Влияние мутации на функции белка. Примеры

Добавил пользователь Morpheus
Обновлено: 14.12.2024

Важность первичной структуры белков для формирования их конформации и функции можно проследить на примерах наследственных заболеваний, связанных с изменением первичной структуры гемоглобина. В настоящее время известно около 300 вариантов НbА, имеющих в первичной структуре а- или β -цепей лишь небольшие изменения. Некоторые из них почти не влияют на функцию белка и здоровье человека, другие снижают функцию белка и особенно в экстремальных ситуациях снижают возможность адаптации человека, третьи — вызывают значительные нарушения функций НbА и развитие анемии, что приводит к тяжёлым клиническим последствиям.

  • находящиеся на поверхности белка;
  • участвующие в формировании активного центра;
  • замена которых нарушает общую трёхмерную конформацию молекулы;
  • изменяющие четвертичную структуру белка и его регуляторные свойства.

1. Замена аминокислоты на поверхности гемоглобина А

Ещё в 1904 г. чикагский врач Джеймс Херрик описал у студента тяжёлую анемию с обнаружением в его крови множества удлинённых, похожих на полумесяц, эритроцитов. Заболевание получило название «серповидно-клеточной анемии», и только в 1949 г. Лайнус Полинг и его сотрудники доказали, что оно вызвано изменением первичной структуры НbА.

В молекуле гемоглобина S (так назван аномальный гемоглобин) мутантными оказались 2 β-цепи, в которых глутамат, высокополярная отрицательно заряженная аминокислота в положении 6 была заменена валином, содержащим гидрофобный радикал.


В дезоксигемоглобине S имеется участок, комплементарный другому участку таких же молекул, содержащему изменённую аминокислоту. В результате молекулы дезоксигемоглобина начинают «слипаться», образуя удлинённые фибриллярные агрегаты, деформирующие эритроцит и приводящие к образованию аномальных эритроцитов в виде серпа (рис. 1-40).


Рис. 1-40. Ассоциация молекул дезоксигемоглобина S

В оксигемоглобине S комплементарный участок «замаскирован» в результате изменения конформации белка. Недоступность участка препятствует соединению молекул оксигемог-лобина S друг с другом. Следовательно, образованию агрегатов HbS способствуют условия, повышающие концентрацию дезоксигемоглобина в клетках (физическая работа, гипоксия, уменьшение pH, условия высокогорья, полёт на самолёте).

Так как «серповидные» эритроциты плохо проходят через капилляры тканей, они часто закупоривают сосуды и создают тем самым локальную гипоксию. Это повышает концентрацию дезоксигемоглобина S в эритроцитах, скорость образования агрегатов гемоглобина S и ещё большую деформацию эритроцитов. Нарушение доставки O2 в ткани вызывает боли и даже некроз клеток в данной области.

Серповидно-клеточная анемия — гомозиготное рецессивное заболевание; проявляется только в том случае, когда от обоих родителей наследуются 2 мутантных гена β-цепей глобина. После рождения ребёнка болезнь не проявляется до тех пор, пока значительные количества HbF не заместятся на HbS. У больных выявляют клинические симптомы, характерные для анемии: головокружение и головные боли, одышка, учащённое сердцебиение, боли в конечностях, повышенную восприимчивость к инфекционным заболеваниям.

Гетерозиготные индивидуумы, имеющие один нормальный ген НbА, а другой ген HbS, в крови имеют лишь следовые количества серповидных клеток и нормальную продолжительность жизни; клинические симптомы болезни у них обычно не проявляются.

Для диагностики наличия HbS в эритроцитах человека используют метод электрофореза, основанного на движении заряженных белков в электрическом поле. Так как в HbS отрицательно заряженные группы глутамата в β-цепях заменены незаряженным валином, HbS в щелочной среде будет двигаться медленнее, чем НbА.

Высокая частота гена HbS среди жителей Африки (до 40% населения в некоторых районах) обусловлена тем, что гетерозиготы менее чувствительны к малярии, чем люди с нормальным гемоглобином A. Plasmodium falciparum — возбудитель малярии, облигатную часть своего жизненного цикла он проводит в эритроцитах. Так как эритроциты гетерозиготных по HbS людей имеют более короткий срок жизни, чем нормальные эритроциты, возбудитель малярии не успевает закончить необходимую стадию развития. Это создаёт избирательное преимущество для гетерозиготных по HbS людей в тех областях, где малярия вызывает гибель многих людей. Серповидно-клеточная анемия — первый описанный пример молекулярной болезни.

Почти все встречающиеся замены аминокислот на поверхности молекулы гемоглобина безвредны. Гемоглобин S — редкое исключение.

2. Изменения аминокислотного состава в области активного центра гемоглобина

Между гемом и белковой частью гемоглобина существует около 60 межатомных контактов. Большинство мутаций, нарушающих в той или иной мере эти контакты, приводят к развитию гемоглобинопатии и анемии.

Гемоглобин М — вариант гемоглобина А, где в результате мутации в гене α- или β-цепи происходит замена Гис Е7 или Гис F8 тирозином. В результате Fe 2+ окисляется в Fe 3+ и стабилизируется в этой форме. Гемоглобин, содержащий в геме Fe 3+ , называют метгемоглобином (отсюда и название — гемоглобин М). Вместо O2 к Fe 3+ присоединяется Н2O. Обычно изменения затрагивают либо α-, либо β-цепи, в результате гемоглобин может переносить не более двух молекул O2. У гетерозиготных людей отмечают цианоз, связанный с нарушением транспорта O2, а гомозиготность по этому гену приводит к летальному исходу.

Гемоглобин Хаммерсмита — вариант гемоглобина А, где в положении D, вместо фенил-аланина (гидрофобной аминокислоты) находится серин (гидрофильная аминокислота). Фен D, входит в неполярное окружение гема. Замена его на гидрофильную аминокислоту приводит к нарушению прочности связывания гема с глобином; в «гидрофобный карман», где размещается гем, способна проникать вода, окисляющая Fe 2+ до Fe 3+ , в результате чего развивается анемия.

3. Изменения аминокислотного состава, деформирующие третичную структуру гемоглобина

Во всех нормальных гемоглобинах и в миоглобине в месте пересечения двух α-спиралей В и Е находится аминокислота глицин. Так как глицин вместо радикала содержит атом водорода, в этом месте две спирали плотно прилегают друг к другу.

В гемоглобине Ривердейла—Бронкса (вариант гемоглобина А) вместо глицина в положении В6 находится аминокислота аргинин, имеющая объёмный радикал. В результате он не умещается в столь узком пространстве, молекула меняет конформацию и становится нестабильной.

4. Замены аминокислот в области контактов димеров α1β1 α22, нарушающие аллостерические регуляторные функции гемоглобина

Почти все варианты гемоглобина А, где происходит замена аминокислот в области контакта димеров α1β1, α22, проявляют пониженную кооперативность и нарушенное сродство гемоглобина к O2.

Так, гемоглобин Кемпси — вариант гемоглобина А, где в положении G, β-цепи аспарагиновая кислота заменена на аспарагин. В норме аспарагиновая кислота участвует в образовании водородной связи, стабилизирующей дезокси-гемоглобин. В результате замены эта связь не образуется, что нарушает стабильность конформации дезоксигемоглобина, и сродство гемоглобина к O2 повышается. У больных развивается анемия с выраженным цианозом.

Таким образом, первичная структура белка определяет особенности его конформации, строения активного центра и функций. Изменение одной аминокислоты только в одном белке может быть причиной нарушений функций данного белка и развития наследственной патологии.

ТЕМА 3.9. МЕХАНИЗМЫ ГЕНЕТИЧЕСКОЙ ИЗМЕНЧИВОСТИ: ЭВОЛЮЦИОННАЯ ИЗМЕНЧИВОСТЬ, ПОЛИМОРФИЗМ БЕЛКОВ. НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ

Существование живого организма невозможно без генетической изменчивости, которая возникает за счет мутацийи рекомбинаций в процессе мейоза.В последнем случае происходит обмен участками ДНК между гомологичными хромосомами родителей. Мутации- это нерепарированные изменения (альтерации) первичной структуры ДНК, появляющиеся в молекуле в результате ошибок в работе ДНК-полимераз или ДНК-репарирующих систем,

воздействия факторов внешней (радиация) и внутренней (мутагены) среды. Мутации возникают при действии алкилирующих агентов. Алкильная группа присоединяется к N7 пуринового кольца гуанина, изменяя его ионизацию и характер связывания с другим нуклеотидом в комплементарной паре. В результате против алкилированного гуанина встает тимин, а следовательно, в последующем поколении пара G-C заменяется на А-Т. Мутации могут быть вызваны и веществами, интеркалирующими между азотистыми основаниями молекулы ДНК.

Точечные мутациив основном бывают трех видов:

• замены (это наиболее распространенный тип повреждений молекулы ДНК);

• делеции (выпадения) нуклеотидов (табл. 3.11).

Таблица 3.11. Виды мутаций в ДНК и их влияние на структуру белка

Виды мутаций Изменения в структуре ДНК Изменения в структуре белка
ЗАМЕНА: без изменения смысла кодона (молчащая, или нейтральная, мутация) Замена одного нуклеотида в кодоне Белок не изменен
с изменением смысла кодона (миссенсмутация) Происходит замена одной аминокислоты на другую
с образованием терминирующего кодона (нонсенс-мутация) Синтез пептидной цепи прерывается на этом кодоне и образуется незавершенный белок
ВСТАВКА: без сдвига рамки считывания информации Вставка фрагмента ДНК из трех нуклеотидов или с числом нуклеотидов, кратным трем Происходит удлинение полипептидной цепи на одну или несколько аминокислот
со сдвигом рамки считывания информации Вставка одного или нескольких нуклеотидов, не кратных трем Синтезируется пептид со «случайной» последовательностью аминокислот, так как изменяется смысл всех кодонов, следующих за местом мутации
ДЕЛЕЦИЯ: без сдвига рамки считывания информации Выпадение фрагмента ДНК из трех нуклеотидов или с числом нуклеотидов, кратным трем Происходит укорочение белка на одну или несколько аминокислот
со сдвигом рамки считывания информации Выпадение одного или нескольких нуклеотидов, не кратных трем Синтезируется пептид со «случайной» последовательностью аминокислот, так как изменяется смысл всех кодонов, следующих за местом мутации

Каждый тип мутации вызывает разные последствия. Так, замена нуклеотидаможет приводить:

• к «молчащей» (нейтральной) мутации, которая не проявится в белке, если кодирующий триплет, в котором находится мутантный нуклеотид, из-за вырожденности кода обеспечивает включение в белок той же аминокислоты, что и исходный кодон;

• к включению в белок одной измененной аминокислоты (миссенсмутация);

• к образованию «терминирующего» кодона (нонсенс-мутация),на котором работа белок-синтезирующего аппарата будет остановлена и результатом будет формирование укороченной молекулы белка.

Делециии вставкитакже приводят к неоднозначным результатам:

• если включается или выпадает один нуклеотид или участок ДНК, количество нуклеотидов в котором не кратно трем, то происходит «сдвиг рамки считывания информации»и при трансляции вся информация, расположенная за местом мутации, читается неверно. В результате синтезируется белок, у которого за местом возникновения мутации расположена «случайная» последовательность аминокислот;

• если выпадает или включается в ДНК участок с длиной цепи, кратной трем, то сдвига рамки считывания информации не происходит («делеция или вставка без сдвига рамки считывания информации»).Белок, который зашифрован такой матрицей, будет либо укорочен (при делеции), либо удлинен (при вставке) на одну или несколько аминокислот.

В большинстве случаев мутации влияют на экспрессию или структуру генов, что проявляется в снижении количества или в изменении структуры белкового продукта, а следовательно, и его функциональной активности. Иногда снижение или полное отсутствие белка является результатом мутаций в регуляторных участках генов (области CpG-островков в промоторах).

Мутации в половых клеткахпередаются по наследству и могут проявляться в фенотипе потомства в виде наследственной болезни, связанной со структурным и функциональным изменением белка. Мутации в соматических клетках вызывают, как правило, различные функциональные нарушения.

Амплификация генов, независимые мутации в копиях и рекомбинации приводят к дивергенции (расхождению) свойств соответствующих белков. Результатом этих процессов является изменение генома в филогенезе и образование семейств родственных белков.

Аллельные варианты одного гена, занимающие в хромосомах гомологичные локусы, кодируютбелки с близкой аминокислотной последовательностью и функциями - полиморфные разновидности одного и того же белка.Каждый индивидуум может иметь только два варианта любого белка, тогда как в популяции число вариантов может быть огромно. Так, по всем аллелям НЬА популяция людей образует более 600 генетически различающихся групп. Полиморфизм белков настолько велик, что можно говорить о биохимической индивидуальности каждого человека.

Геномы всех людей, за исключением однояйцовых близнецов, различны.

Этнические и индивидуальные различия геномов обусловлены мутациями, приводящими к генетическому полиморфизму.

Генетический полиморфизм может быть качественным, когда происходят замены нуклеотидов, либо количественным, когда в ДНК варьирует число нуклеотидных повторов различной протяженности. Генетический полиморфизм встречается как в интронных, так и в экзонных последовательностях молекулы ДНК.

Поскольку наша внешняя и внутренняя индивидуальность - продукт деятельности наших генов, то можно утверждать, что существует большая вариабельность человеческих геномов. Генетический полиморфизм характеризуется на молекулярном уровне небольшими отклонениями в нуклеотидных последовательностях ДНК, которые совместимы с нормальной функцией организма в онтогенезе, но приводят к определенным вариациям в структуре белков и таким образом формируют биохимическую индивидуальность каждой личности.

Все люди отличаются друг от друга индивидуальными реакциями на внешние факторы окружающей среды, инфекции, особенности диеты, токсины и лекарственные препараты. Все это - результат множественного полиморфизма, связанного с наличием множественных форм (изоформ) ферментов детоксикации. У некоторых людей проявляется непереносимость лактозы (неспособность употреблять свежее молоко), повышенная чувствительность к соланину - гликозиду клубней зеленого картофеля, ингибирующему фермент псевдохолинэстеразу. Существуют этнические различия в чувствительности к алкоголю, обусловленные высоким уровнем мутаций в гене алкогольдегидрогеназы у лиц монголоидной расы. Известны семьи, предрасположенные к диабету, атеросклерозу, заболеваниям легких, сердца, почек, психическим отклонениям или с высокой склонностью к онкологии (результат полиморфизма ферментов детоксикации, рецепторов и белков, регулирующих клеточный цикл).

Эти различия между людьми являются результатом генетического разнообразия человека, т.е. наличия у каждого из нас неповторимого набора генов (генома), составляющего наследственную основу биохимической индивидуальности человека и проявляющегося при определенных условиях окружающей среды.

X Международная студенческая научная конференция Студенческий научный форум - 2018


Введение: Мутации - изменения генотипа, которые происходят под влиянием факторов внешней и внутренней сред. Наследуются и передаются из поколения в поколение, и не имеют направленного характера. Генные мутации возникаю чаще, чем хромосомные и геномные, но менее значительно меняют структуру ДНК.

Актуальность: В связи с тем, что генные мутации являются самыми распространёнными, необходимо иметь представление о генных мутациях, видах и механизмов их возникновения.

Цель данной работы является изучение в теоретических источниках информации о генных мутациях и их влияния на ген.

Задача: изучить генные мутации, их влияние на гены, а также последствия, к которым они приводят.

Генные мутации - это изменения последовательности нуклеотидов одного гена, приводящие к возникновению новых видов его аллелей. Причинами мутаций являются выпадение, удвоение, вставка, замена или перестановка нуклеотидов. В результате чего изменяется порядок генов, и становиться не возможным правильный синтез белка.

Генные мутации имеют ряд особенностей:

способность преобратиться по наследству;

могут спровоцировать трансформацию генетических сведений;

в ряде случаев изменения могут быть нейтральными;

определенный ген может мутировать в несколько разных состояний.

Значимость генных мутаций для жизнеспособности организма неоди­накова. Различные изменения в нуклеотидной последовательности ДНК по-разному проявляются в фенотипе. Не­которые «молчащие мутации» не ока­зывают влияния на структуру и функ­цию белка. Примером такой мутации может служить замена нуклеотидов, не приводящая к замене аминокислот.

По функциональному значению выделяют генные мутации:

ведущие к полной потере функ­ции;

в результате которых происходят количественные изменения мРНК и первичных белковых продуктов;

доминантно-негативные, изменя­ющие свойства белковых молекул та­ким образом, что они оказывают по­вреждающее действие на жизнедея­тельность клеток.

По месту локализации различают:

Миссенс-мутациисвязаны с заме­ной нуклеотидов в кодирующей части гена. Проявляется в виде замены аминокислоты в белке. В зависимости от природы аминокислот и функциональной значимости нарушенного участка, наблюдается полная или частичная потеря функциональной активности белка.

Нонсенс мутации - замена 1 нуклеотида в триплете на другой приведет к тому, что генетически значащий триплет превратится в стоп кодон, что приводит к обрыву синтеза полипептидной цепи белка.

Сеймсенс мутации - замена нуклеотида в триплете приводит к появлению триплета-синонима, который кодирует тот же самый белок. Это связано с вырожденностью генетического кода.

Сплайсинговые мутациизатрагива­ют сайты на стыке экзонов и интронов и сопровождаются либо вырезанием экзона и образованием делегированно­го белка, либо вырезанием интронной области и трансляцией бессмысленно­го измененного белка. Как правило, та­кие мутации обусловливают тяжелое течение болезни.

Регуляторные мутациисвязаны с количественным нарушением в регуляторных областях гена. Они не при­водят к изменениям структуры и функции белков. Фенотипическое проявление таких мутаций определя­ется пороговым уровнем концентра­ции белка, при котором еще сохраня­ется его функция.

Динамические мутации или мутации экспансиипредставляют собой патологическое увеличение числа тринуклеотидных повторов, локализованных в ко­дирующих и регуляторных частях гена. Многие тринуклеотидные последовательности характеризуются высоким уровнем популяционной изменчивости. Фенотипическое нарушение проявля­ется в случае превышения определенно­го критического уровня по числу повто­ров.

Механизмы возникновения генных мутаций (замена, вставка, выпадение).

ДНК состоит из 2-х полинуклеотидных цепей. Сначала изменение возникает в 1-й цепи ДНК - это полумутационное состояние или “первичное повреждение ДНК”.

Когда повреждение переходит на вторую цепь ДНК то, говорят о том, что произошла фиксация мутации, то есть возникла “полная мутация”.

Первичные повреждения ДНК возникают при нарушении механизмов репликации, транскрипции, кроссинговера.

Именно генные мутации обусловливают развитие большинства наследственных форм патологии. Такие болез­ни называются генными или моногенными. К моногенным заболеваниям относятся: гемофилия, фенилкетонурия, нейрофиброматоз, муковисцедоз, миопатия Дюшенна—Беккера и многие другие.

Заключение:

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, однако встречаются довольно часто. В результате генных мутаций происходят выпадение, удвоение, вставка, замена или перестановка нуклеотидов, изменения свойств и функций гена.

Список использованной литературы:

Клиническая генетика : учебник / Н. П. Бочков, В. П. Пузырев, С. А. Смирнихина ; под ред. Н. П. Бочкова. 2013. 582 с.

Генетика человека с основами медицинской генетики : учеб. для студ. учреждений сред. проф. учеб. заведений, 2012. — 240 с.

МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ КАК ДВИЖУЩАЯ СИЛА ЭВОЛЮЦИИ. КЛАССИФИКАЦИЯ МУТАЦИЙ.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Мута́ция (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней сред. Теория мутаций составляет одну из основ генетики. Ее основные положения были разработаны голландским ученым Гуго де Фризом еще в начале XX в.

Изменчивость и ее значение в эволюции

Изменчивость - одно из замечательных свойств живых организмов. Явление изменчивости было замечено давно, с тех пор как человек стал заниматься выведением культурных сортов растений и пород домашних животных.

В результате изменчивости в процессе эволюции возникают разные формы организмов, которые могут сосуществовать в одном и том же пространстве (вследствие разнообразия потребностей). Так возрастает "сумма жизни", что доказал ещё великий английский натуралист Чарлз Роберт Дарвин.

Дарвин различал два главных типа изменчивости - определённую и неопределённую. По его мнению, определённая изменчивость - это та, которая прямо связана с влиянием факторов внешней среды. Такая изменчивость называется также групповой, поскольку все особи данного вида, попадающие под действие какого-либо фактора, изменяются сходным образом (например, многие животные средних широт белеют с наступлением зимы, все растения при хорошем минеральном и органическом питании вырастают более крупными и т.п.).

Неопределённая изменчивость не зависит прямо от действия внешних факторов, или, по образному выражению Ч. Дарвина, зависит от них не более, чем характер пламени зависит от характера искры, которой был зажжен огонь. Дарвин собрал много примеров таких внезапно возникающих, иногда полезных, чаще - бесполезных для вида, неопределённых изменений, которые затем закреплялись в последующих поколениях (благодаря естественному отбору). Механизм возникновения таких изменений, а также учение его современника Менделя о наследственности, о доминировании одних признаков над другими Дарвину не были известны.

Изменчивость, которую Ч. Дарвин называл определённой, впоследствии получила название модификационной изменчивости. То, что в терминологии Ч. Дарвина называлось неопределённой изменчивостью, в современных терминах является наследственной, или генотипической, изменчивостью.

Многообразные сочетания модификационной и генотипической изменчивостей дают огромный простор для действия главнейшего фактора эволюции - естественного отбора. Отбору всегда есть из чего выбирать. В природе под влиянием отбора любой вид живых организмов может со временем измениться или дать начало новым видам, с иными признаками и свойствами.

Генотипическая изменчивость - изменения, произошедшие в структуре генотипа и передаваемые по наследству. К этому типу изменчивости относят комбинативную и мутационную изменчивости, которые ведут к увеличению внутривидового разнообразие в природе. Предполагалось, что именно изменчивости таких типов мутаций и сыграли немаловажную роль в мировой эволюции.

Комбинативная изменчивость возникла с появлением полового размножения, она связана с различными вариантами перекомбинации родительских задатков и является источником бесконечного разнообразия сочетаемых признаков. Так, дети, рожденные в разное время у одной родительской пары, похожи, но всегда отличаются рядом признаков. Кобинативная изменчивость обуславливается вероятностным участием гамет в оплодотворении, имеющих различные перекомбинации хромосом родителей. При этом минимальное число возможных сортов гамет у мужчин и женщин огромно, оно равно 2 23 (без учета кроссинговера). Поэтому вероятность рождения на земле двух одинаковых людей ничтожно мала.

Большой вклад в комбинативную изменчивость вносит как раз кроссинговер, приводящий к образованию новых групп сцепления благодаря рекомбинации аллелей. При этом возможное число генотипов (g) равно:

g=[r(r+1)] n r - число аллелей

Этот закон окончательно был сформулирован в 1908 английским математиком Харди и немецким врачом-биологм Венбергом. И теперь этот закон носит имя закон Харди-Венберга.

Мутационная изменчивость - это скачкообразные и устойчивые изменения генетического материала, передающиеся по наследству, она принципиально отличается от комбинативной, так как при этом происходит изменение генетического материала, тогда как комбинативная изменчивость - это новое сочетание родительских генов в зиготе.

Английским ученым удалось показать, что мутации, вызванные радиационным излучением, были обнаружены в третьем поколении лабораторных мышей. В эксперименте ученые подвергали облучению рентгеновскими лучами группу мышей-самцов двух разных линий. После этого ученые скрещивали облученных самцов с необлученными самками и определяли уровень мутаций у их потомства. Было показано, что как дети, так и внуки облученных самцов несли изменения в последовательности ДНК и демонстрировали более высокий уровень мутаций по сравнению с мышами дикого типа. Ученые полагают, что факт наследования мутаций вызывает определенные опасения, поскольку это может увеличить риск развития рака или других заболеваний. У людей генетическое разнообразие гораздо выше, чем у мышей, используемых в эксперименте. Поэтому то, что наследование мутаций у людей до сих пор не обнаружено, не означает, что его нет. Хотя предыдущие исследования, проведенные среди семей, пострадавших во время ядерной бомбардировки Хиросимы и аварии на ЧАЭС, не выявили наследования мутаций, но по мнению ученых, картирование человеческого генома может помочь обнаружить наследуемые мутации.

Мутационная теория была создана Гуго де Фризом в 1901-1903 гг. На основных ее положениях строится современная генетика: мутации, дискретные изменения наследственности в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того какой признак положен в основу, на сегодняшний день существует несколько систем классификации мутаций.

Классификация мутаций

1. По способу возникновения. Различают спонтанные и индуцированные мутации Спонтанные происходят в природе крайне редко с частотой 1-100 на миллион экземпляров данного гена. В настоящие время очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.

Индуцированные мутации возникают при воздействии на человека мутагенами -факторами, вызывающими мутации. Мутагены же бывают трех видов:

· Физические ( радиация, электро - магнитное излучение, давление, температура и т.д.)

· Химические (цитостатики, спирты,фенолы и т.д.)

· Биологические ( бактерии и вирусы )

2. По отношению к зачатковому пути. Существуют соматические и генеративные мутации. Генеративные мутации возникают в репродуктивных тканях и поэтому не всегда выявляются. Для того, чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета учавствовала в оплодотворении.

3. По адаптивному занчению. Выделяют положительные, отрицательные и нейтральные мутации. Эта классификация связана с оценкой жизнеспособности образовавшегося мутанта.

4. По изменению генотипа. Мутации бывают генные, хромосомные и геномные геномные.

5. По локализации в клетке. Мутации делятся на ядерные и цитоплазматические. Плазматические мутации возникают в результате мутаций в плазмогенах, находящихяс в митохондриях. Полагают, что именно они приводят к мужскому бесплодию. Причем такие мутации в основном наследуются по женской линии.

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена: на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

● Генныемутации

Генные ( точковые ) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть(делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно - клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидныз цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую( вместо глутамина - валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно - клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривание тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.

Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, "Молчащая мутация"- изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокилотная последовательность белка не меняется.

● Хромосомные мутации

Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрехромосмным относятся:

· Дубликация - один из участков хромосомы представлен более одного раза.

· Делеция - утрачивается внутренний участок хромосомы.

· Инверсия -повороты участка хромосомы на 180 градусов.

Межхромосомные перестройки (их еще называют транслокации) делятся на:

· Реципрокные - обмен участками негомологичных хромосом.

· Нереципрокные - изменение положения участка хромосомы.

· Дицентрические - слияние фрагментов негомологичных хромосом.

· Центрические - слияние центромер негомологичных хромосом.

Хромосомные мутации проявляются у 1% новорожденных. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на измененные условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распостраненный пример - синдром "Кошачьего крика" (плачь ребенка напоминает мяукание кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к паталогическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны - 24. Таким образом различие составляет всего одна хромосома. Ученые предполагают, что в процессе эволюции произошла хотя бы одна перестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной перецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина.

● Геномные мутации

Главная отличительная черта геномных мутаций связана с нарушением числа хромосом в кариотипе. Эти мутации так же подразделяются на два вида: полиплоидные анеуплоидные.

Полиплоидные мутации ведут к изменению хромосом в кариотипе, которое кратно гаплоидному набору хромосом. Этот синдром впервые был лишь обнаружен в 60-ых годах. Вообще полиплодия характерна в основном для человека, а среди животных встречается крайне редко. При полиплоидии число хромосом в клетке насчитывается по 69 (триплодие) , а иногда и по 92 (тетраплодие) хромосомы. Такое изменение ведет практически к 100 % смерти зародыша. Триплодие имеет не только многочисленные пороки, но и приводит к потере жизнеспособности. Тетраплодие встречается еще реже, но так же зачастую приводит к летальному исходу.

Анеуплоидные же мутации приводят к изменению числа хромосом в кариотипе, некратное гаплоидному набору. В результате такой мутации возникают осыби с аномальным чилом хромосом. Как и триплодия, анеуплодия часто приводит к смерти еще на ранних этапах развития зародыша. Причиной же таких последствий является утрата целой группы сцепления генов в кариотипе.

В цело же, механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток. Такой процесс называется мозаицизм.

Геномные мутации одни из самых страшных. Они ведут к таким заболеваниям, как синдром Дауна (трисомия, возникает с частотой 1 больной на 600 новорожденных), синдром Клайнфельтера и др.

Заключение

Мутационный процесс является главным источником изменений, приводящим к различным патологиям. Задачи науки на ближайшие время определяются как уменьшения генетического груза путем предотвращения или снижения вероятности мутаций и устранения возникших в ДНК изменений с помощью генной инженерии. Генная инженерия - новое направление в молекулярной биологии, появившееся в последние время, которое может в будущем обратить мутации на пользу человеку, в частности, эффективно бороться с вирусами. Уже сейчас существуют вещества называемые антимутагены, которые приводят к ослаблению темпов мутирования. Успехи современной генетики находят применение в диагностики, профилактике и лечении ряда наследственных патологий. Так, в 1997 году в США была получена рекомбинативная ДНК. С помощью генной инженерии уже сконструированы искусственные гены инсулина, интерферона и других веществ.

Литература

1. Биология / Сост. З.А.Власовой. - М., Филологическое общество "Слово",

2. Компания "Ключ-С", ТКО АСТ, Центр гуманитарных наук при факультете журналистики

3. МГУ им. М,В,Ломоносова, 1995 г. - 576 с.

4. Биология. Большой энциклопедический словарь / Гл. ред. М.В.Гиларов. - 3-е изд. - М., Большая Российская энциклопедия, 1998. - 864 с., ил., 30 л цв.ил.

5. Заяц Р.Г. и др. Пособие по биологии для абитуриентов / Р.Г. Заяц, И.В.

6. Рачковская, В.М. Стамбровская. - 4-е изд. - Минск, Высшая школа, 1998 - 510 с.

7. Учебное пособие по основам генетики / И.П. Карузина. - М., Медицина, 1976. - 224 с., ил.

8. Энциклопедия для детей: т.2 Биология. - 4-е изд., испр. - М., Аванта Плюс, 1997. - 668 с., ил.

Влияние мутации на функции белка. Примеры

Цель настоящей статьи - раскрытие сущности понятия мутагенеза, а также роли данного процесса в понимании эволюции всех живых организмов на нашей планете. Подробно изложены современные классификации мутагенеза, в том числе разбору подвергнуто понятие о генных мутациях. В материале работы изложены наиболее вероятные причины, которые могут потенцировать частоту возникновения и масштабность различных нарушений в хранении, воспроизведении и передаче генетической информации.


2. Ходжкин Ю. Генетическое подавление. 2005 г., 27 декабря. В: WormBook: Интернет-обзор биологии C. elegans. Пасадена (Калифорния): WormBook; 2005-2018.

5. Жимулёв, И.Ф. Общая и молекулярная генетика /И.Ф. Жимулёв. — Издание четвертое. — Новосибирск: Новосибирское университетское издательство, 2007. — 480с.

Введение. Мутагенез - внесение изменений в нуклеотидную последовательность ДНК (мутаций). (Гуго де Фриз 1901)

Виды мутагенеза. Различают естественный и искусственный мутагенез.

Естественный (спонтанный) - возникает вследствие УФ-лучей, химических мутагенов, радиации.

Искусственный (индуцированный) - искусственное получение мутаций путем воздействия радиационного излучения и химических веществ. Широко используется в селекции (полиплоидия).

Роль мутагенеза. Зачастую мутации выступают в качестве материала для естественного отбор. Например: при кардинальном изменении окружающих организм условий мутации, считавшиеся ранее ненужными, могут стать полезными, и повысят процент выживаемости данного организма и впоследствии его потомков.

Учитывая тот факт, что изменения окружающей среды в процессе эволюции живых организмов происходят довольно редко, то мутации большинства генов могут выступать «молекулярными часами». С их помощью можно отследить родство различных таксонов, в том числе проследить периоды развития и происхождения человеческих народов и рас.

Согласно одной из теорий происхождения жизни на нашей планете все живое произошло от одной клетки. В процессе эволюции эта клетка дифференцировалась с помощью мутаций. Так возникли мы и самое важное -

разные люди (цвет волос, глаз и т.д.) Стоит также отметить, что мутации играют большую роль в селекции. Путем искусственного мутагенеза получают более крупные плоды. Таким образом, благодаря мутациям возникают новые штаммы, сорта, породы организмов.

Мутации с нарушением генетического кода (генные мутации). Генные мутации - это изменение строения одного гена, т.е. изменение в последовательности нуклеотидов, а следовательно, изменение генетического кода и изменение молекулы белка, синтезируемого по этому коду. Если изменяется код, то изменяется и кодируемый им признак. Последствия генных мутаций могут быть разные - все зависит от гена, с которым произойдет спонтанное изменение. Если случится нарушение синтеза аминокислоты, необходимой для полноценного функционирования организма, то будут серьезные осложнения вплоть до смертельного исхода. Если действие мутировавшего гена будет подавлено парным геном из гомологичной хромосомы или если изменение в молекуле синтезируемого белка не будет нарушать его функций, то мутация никак не отразится на фенотипе.

Виды генных мутаций:

1. Дупликация - удвоение пары или нескольких пар нуклеотидов;

2. Инсерция - вставка пары нуклеотидов (или несколько);

3. Делеция - выпадение участка генома;

4. Инверсия - переворот на 180 градусов;

5. Замена - замена пары нуклеотидов на другую.

Так, например, замена глутаминовой кислоты на валин в молекуле глобина (белковой части гемоглобина) приводит к катастрофическим последствиям). Гемоглобин начинает хуже связывать и переносить кислород. Эритроциты, в которых содержится гемоглобин, становятся непрочными и легко разрушаются. Вследствие замены одной из ста сорока шести аминокислот на другую развивается тяжелое заболевание - серповидноклеточная анемия. Так назвали из-за формы гемоглобина - в форме серпа.

Причины мутирования. Самопроизвольные (спонтанные) мутации, исходя из своего названия, возникают без влияния на организм окружающей среды. К ним приводят нарушения в процессах репарации, репликации и рекомбинации генетического материала. Например, во время дистрессовых состояний организма его клетки могут повреждаться, что и приводит к вышеописанным нарушениям трех «Р»-функций ДНК.

Индуцированные мутации возникают в результате воздействия на организм радиоактивного и УФ излучения, которые изменяют в атомах заряд электронов. Это же вызывает сбой в нормальном протекании процессов физико-химических и химико-биологических; очень высокая температура часто становится причиной изменений в случае, когда превышается порог чувствительности конкретного индивидуума; когда клетки делятся, могут возникать задержки, а также слишком быстрое их разрастание, что также становится толчком к негативным изменениям; «дефекты», возникающие в ДНК, при которых возвратить атом в первоначальное состояние не представляется возможным даже после восстановления. наследственность человека, которая подвергается определённым мутациям.

Читайте также: