердца.
Влияние силы тяжести на кровяное давление
Поскольку трехмерная сосудистая система находится в гравитационном поле Земли, на давление крови, создаваемое сердцем; накладывается гидростатическое давление. Это приводит к тому, что давление в сосудах, расположенных ниже сердца, возрастает, а в сосудах, расположенных выше, снижается пропорционально расстоянию от сердца. При горизонтальном положении тела разница между уровнем расположения различных сосудов с практической точки зрения пренебрежимо мала. Следовательно, гидростатическое давление в этом случае можно не учитывать.
Кровяное давление при вертикальном положении тела. У человека в вертикальном положении гидростатическое давление в сосудах стопы (125 см ниже уровня сердца) составляет примерно 90 мм рт. ст. Поскольку среднее артериальное давление равно 100 мм рт.ст., общая величина давления в артериях стопы составляет около 190 мм рт.ст. (рис. 20.17). В артериях головного мозга (примерно 40 см выше уровня сердца) артериальное давление снижено приблизительно на 30 мм рт. ст. и составляет 70 мм рт. ст.
На давление в венах гидростатическое давление влияет аналогичным образом, поэтому
артериовенозный градиент давления-движущая сила кровотока-не зависит от высоты расположения сосудов. Однако трансмуральное давление значительно увеличивается под действием гидростатического давления, что проявляется главным образом в степени растяжения и, следовательно, емкости относительно тонкостенных вен. В результате при переходе человека из горизонтального положения в вертикальное в венах ног у него накапливается около 400-600 мл крови, причем эта кровь, естественно, перемещается из других сосудистых зон. Такое перераспределение крови достаточно существенно для того, чтобы оказать отчетливое влияние на гемодинамику в целом.
Уровень постоянного гидростатического давления.
Поскольку гидростатическое давление в различных сосудах организма, а также их эластические свойства различны, не всегда бывает оправдано рассматривать уровень сердца как «точку отсчета» для градиентов давления в сосудистой системе, а также считать, что между гидростатическим давлением и артериальным или венозным давлением существуют только линейные отношения.
Напротив, измерение давления в магистральных венах человека показывает, что уровень постоянного гидростатического давления, т.е. плоскость, проходящая через сосуды, давление в которых не изменяется при перемене положения, расположен примерно на 5-10 см ниже диафрагмы. В грудной полости (в том числе в правом предсердии), а также во всех сосудах, расположенных выше этой плоскости, давление в вертикальном положении ниже, чем в горизонтальном. На уровне предсердий ортостатическое венозное давление примерно равно 0 (т.е. атмосферному давлению), по причине чего внутригрудные вены должны были бы спасться, однако этому препятствует отрицательное давление в грудной полости. В результате просвет верхней полой вены остается открытым почти на уровне ключиц. Выше этого уровня, в частности в области лица и шеи, вены находятся в спавшемся состоянии, так как давление в них равно 0. То же самое наблюдается и в венах поднятых вверх рук.
Вены черепа не спадаются за счет того, что они фиксированы в окружающих тканях. Поэтому в венозных синусах черепа давление «отрицательно»;так, в сагиттальном синусе давление равно примерно —10 мм рт.ст. из-за разницы в гидростатическом давлении между сводом и основанием черепа.
Механизмы, способствующие венозному возврату
У человека в вертикальном положении венозный возврат к сердцу от сосудов, расположенных ниже
уровня нулевого гидростатического давления, затруднен из-за влияния этого давления. Однако венозному возврату могут препятствовать и многие другие факторы, влияющие на емкость вен, например физическая нагрузка и перегревание. Способствуют же венозному возврату следующие три главных механизма: 1) так называемый мышечный насос; 2) дыхательный насос; 3) присасывающее действие сердца.
Мышечный насос. Действие этого насоса заключается в том, что при сокращении скелетных мышц сдавливаются вены, проходящие в их толще. При этом кровь выдавливается по направлению к сердцу, так как ее ретроградному движению препятствуют клапаны. Таким образом, при каждом мышечном сокращении кровоток ускоряется, а объем крови в венах мышц уменьшается.
Эти эффекты особенно выражены при значительном наполнении вен (например, в венах ног человека в вертикальном положении). При стоянии кровоток замедлен из-за увеличения поперечного сечения вен;
в начале мышечного сокращения кровоток резко ускоряется. При этом кровь выдавливается из вен нижних конечностей, и давление в них падает с 90 мм рт. ст. (т.е. величины гидростатического давления) до 20-30 мм рт.ст. (рис. 20.18). В результате снижения венозного давления увеличивается артериовенозный градиент давления, который при длительном стоянии не изменяется, но устанавливается на более высоком уровне. Благодаря этому кровоток через участки вен, подвергшиеся сдавлению, повышается. Кроме того, при снижении венозного давления уменьшается фильтрационное давление в капиллярах, а следовательно, уменьшается опасность возникновения отеков. В дальнейшем давление в венах снова повышается, что при нормальной функции венозных клапанов обусловлено не обратным током крови, а поступлением ее в вены из капилляров,
При недостаточности венозных клапанов (например, при воспалении или варикозном расширении вен) деятельность мышечного насоса в той или иной степени-в зависимости от типа и тяжести нарушений-ухудшается. Поскольку он при этом уже не способствует снижению давления у человека в вертикальном положении, вены постепенно расширяются, в ногах скапливается жидкость (отек) и кровообращение нарушается. Нарушения кровообращения в тяжелых случаях могут приводить к дистрофии тканей (язвам). Снижение скорости кровотока часто сопровождается внутрисосудистым свертыванием крови в некоторых участках вен, т.е. тромбозом. Подобные заболевания вен значительно чаще встречаются у лиц, длительное время пребывающих в вертикальном положении без периодической работы мышц ног (например, продавцов), чем у людей, чья профессия связана с ходьбой (например, почтальонов).
Дыхательный насос. Во время вдоха давление в грудной клетке постепенно падает, что приводит к повышению трансмурального давления в сосудах. В результате внутригрудные сосуды расширяются, а это сопровождается, во-первых, снижением их гидродинамического сопротивления и, во-вторых, эффективным засасыванием крови из соседних сосудов. Увеличение венозного кровотока при вдохе особенно выражено в верхней полой вене (рис. 20.19). Кроме того, в момент вдоха диафрагма опускается, внутрибрюшное давление увеличивается, и в результате уменьшаются трансмуральное давление, просвет и емкость сосудов брюшной полости. Повышение градиента давления между брюшными и грудными венами приводит к увеличению венозного притока к последним; обратному же току крови в вены ног мешают клапаны. При выдохе наблюдается обратная картина: градиент давления между брюшными и грудными венами становится меньше, и отток венозной крови от брюшной полости к грудной снижается. Такой присасывающе-сдавливающий эффект оказывает существенное влияние на венозный кровоток, особенно при глубоком дыхании (например, при физической нагрузке).
Вследствие того что при вдохе наполнение правого желудочка увеличивается, его ударный объем в соответствии с механизмом Франка-Старлинга повышается. Одновременно за счет расправления легких возрастает емкость легочных сосудов, и в результате снижаются приток к левому сердцу и его ударный объем. Во время выдоха возврат к правому сердцу и его выброс уменьшаются; напротив, приток из легочных сосудов к левому сердцу и его ударный объем повышаются. Таким образом, дыхательные движения, оказывающие разнонаправленные влияния на наполнение правого и левого желудочков, сопровождаются поочередными изменениями их ударных объемов [28].
При повышенном давлении в грудной полости сдавливаются внутригрудные сосуды, что препятствует венозному возврату к сердцу. Крайний случай подобного состояния наблюдается при «пробе Вальсальвы», когда пациент делает глубокий вдох, а затем сильно сокращает экспираторные и брюшные мышцы при замкнутой голосовой щели. В результате внутригрудное и внутрибрюшное давление повышается, и венозный приток резко затрудняется. Это приводит к снижению ударного объема правого желудочка и повышению давления в периферических венах. В то же время кровь выдавливается из легочных сосудов, что сопровождается существенным временным увеличением ударного объема левого желудочка и артериального давления; затем эти показатели снижаются вследствие уменьшения венозного возврата.
Присасывающее действие сердца. Деятельность сердца способствует ускорению кровотока в расположенных рядом с ним венах. Во время периода изгнания атриовентрикулярная перегородка смещается вниз, и давление в правом предсердии и прилежащих отделах полых вен снижается. Этот присасывающий эффект атриовентрикулярной перегородки проявляется в виде первого пика на кривой кровотока (зубец С на рис. 20.19). Второй пик (зубец Д на рис. 20.19) появляется в момент открытия атриовентрикулярных клапанов и поступления крови, из правого предсердия и полых вен в расслабленный правый желудочек. Волны С и D соответствуют отрицательным волнам х и у на кривой венного пульса (рис. 20.16).
Читайте также: